首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mms2, in concert with Ubc13 and Rad5, is responsible for polyubiquitination of replication processivity factor PCNA. This modification activates recombination-like DNA damage-avoidance mechanisms, which function in an error-free manner. Cells deprived of Mms2, Ubc13 or Rad5 exhibit mutator phenotypes as a result of the channelling of premutational DNA lesions to often error-prone translesion DNA synthesis (TLS). Here we show that Siz1-mediated PCNA SUMOylation is required for the stimulation of this TLS, despite the presence of PCNA monoubiquitination. The stimulation of spontaneous mutagenesis by Siz1 in cells carrying rad5 and/or mms2 mutations is connected with the known role of PCNA SUMOylation in the inhibition of Rad52-mediated recombination. However, following UV irradiation, Siz1 is engaged in additional, as yet undefined, mechanisms controlling genetic stability at the replication fork. We also demonstrate that in the absence of PCNA SUMOylation, Mms2-Ubc13 and Rad5 may, independently of each other, function in the stimulation of TLS. Based on this finding and on an analysis of the epistatic relationships between SIZ1, MMS2 and RAD5, with respect to UV sensitivity, we conclude that PCNA SUMOylation is responsible for the functional differences between the Mms2 and Rad5 homologues of Saccharomyces cerevisiae and Schizosaccharomyces pombe.  相似文献   

2.
Game JC  Williamson MS  Spicakova T  Brown JM 《Genetics》2006,173(4):1951-1968
We examine ionizing radiation (IR) sensitivity and epistasis relationships of several Saccharomyces mutants affecting post-translational modifications of histones H2B and H3. Mutants bre1Delta, lge1Delta, and rtf1Delta, defective in histone H2B lysine 123 ubiquitination, show IR sensitivity equivalent to that of the dot1Delta mutant that we reported on earlier, consistent with published findings that Dot1p requires H2B K123 ubiquitination to fully methylate histone H3 K79. This implicates progressive K79 methylation rather than mono-methylation in IR resistance. The set2Delta mutant, defective in H3 K36 methylation, shows mild IR sensitivity whereas mutants that abolish H3 K4 methylation resemble wild type. The dot1Delta, bre1Delta, and lge1Delta mutants show epistasis for IR sensitivity. The paf1Delta mutant, also reportedly defective in H2B K123 ubiquitination, confers no sensitivity. The rad6Delta, rad51null, rad50Delta, and rad9Delta mutations are epistatic to bre1Delta and dot1Delta, but rad18Delta and rad5Delta show additivity with bre1Delta, dot1Delta, and each other. The bre1Delta rad18Delta double mutant resembles rad6Delta in sensitivity; thus the role of Rad6p in ubiquitinating H2B accounts for its extra sensitivity compared to rad18Delta. We conclude that IR resistance conferred by BRE1 and DOT1 is mediated through homologous recombinational repair, not postreplication repair, and confirm findings of a G1 checkpoint role for the RAD6/BRE1/DOT1 pathway.  相似文献   

3.
The generation of high affinity antibodies in B cells critically depends on translesion synthesis (TLS) polymerases that introduce mutations into immunoglobulin genes during somatic hypermutation (SHM). The majority of mutations at A/T base pairs during SHM require ubiquitination of PCNA at lysine 164 (PCNA-Ub), which activates TLS polymerases. By comparing the mutation spectra in B cells of WT, TLS polymerase η (Polη)-deficient, PCNA(K164R)-mutant, and PCNA(K164R);Polη double-mutant mice, we now find that most PCNA-Ub-independent A/T mutagenesis during SHM is mediated by Polη. In addition, upon exposure to various DNA damaging agents, PCNA(K164R) mutant cells display strongly impaired recruitment of TLS polymerases, reduced daughter strand maturation and hypersensitivity. Interestingly, compared to the single mutants, PCNA(K164R);Polη double-mutant cells are dramatically delayed in S phase progression and far more prone to cell death following UV exposure. Taken together, these data support the existence of PCNA ubiquitination-dependent and -independent activation pathways of Polη during SHM and DNA damage tolerance.  相似文献   

4.
Rev1 and DNA polymerase ζ (Polζ) are involved in the tolerance of DNA damage by translesion synthesis (TLS). The proliferating cell nuclear antigen (PCNA), the auxiliary factor of nuclear DNA polymerases, plays an important role in regulating the access of TLS polymerases to the primer terminus. Both Rev1 and Polζ lack the conserved hydrophobic motif that is used by many proteins for the interaction with PCNA at its interdomain connector loop. We have previously reported that the interaction of yeast Polζ with PCNA occurs at an unusual site near the monomer-monomer interface of the trimeric PCNA. Using GST pull-down assays, PCNA-coupled affinity beads pull-down and gel filtration chromatography, we show that the same region is required for the physical interaction of PCNA with the polymerase-associated domain (PAD) of Rev1. The interaction is disrupted by the pol30-113 mutation that results in a double amino acid substitution at the monomer-monomer interface of PCNA. Genetic analysis of the epistatic relationship of the pol30-113 mutation with an array of DNA repair and damage tolerance mutations indicated that PCNA-113 is specifically defective in the Rev1/Polζ-dependent TLS pathway. Taken together, the data suggest that Polζ and Rev1 are unique among PCNA-interacting proteins in using the novel binding site near the intermolecular interface of PCNA. The new mode of Rev1-PCNA binding described here suggests a mechanism by which Rev1 adopts a catalytically inactive configuration at the replication fork.  相似文献   

5.
Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.  相似文献   

6.
DNA damage tolerance is regulated at least in part at the level of proliferating cell nuclear antigen (PCNA) ubiquitination. Monoubiquitination (PCNA-Ub) at lysine residue 164 (K164) stimulates error-prone translesion synthesis (TLS), Rad5-dependent polyubiquitination (PCNA-Ub(n)) stimulates error-free template switching (TS). To generate high affinity antibodies by somatic hypermutation (SHM), B cells profit from error-prone TLS polymerases. Consistent with the role of PCNA-Ub in stimulating TLS, hypermutated B cells of PCNA(K164R) mutant mice display a defect in generating selective point mutations. Two Rad5 orthologs, HLTF and SHPRH have been identified as alternative E3 ligases generating PCNA-Ub(n) in mammals. As PCNA-Ub and PCNA-Ub(n) both make use of K164, error-free PCNA-Ub(n)-dependent TS may suppress error-prone PCNA-Ub-dependent TLS. To determine a regulatory role of Shprh and Hltf in SHM, we generated Shprh/Hltf double mutant mice. Interestingly, while the formation of PCNA-Ub and PCNA-Ub(n) is prohibited in PCNA(K164R) MEFs, the formation of PCNA-Ub(n) is not abolished in Shprh/Hltf mutant MEFs. In line with these observations Shprh/Hltf double mutant B cells were not hypersensitive to DNA damage. Furthermore, SHM was normal in Shprh/Hltf mutant B cells. These data suggest the existence of an alternative E3 ligase in the generation of PCNA-Ub(n).  相似文献   

7.
DNA damage tolerance (DDT) pathways, including translesion synthesis (TLS) and additional unknown mechanisms, enable recovery from replication arrest at DNA lesions. DDT pathways are regulated by post-translational modifications of proliferating cell nuclear antigen (PCNA) at its K164 residue. In particular, mono-ubiquitination by the ubiquitin ligase RAD18 is crucial for Polη-mediated TLS. Although the importance of modifications of PCNA to DDT pathways is well known, the relevance of its homo-trimer form, in which three K164 residues are present in a single ring, remains to be elucidated. Here, we show that multiple units of a PCNA homo-trimer are simultaneously mono-ubiquitinated in vitro and in vivo. RAD18 catalyzed sequential mono-ubiquitinations of multiple units of a PCNA homo-trimer in a reconstituted system. Exogenous PCNA formed hetero-trimers with endogenous PCNA in WI38VA13 cell transformants. When K164R-mutated PCNA was expressed in these cells at levels that depleted endogenous PCNA homo-trimers, multiple modifications of PCNA complexes were reduced and the cells showed defects in DDT after UV irradiation. Notably, ectopic expression of mutant PCNA increased the UV sensitivities of Polη-proficient, Polη-deficient, and REV1-depleted cells, suggesting the disruption of a DDT pathway distinct from the Polη- and REV1-mediated pathways. These results suggest that simultaneous modifications of multiple units of a PCNA homo-trimer are required for a certain DDT pathway in human cells.  相似文献   

8.
Conde F  San-Segundo PA 《Genetics》2008,179(3):1197-1210
Maintenance of genomic integrity relies on a proper response to DNA injuries integrated by the DNA damage checkpoint; histone modifications play an important role in this response. Dot1 methylates lysine 79 of histone H3. In Saccharomyces cerevisiae, Dot1 is required for the meiotic recombination checkpoint as well as for chromatin silencing and the G(1)/S and intra-S DNA damage checkpoints in vegetative cells. Here, we report the analysis of the function of Dot1 in the response to alkylating damage. Unexpectedly, deletion of DOT1 results in increased resistance to the alkylating agent methyl methanesulfonate (MMS). This phenotype is independent of the dot1 silencing defect and does not result from reduced levels of DNA damage. Deletion of DOT1 partially or totally suppresses the MMS sensitivity of various DNA repair mutants (rad52, rad54, yku80, rad1, rad14, apn1, rad5, rad30). However, the rev1 dot1 and rev3 dot1 mutants show enhanced MMS sensitivity and dot1 does not attenuate the MMS sensitivity of rad52 rev3 or rad52 rev1. In addition, Rev3-dependent MMS-induced mutagenesis is increased in dot1 cells. We propose that Dot1 inhibits translesion synthesis (TLS) by Polzeta/Rev1 and that the MMS resistance observed in the dot1 mutant results from the enhanced TLS activity.  相似文献   

9.
Monoubiquitylation of the homotrimeric DNA sliding clamp PCNA at lysine residue 164 (PCNA(K164)) is a highly conserved, DNA damage-inducible process that is mediated by the E2/E3 complex Rad6/Rad18. This ubiquitylation event recruits translesion synthesis (TLS) polymerases capable of replicating across damaged DNA templates. Besides PCNA, the Rad6/Rad18 complex was recently shown in yeast to ubiquitylate also 9-1-1, a heterotrimeric DNA sliding clamp composed of Rad9, Rad1, and Hus1 in a DNA damage-inducible manner. Based on the highly similar crystal structures of PCNA and 9-1-1, K185 of Rad1 (Rad1(K185)) was identified as the only topological equivalent of PCNA(K164). To investigate a potential role of posttranslational modifications of Rad1(K185) in DNA damage management, we here generated a mouse model with a conditional deletable Rad1(K185R) allele. The Rad1(K185) residue was found to be dispensable for Chk1 activation, DNA damage survival, and class switch recombination of immunoglobulin genes as well as recruitment of TLS polymerases during somatic hypermutation of immunoglobulin genes. Our data indicate that Rad1(K185) is not a functional counterpart of PCNA(K164).  相似文献   

10.
Martini EM  Keeney S  Osley MA 《Genetics》2002,160(4):1375-1387
To investigate the role of the nucleosome during repair of DNA damage in yeast, we screened for histone H2B mutants that were sensitive to UV irradiation. We have isolated a new mutant, htb1-3, that shows preferential sensitivity to UV-C. There is no detectable difference in bulk chromatin structure or in the number of UV-induced cis-syn cyclobutane pyrimidine dimers (CPD) between HTB1 and htb1-3 strains. These results suggest a specific effect of this histone H2B mutation in UV-induced DNA repair processes rather than a global effect on chromatin structure. We analyzed the UV sensitivity of double mutants that contained the htb1-3 mutation and mutations in genes from each of the three epistasis groups of RAD genes. The htb1-3 mutation enhanced UV-induced cell killing in rad1Delta and rad52Delta mutants but not in rad6Delta or rad18Delta mutants, which are defective in postreplicational DNA repair (PRR). When combined with other mutations that affect PRR, the histone mutation increased the UV sensitivity of strains with defects in either the error-prone (rev1Delta) or error-free (rad30Delta) branches of PRR, but did not enhance the UV sensitivity of a strain with a rad5Delta mutation. When combined with a ubc13Delta mutation, which is also epistatic with rad5Delta, the htb1-3 mutation enhanced UV-induced cell killing. These results suggest that histone H2B acts in a novel RAD5-dependent branch of PRR.  相似文献   

11.
Andersen PL  Xu F  Xiao W 《Cell research》2008,18(1):162-173
In addition to well-defined DNA repair pathways, all living organisms have evolved mechanisms to avoid cell death caused by replication fork collapse at a site where replication is blocked due to disruptive covalent modifications of DNA. The term DNA damage tolerance (DDT) has been employed loosely to include a collection of mechanisms by which cells survive replication-blocking lesions with or without associated genomic instability. Recent genetic analyses indicate that DDT in eukaryotes, from yeast to human, consists of two parallel pathways with one being error-free and another highly mutagenic. Interestingly, in budding yeast, these two pathways are mediated by sequential modifications of the proliferating cell nuclear antigen (PCNA) by two ubiquitination complexes Rad6-Rad18 and Mms2-Ubc13-Rad5. Damage-induced monoubiquitination of PCNA by Rad6-Rad18 promotes translesion synthesis (TLS) with increased mutagenesis, while subsequent polyubiquitination of PCNA at the same K164 residue by Mms2-Ubc13-Rad5 promotes error-free lesion bypass. Data obtained from recent studies suggest that the above mechanisms are conserved in higher eukaryotes. In particular, mammals contain multiple specialized TLS polymerases. Defects in one of the TLS polymerases have been linked to genomic instability and cancer.  相似文献   

12.
Wang S  Wen R  Shi X  Lambrecht A  Wang H  Xiao W 《DNA Repair》2011,10(6):620-628
DNA-damage tolerance (DDT) in yeast is composed of two parallel pathways and mediated by sequential ubiquitinations of PCNA. While monoubiquitination of PCNA promotes translesion synthesis (TLS) that is dependent on polymerase ζ consisted of a catalytic subunit Rev3 and a regulatory subunit Rev7, polyubiquitination of PCNA by Mms2-Ubc13-Rad5 promotes error-free lesion bypass. Inactivation of these two pathways results in a synergistic effect on DNA-damage responses; however, this two-branch DDT model has not been reported in any multicellular organisms. In order to examine whether Arabidopsis thaliana possesses a two-branch DDT system, we created rad5a rev3 double mutant plant lines and compared them with the corresponding single mutants. Arabidopsis rad5a and rev3 mutations are indeed synergistic with respect to root growth inhibition induced by replication-blocking lesions, suggesting that AtRAD5a and AtREV3 are required for error-free and TLS branches of DDT, respectively. Unexpectedly this study reveals three modes of genetic interactions in response to different types of DNA damage, implying that plant RAD5 and REV3 are also involved in DNA damage responses independent of DDT. By comparing with yeast cells, it is apparent that plant TLS is a more frequently utilized means of lesion bypass than error-free DDT in plants.  相似文献   

13.
The mode of interaction in haploid Saccharomyces cerevisiae of two pso mutations with each other and with rad mutations affected in their excision-resynthesis (rad3), error-prone (rad6), and deoxyribonucleic acid double-strand break (rad52) repair pathways was determined for various double mutant combinations. Survival data for 8-methoxypsoralen photoaddition, 254-nm ultraviolet light and gamma rays are presented. For 8-methoxypsoralen photoaddition, which induces both deoxyribonucleic acid interstrand cross-links and monoadditions, the pso1 mutation is epistatic to the rad6, rad52, and pso2 mutations, whereas it is synergistic to rad3. The pso2 mutation, which is specifically sensitive to photoaddition of psoralens, is epistatic to rad3 and demonstrates a nonepistatic interaction with rad6 and rad52. rad3 and rad6, as well as rad 6 and rad52, show synergistic interactions with each other, whereas rad 3 is epistatic to rad52. Consequently, it is proposed that PSO1 and RAD3 genes govern steps in the independent pathways. The PSO1 activity leading to an intermediate which is repaired via the three incidence pathways controlled by RAD6, RAD52, and PSO2 genes. Since pso1 interacts synergistically with rad3 and rad52 and epistatically with rad6 after UV radiation, the PSO1 gene appears to belong to the RAD6 group. For gamma ray sensitivity, pso1 is epistatic to rad6 and rad52, which suggests that this gene controls a step which is common to the two other independent pathways.  相似文献   

14.
The Rad6-Rad18 complex mono-ubiquitinates proliferating cell nuclear antigen (PCNA) at the lysine 164 residue after DNA damage and promotes DNA polymerase eta (Poleta)- and Polzeta/Rev1-dependent DNA synthesis. Double-strand breaks (DSBs) of DNA can be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ), both of which require new DNA synthesis. HO endonuclease introduces DSBs into specific DNA sequences. We have shown that Polzeta and Rev1 localize to HO-induced DSBs in a Mec1-dependent manner and promote Ku-dependent DSB repair. However, Polzeta and Rev1 localize to DSBs independently of PCNA ubiquitination. Here we provide evidence indicating that Rad18-mediated PCNA ubiquitination stimulates DNA synthesis by Polzeta and Rev1 in repair of HO-induced DSBs. Ubiquitination defective PCNA mutation or rad18Delta mutation confers the same DSB repair defect as rev1Delta mutation. Consistent with a role in DSB repair, Rad18 localizes to HO-induced DSBs in a Rad6-dependent manner. Unlike Polzeta or Rev1, Poleta is dispensable for repair of HO-induced DSBs. Ku and DNA ligase IV constitute a central NHEJ pathway. We also show that Polzeta and Rev1 act in the same pathway as DNA ligase IV, suggesting that Polzeta and Rev1 are involved in DNA synthesis during NHEJ. Our results suggest that Polzeta-Rev1 accumulates at regions near DSBs independently of PCNA ubiquitination and then interacts with ubiquitinated PCNA to facilitate DNA synthesis.  相似文献   

15.
Scheller J  Schürer A  Rudolph C  Hettwer S  Kramer W 《Genetics》2000,155(3):1069-1081
We have characterized the MPH1 gene from Saccharomyces cerevisiae. mph1 mutants display a spontaneous mutator phenotype. Homologs were found in archaea and in the EST libraries of Drosophila, mouse, and man. Mph1 carries the signature motifs of the DEAH family of helicases. Selected motifs were shown to be necessary for MPH1 function by introducing missense mutations. Possible indirect effects on translation and splicing were excluded by demonstrating nuclear localization of the protein and splicing proficiency of the mutant. A mutation spectrum did not show any conspicuous deviations from wild type except for an underrepresentation of frameshift mutations. The mutator phenotype was dependent on REV3 and RAD6. The mutant was sensitive to MMS, EMS, 4-NQO, and camptothecin, but not to UV light and X rays. Epistasis analyses were carried out with representative mutants from various repair pathways (msh6, mag1, apn1, rad14, rad52, rad6, mms2, and rev3). No epistatic interactions were found, either for the spontaneous mutator phenotype or for MMS, EMS, and 4-NQO sensitivity. mph1 slightly increased the UV sensitivity of mms2, rad6, and rad14 mutants, but no effect on X-ray sensitivity was observed. These data suggest that MPH1 is not part of a hitherto known repair pathway. Possible functions are discussed.  相似文献   

16.
The Rad6-Rad18 ubiquitin-conjugating enzyme complex of Saccharomyces cerevisiae promotes replication through DNA lesions via three separate pathways that include translesion synthesis (TLS) by DNA polymerases zeta (Polzeta) and Poleta and postreplicational repair mediated by the Mms2-Ubc13 ubiquitin-conjugating enzyme and Rad5. Here we report our studies with a proliferating cell nuclear antigen (PCNA) mutation, pol30-119, which results from a change of the lysine 164 residue to arginine. It has been shown recently that following treatment of yeast cells with DNA-damaging agents, the lysine 164 residue of PCNA becomes monoubiquitinated in a Rad6-Rad18-dependent manner and that subsequently this PCNA residue is polyubiquitinated via a lysine 63-linked ubiquitin chain in an Mms2-Ubc13-, Rad5-dependent manner. PCNA is also modified by SUMO conjugation at the lysine 164 residue. Our genetic studies with the pol30-119 mutation show that in addition to conferring a defect in Polzeta-dependent UV mutagenesis and in Poleta-dependent TLS, this PCNA mutation inhibits postreplicational repair of discontinuities that form in the newly synthesized strand across from UV lesions. In addition, we provide evidence for the activation of the RAD52 recombinational pathway in the pol30-119 mutant and we infer that SUMO conjugation at the lysine 164 residue of PCNA has a role in suppressing the Rad52-dependent postreplicational repair pathway.  相似文献   

17.
Ubiquitination of proliferating-cell nuclear antigen (PCNA) at K164 by RAD6/RAD18 has a key role in DNA damage tolerance in yeast. Here, we report on the first genetic study of this modification in a vertebrate cell. As in yeast, mutation of K164 of PCNA to arginine in the avian cell line DT40 results in sensitivity to DNA damage but, by contrast, the DT40 pcnaK164R mutant is more sensitive than the rad18 mutant. Consistent with this, we show the presence of residual ubiquitination of PCNA at K164 in the absence of functional RAD18, suggesting the presence of an alternate PCNA ubiquitinating enzyme in DT40. Furthermore, RAD18 and PCNA K164 have non-overlapping roles in the suppression of sister chromatid exchange in DT40, showing that RAD18 has other functions that do not involve the ubiquitination of PCNA.  相似文献   

18.
Mutations arising in times of cell cycle arrest may provide a selective advantage for unicellular organisms adapting to environmental changes. For multicellular organisms, however, they may pose a serious threat, in that such mutations in somatic cells contribute to carcinogenesis and ageing. The budding yeast Saccharomyces cerevisiae presents a convenient model system for studying the incidence and the mechanisms of stationary-phase mutation in a eukaryotic organism. Having studied the emergence of frameshift mutants after several days of starvation-induced cell cycle arrest, we previously reported that all (potentially error-prone) translesion synthesis (TLS) enzymes identified in S. cerevisiae did not contribute to the basal level of spontaneous stationary-phase mutations. However, we observed that an increased frequency of stationary-phase frameshift mutations, brought about by a defective nucleotide excision repair (NER) pathway or by UV irradiation, was dependent on Rev3p, the catalytic subunit of the TLS polymerase zeta (Pol zeta). Employing the same two conditions, we now examined the effect of deletions of the genes coding for polymerase eta (Pol eta) (RAD30) and Rev1p (REV1). In a NER-deficient strain background, the increased incidence of stationary-phase mutations was only moderately influenced by a lack of Pol eta but completely reduced to wild type level by a knockout of the REV1 gene. UV-induced stationary-phase mutations were abundant in wild type and rad30Delta strains, but substantially reduced in a rev1Delta as well as a rev3Delta strain. The similarity of the rev1Delta and the rev3Delta phenotype and an epistatic relationship evident from experiments with a double-deficient strain suggests a participation of Rev1p and Rev3p in the same mutagenic pathway. Based on these results, we propose that the response of cell cycle-arrested cells to an excess of exo- or endogenously induced DNA damage includes a novel replication-independent cooperative function of Rev1p and Pol zeta, which has the potential to generate mutations.  相似文献   

19.
This study investigated the requirement for ubiquitylation of PCNA at lysine 164 during polymerase eta-dependent translesion synthesis (TLS) of site-specific cis-syn cyclobutane thymine dimers (T (wedge)T). The in vitro assay recapitulated origin-dependent initiation, fork assembly, and semiconservative, bidirectional replication of double-stranded circular DNA substrates. A phosphocellulose column was used to fractionate HeLa cell extracts into two fractions; flow-through column fraction I (CFI) contained endogenous PCNA, RPA, ubiquitin-activating enzyme E1, and ubiquitin conjugase Rad6, and eluted column fraction II (CFII) included pol delta, pol eta, and RFC. CFII supplemented with purified recombinant RPA and PCNA (wild type or K164R, in which lysine was replaced with arginine) was competent for DNA replication and TLS. K164R-PCNA complemented CFII for these activities to the same extent and efficiency as wild-type PCNA. CFII mixed with CFI (endogenous PCNA, E1, Rad6) exhibited enhanced DNA replication activity, but the same TLS efficiency determined with the purified proteins. These results demonstrate that PCNA ubiquitylation at K164 of PCNA is not required in vitro for pol eta to gain access to replication complexes at forks stalled by T (wedge)T and to catalyze TLS across this dimer.  相似文献   

20.
Aflatoxin B1 (AFB1) is a human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In humans, AFB1 is primarily bioactivated by cytochrome P450 1A2 (CYP1A2) and 3A4 to a genotoxic epoxide that forms N7-guanine DNA adducts. A series of yeast haploid mutants defective in DNA repair and cell cycle checkpoints were transformed with human CYP1A2 to investigate how these DNA adducts are repaired. Cell survival and mutagenesis following aflatoxin B1 treatment was assayed in strains defective in nucleotide excision repair (NER) (rad14), postreplication repair (PRR) (rad6, rad18, mms2, and rad5), homologous recombinational repair (HRR) (rad51 and rad54), base excision repair (BER) (apn1 apn2), nonhomologous end-joining (NHEJ) (yku70), mismatch repair (MMR) (pms1), translesion synthesis (TLS) (rev3), and checkpoints (mec1-1, mec1-1 rad53, rad9, and rad17). Together our data suggest the involvement of homologous recombination and nucleotide excision repair, postreplication repair, and checkpoints in the repair and/or tolerance of AFB1-induced DNA damage in the yeast model. Rev3 appears to mediate AFB1-induced mutagenesis when error-free pathways are compromised. The results further suggest unique roles for Rad5 and abasic endonuclease-dependent DNA intermediates in regulating AFB1-induced mutagenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号