首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semaphorins are extracellular proteins that regulate axon guidance and morphogenesis by interacting with a variety of cell surface receptors. Most semaphorins interact with plexin-containing receptor complexes, although some interact with non-plexin receptors. Class 2 semaphorins are secreted molecules that control axon guidance and epidermal morphogenesis in Drosophila and Caenorhabditis elegans. We show that the C. elegans class 2 semaphorin MAB-20 binds the plexin PLX-2. plx-2 mutations enhance the phenotypes of hypomorphic mab-20 alleles but not those of mab-20 null alleles, indicating that plx-2 and mab-20 act in a common pathway. Both mab-20 and plx-2 mutations affect epidermal morphogenesis during embryonic and in postembryonic development. In both contexts, plx-2 null mutant phenotypes are much less severe than mab-20 null phenotypes, indicating that PLX-2 is not essential for MAB-20 signaling. Mutations in the ephrin efn-4 do not synergize with mab-20, indicating that EFN-4 may act in MAB-20 signaling. EFN-4 and PLX-2 are coexpressed in the late embryonic epidermis where they play redundant roles in MAB-20-dependent cell sorting.  相似文献   

2.
Semaphorins and ephrins are axon guidance cues. In C. elegans, semaphorin-2a/mab-20 and ephrin-4/efn-4/mab-26 also regulate cell sorting to form distinct rays in the male tail. Several erf (enhancer of ray fusion) mutations were identified in a mab-20 enhancer screen. Mutants of plexin-2 (plx-2) and unc-129, which encodes an axon guiding TGF-beta, were also found to be erfs. Genetic analyses show that plx-2 and mab-20 function in the same pathway, as expected if PLX-2 is a receptor for MAB-20. Surprisingly, MAB-20 also signals in a parallel pathway that requires efn-4. This signal utilizes a non-plexin receptor. The expression of plx-2, efn-4, and unc-129 in subsets of 3-cell sensory ray clusters likely mediates the ray-specific cell sorting functions of the ubiquitously expressed mab-20. We present a model for the integrated control of TGF-beta, semaphorin, and ephrin signaling in the sorting of cell clusters into distinct rays in the developing male tail.  相似文献   

3.
Axonal receptors for class 3 semaphorins (Sema3s) are heterocomplexes of neuropilins (Nrps) and Plexin-As signalling coreceptors. In the developing cerebral cortex, the Ig superfamily cell adhesion molecule L1 associates with Nrp1. Intriguingly, the genetic removal of L1 blocks axon responses of cortical neurons to Sema3A in vitro despite the expression of Plexin-As in the cortex, suggesting either that L1 substitutes for Plexin-As or that L1 and Plexin-A are both required and mediate distinct roles. We report that association of Nrp1 with L1 but not Plexin-As mediates the recruitment and activation of a Sema3A-induced focal adhesion kinase-mitogen-activated protein kinase cascade. This signalling downstream of L1 is needed for the disassembly of adherent points formed in growth cones and subsequently their collapse response to Sema3A. Plexin-As and L1 are coexpressed and present in common complexes in cortical neurons and both dominant-negative forms of Plexin-A and L1 impair their response to Sema3A. Consistently, Nrp1-expressing cortical projections are defective in mice lacking Plexin-A3, Plexin-A4 or L1. This reveals that specific signalling activities downstream of L1 and Plexin-As cooperate for mediating the axon guidance effects of Sema3A.  相似文献   

4.
Class 3 semaphorins (Sema3) are a family of secreted proteins that were originally identified as axon guidance factors mediating their signal transduction by forming complexes with neuropilins and plexins. However, the wide expression pattern of Sema3 suggested additional functions other than those associated with the nervous system, and indeed many studies have now indicated that Sema3 proteins and their receptors play a role in angiogenesis. The present review specifically focuses on recent evidence for this role in both physiological and pathological angiogenesis.  相似文献   

5.
The establishment of functional neural circuits requires the guidance of axons in response to the actions of secreted and cell-surface molecules such as the semaphorins. Semaphorin 3E and its receptor PlexinD1 are expressed in the brain, but their functions are unknown. Here, we show that Sema3E/PlexinD1 signaling plays an important role in initial development of descending axon tracts in the forebrain. Early errors in axonal projections are reflected in behavioral deficits in Sema3E null mutant mice. Two distinct signaling mechanisms can be distinguished downstream of Sema3E. On corticofugal and striatonigral neurons expressing PlexinD1 but not Neuropilin-1, Sema3E acts as a repellent. In contrast, on subiculo-mammillary neurons coexpressing PlexinD1 and Neuropilin-1, Sema3E acts as an attractant. The extracellular domain of Neuropilin-1 is sufficient to convert repulsive signaling by PlexinD1 to attraction. Our data therefore reveal a "gating" function of neuropilins in semaphorin-plexin signaling during the assembly of forebrain neuronal circuits.  相似文献   

6.
In Drosophila, plexin A is a functional receptor for semaphorin-1a. Here we show that the human plexin gene family comprises at least nine members in four subfamilies. Plexin-B1 is a receptor for the transmembrane semaphorin Sema4D (CD100), and plexin-C1 is a receptor for the GPI-anchored semaphorin Sema7A (Sema-K1). Secreted (class 3) semaphorins do not bind directly to plexins, but rather plexins associate with neuropilins, coreceptors for these semaphorins. Plexins are widely expressed: in neurons, the expression of a truncated plexin-A1 protein blocks axon repulsion by Sema3A. The cytoplasmic domain of plexins associates with a tyrosine kinase activity. Plexins may also act as ligands mediating repulsion in epithelial cells in vitro. We conclude that plexins are receptors for multiple (and perhaps all) classes of semaphorins, either alone or in combination with neuropilins, and trigger a novel signal transduction pathway controlling cell repulsion.  相似文献   

7.
The semaphorin gene family has been shown to play important roles in axonal guidance in both vertebrates and invertebrates. Both transmembrane (Sema1a, Sema1b, Sema5c) and secreted (Sema2a, Sema2b) forms of semaphorins exist in Drosophila. Two Sema receptors, plexins (Plex) A and B, have also been identified. Many questions remain concerning the axon guidance functions of the secreted semaphorins, including the identity of their receptors. We have used the well-characterized sensory system of the Drosophila embryo to address these problems. We find novel sensory axon defects in sema2a loss-of-function mutants in which particular axons misproject and follow inappropriate pathways to the CNS. plexB loss-of-function mutants show similar phenotypes to sema2a mutants and sema2a interacts genetically with plexB, supporting the hypothesis that Sema2a signals through PlexB receptors. Sema2a protein is expressed by larval oenocytes, a cluster of secretory cells in the lateral region of the embryo and the sema2a mutant phenotype can be rescued by driving Sema2a in these cells. Ablation of oenocytes results in sensory axon defects similar to the sema2a mutant phenotype. These data support a model in which Sema2a, while being secreted from oenocytes, acts in a highly localized fashion: It represses axon extension from the sensory neuron cell body, but only in regions in direct contact with oenocytes.  相似文献   

8.
This study shows that L1-like adhesion (LAD-1), the sole Caenorhabditis elegans homologue of the L1 family of neuronal adhesion molecules, is required for proper development of the germline and the early embryo and embryonic and gonadal morphogenesis. In addition, the ubiquitously expressed LAD-1, which binds to ankyrin-G, colocalizes with the C. elegans ankyrin, UNC-44, in multiple tissues at sites of cell-cell contact. Finally, we show that LAD-1 is phosphorylated in a fibroblast growth factor receptor (FGFR) pathway-dependent manner on a tyrosine residue in the highly conserved ankyrin-binding motif, FIGQY, which was shown previously to abolish the L1 family of cell adhesion molecule (L1CAM) binding to ankyrin in cultured cells. Immunofluorescence studies revealed that FIGQY-tyrosine-phosphorylated LAD-1 does not colocalize with nonphosphorylated LAD-1 or UNC-44 ankyrin but instead is localized to sites that undergo mechanical stress in polarized epithelia and axon-body wall muscle junctions. These findings suggest a novel ankyrin-independent role for LAD-1 related to FGFR signaling. Taken together, these results indicate that L1CAMs constitute a family of ubiquitous adhesion molecules, which participate in tissue morphogenesis and maintaining tissue integrity in metazoans.  相似文献   

9.
In humans, defects of the corticospinal tract have been attributed to mutations in the gene encoding L1 CAM, a phenotype that is reproduced in L1-deficient mice. Using coculture assays, we report that Sema3A secreted from the ventral spinal cord repels cortical axons from wild-type but not from L1-deficient mice. L1 and neuropilin-1 (NP-1) form a stable complex, and their extracellular domains can directly associate. Thus, L1 is a component of the Sema3A receptor complex, and L1 mutations may disrupt Sema3A signaling in the growth cone, leading to guidance errors. Addition of soluble L1Fc chimeric molecules does not restore Sema3A responsiveness of L1-deficient axons; instead, it converts the repulsion of wild-type axons into an attraction, further supporting a function for L1 in the Sema3A transducing pathways within the growth cone.  相似文献   

10.
Semaphorins and their receptors have diverse functions in axon guidance, organogenesis, vascularization and/or angiogenesis, oncogenesis and regulation of immune responses. The primary receptors for semaphorins are members of the plexin family. In particular, plexin-A1, together with ligand-binding neuropilins, transduces repulsive axon guidance signals for soluble class III semaphorins, whereas plexin-A1 has multiple functions in chick cardiogenesis as a receptor for the transmembrane semaphorin, Sema6D, independent of neuropilins. Additionally, plexin-A1 has been implicated in dendritic cell function in the immune system. However, the role of plexin-A1 in vivo, and the mechanisms underlying its pleiotropic functions, remain unclear. Here, we generated plexin-A1-deficient (plexin-A1(-/-)) mice and identified its important roles, not only in immune responses, but also in bone homeostasis. Furthermore, we show that plexin-A1 associates with the triggering receptor expressed on myeloid cells-2 (Trem-2), linking semaphorin-signalling to the immuno-receptor tyrosine-based activation motif (ITAM)-bearing adaptor protein, DAP12. These findings reveal an unexpected role for plexin-A1 and present a novel signalling mechanism for exerting the pleiotropic functions of semaphorins.  相似文献   

11.
Class 3 secreted semaphorins (Sema3A–3G) participate in many aspects of axon guidance through holoreceptor complexes that include Neuropilin-1 (Npn-1) or Neuropilin-2 and one of the four class A plexin proteins. However, unlike other Sema3 family proteins, Sema3E directly binds to Plexin-D1 without neuropilins. Its biological function was first explored in intersomitic vessel formation and since its initial discovery, Sema3E–Plexin-D1 signaling has been found to participate in the many biological systems in addition to vascular development, via seemingly different mode of actions. For example, temporal and spatial control of ligand vs. receptor results in two different mechanisms governing vascular patterning. Interactions with other transmembrane proteins such as neuropilin and VEGFR2 result in different axonal behaviors. Ligand receptor localization on pre- vs. post-synaptic neurons is used to control different types of synapse formation. Perhaps different downstream effectors will also result in different functional outcomes. Given the limited number of ligands and receptors in the genome and their multifunctional nature, we expect that more modes of action will be discovered in the future. In this review, we highlight current advances on the mechanisms of how Sema3E–Plexin-D1 interaction shapes the networks of multiple biological systems, in particular the vascular and nervous systems.  相似文献   

12.
Gap junctions are proteinaceous channels that reside at the plasma membrane and permit the exchange of ions, metabolites, and second messengers between neighboring cells. Connexin proteins are the subunits of gap junction channels. Mutations in zebrafish cx43 cause the short fin (sof(b123)) phenotype which is characterized by short fins due to defects in length of the bony fin rays. Previous findings from our lab demonstrate that Cx43 is required for both cell proliferation and joint formation during fin regeneration. Here we demonstrate that semaphorin3d (sema3d) functions downstream of Cx43. Semas are secreted signaling molecules that have been implicated in diverse cellular functions such as axon guidance, cell migration, cell proliferation, and gene expression. We suggest that Sema3d mediates the Cx43-dependent functions on cell proliferation and joint formation. Using both in situ hybridization and quantitative RT-PCR, we validated that sema3d expression depends on Cx43 activity. Next, we found that knockdown of Sema3d recapitulates all of the sof(b123) and cx43-knockdown phenotypes, providing functional evidence that Sema3d acts downstream of Cx43. To identify the potential Sema3d receptor(s), we evaluated gene expression of neuropilins and plexins. Of these, nrp2a, plxna1, and plxna3 are expressed in the regenerating fin. Morpholino-mediated knockdown of plxna1 did not cause cx43-specific defects, suggesting that PlexinA1 does not function in this pathway. In contrast, morpholino-mediated knockdown of nrp2a caused fin overgrowth and increased cell proliferation, but did not influence joint formation. Moreover, morpholino-mediated knockdown of plxna3 caused short segments, influencing joint formation, but did not alter cell proliferation. Together, our findings reveal that Sema3d functions in a common molecular pathway with Cx43. Furthermore, functional evaluation of putative Sema3d receptors suggests that Cx43-dependent cell proliferation and joint formation utilize independent membrane-bound receptors to mediate downstream cellular phenotypes.  相似文献   

13.
The L1 family of cell adhesion molecules (L1CAMs) is important for neural development. Mutations in one of the human L1CAM genes, L1, can result in several neurological syndromes, the symptoms of which are variably penetrant. The physiological cause of these symptoms, collectively termed CRASH, is not clear. Caenorhabditis elegans animals genetically null for the L1CAM homologue LAD-1, exhibit variably penetrant pleiotropic phenotypes that are similar to the CRASH symptoms; thus the C. elegans lad-1 mutant provides an excellent model system to study how disruption of L1 leads to these abnormalities. These phenotypes include uncoordinated movements, variable embryonic lethality, and abnormal neuronal distribution and axon trajectories. Our analysis revealed that many of these phenotypes are likely a result of tissue detachment.  相似文献   

14.
Mutations in the L1 gene induce a spectrum of human neurological disorders due to abnormal development of several brain structures and fiber tracts. Among its binding partners, L1 immunoglobulin superfamily adhesion molecule (Ig CAM) associates with neuropilin-1 (NP-1) to form a semaphorin3A (Sema3A) receptor and soluble L1 converts Sema3A-induced axonal repulsion into attraction. Using L1 constructs containing missense pathological mutations, we show here that this reversion is initiated by a specific trans binding of L1 to NP-1, but not to L1 or other Ig CAMs, and leads to activation of the NO/cGMP pathway. We identified the L1-NP-1-binding site in a restricted sequence of L1 Ig domain 1, as a peptide derived from this region could reverse Sema3A repulsive effects. A pathological L1 missense mutation located in this sequence specifically disrupts both L1-NP-1 complex formation and Sema3A reversion, suggesting that the cross-talk between L1 and Sema3A might participate in human brain development.  相似文献   

15.
The wiring of neuronal circuits requires complex mechanisms to guide axon subsets to their specific target with high precision. To overcome the limited number of guidance cues, modulation of axon responsiveness is crucial for specifying accurate trajectories. We report here a novel mechanism by which ligand/receptor co-expression in neurons modulates the integration of other guidance cues by the growth cone. Class 3 semaphorins (Sema3 semaphorins) are chemotropic guidance cues for various neuronal projections, among which are spinal motor axons navigating towards their peripheral target muscles. Intriguingly, Sema3 proteins are dynamically expressed, forming a code in motoneuron subpopulations, whereas their receptors, the neuropilins, are expressed in most of them. Targeted gain- and loss-of-function approaches in the chick neural tube were performed to enable selective manipulation of Sema3C expression in motoneurons. We show that motoneuronal Sema3C regulates the shared Sema3 neuropilin receptors Nrp1 and Nrp2 levels in opposite ways at the growth cone surface. This sets the respective responsiveness to exogenous Nrp1- and Nrp2-dependent Sema3A, Sema3F and Sema3C repellents. Moreover, in vivo analysis revealed a context where this modulation is essential. Motor axons innervating the forelimb muscles are exposed to combined expressions of semaphorins. We show first that the positioning of spinal nerves is highly stereotyped and second that it is compromised by alteration of motoneuronal Sema3C. Thus, the role of the motoneuronal Sema3 code could be to set population-specific axon sensitivity to limb-derived chemotropic Sema3 proteins, therefore specifying stereotyped motor nerve trajectories in their target field.  相似文献   

16.
Close homolog of L1 (CHL1) is a transmembrane cell adhesion molecule with unique developmental functions in cortical neuronal positioning and dendritic projection within the L1 family, as well as shared functions in promotion of integrin-dependent neurite outgrowth and semaphorin3A (Sema3A)-mediated axon repulsion. The molecular mechanisms by which CHL1 mediates these diverse functions are obscure. Here it is demonstrated using a cytofluorescence assay that CHL1 is able to recruit ezrin, a member of the ezrin-radixin-moesin (ERM) family of filamentous actin binding proteins to the plasma membrane, and that this requires a membrane-proximal motif (RGGKYSV) in the CHL1 cytoplasmic domain. This sequence in CHL1 is shown to have novel functions necessary for Sema3A-induced growth cone collapse and CHL1-dependent neurite outgrowth and branching in cortical embryonic neurons. In addition, stimulation of haptotactic cell migration and cellular adhesion to fibronectin by CHL1 depends on the CHL1/ERM recruitment motif. These findings suggest that a direct or indirect interaction between CHL1 and ERM proteins mediates Sema3A-induced growth cone collapse as well as neurite outgrowth and branching, which are essential determinants of axon guidance and connectivity in cortical development.  相似文献   

17.
Semaphorin gene family contains a large number of secreted and transmembrane proteins, and some of them are functioning as the repulsive and attractive cues of the axon guidance during development. Here we report murine orthologues of a novel member of class 6 semaphorin gene, semaphorin 6D (Sema6D), mapped on the chromosome 2. Sema6D is mainly expressed in the brain and lung, and the ubiquitous expression in the brain continues from embryonic late stage to adulthood, as determined by Northern blot and in situ hybridization. We also found that Sema6D has five different splicing variants, and the expression patterns of individual isoforms differ depending on the tissues. Thus, Sema6D may play important roles in various functions including the axon guidance during development and neuronal plasticity.  相似文献   

18.
The semaphorin gene family contains a large number of secreted and transmembrane proteins; some function as repulsive and attractive cues of axon guidance during development. Here, we report cloning and characterization of zebrafish transmembrane semaphorin gene, semaphorin 6D (sema6D). Sema6D is expressed predominantly in the nervous system during embryogenesis, as determined by in situ hybridization. We also found that Sema6D binds Plexin-A1 in vitro, but not other Plexins. It induces the repulsion of dorsal root ganglion axons, but not sympathetic axons. Consequently, Sema6D might use Plexin-A1 as a receptor to repel specific types of axons during development.  相似文献   

19.
Shelly M  Cancedda L  Lim BK  Popescu AT  Cheng PL  Gao H  Poo MM 《Neuron》2011,71(3):433-446
Semaphorin 3A (Sema3A) is a secreted factor known to guide axon/dendrite growth and neuronal migration. We found that it also acts as a polarizing factor for axon/dendrite development in cultured hippocampal neurons. Exposure of the undifferentiated neurite to localized Sema3A suppressed its differentiation into axon and promoted dendrite formation, resulting in axon formation away from the Sema3A source, and bath application of Sema3A to polarized neurons promoted dendrite growth but suppressed axon growth. Fluorescence resonance energy transfer (FRET) imaging showed that Sema3A elevated the cGMP but reduced cAMP and protein kinase A (PKA) activity, and its axon suppression is attributed to the downregulation of PKA-dependent phosphorylation of axon determinants LKB1 and GSK-3β. Downregulating Sema3A signaling in rat embryonic cortical progenitors via in utero electroporation of siRNAs against the Sema3A receptor neuropilin-1 also resulted in polarization defects in?vivo. Thus, Sema3A regulates the earliest step of neuronal morphogenesis by polarizing axon/dendrite formation.  相似文献   

20.
Semaphorin-3A (Sema3A), a member of class 3 semaphorins, regulates axon and dendrite guidance in the nervous system. How Sema3A and its receptors plexin-As and neuropilins regulate neuronal guidance is unknown. We observed that in fyn- and cdk5-deficient mice, Sema3A-induced growth cone collapse responses were attenuated compared to their heterologous controls. Cdk5 is associated with plexin-A2 through the active state of Fyn. Sema3A promotes Cdk5 activity through phosphorylation of Tyr15, a phosphorylation site with Fyn. A Cdk5 mutant (Tyr15 to Ala) shows a dominant-negative effect on the Sema3A-induced collapse response. The sema3A gene shows strong interaction with fyn for apical dendrite guidance in the cerebral cortex. We propose a signal transduction pathway in which Fyn and Cdk5 mediate neuronal guidance regulated by Sema3A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号