首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Seven inbred, RT1-congenic rat strains were immunized with native bovine (BII), porcine (PII), or chick (CII) type II collagen and observed for onset, incidence, and severity of arthritis. Clinical results were compared with IgG reactive with native rat type II collagen (RII) and the purified, renatured cyanogen-bromide peptides of BII, CII, or RII. Immunodominant responses to CB11, CB9,7, and CB12 of RII were identified. Secondary responses to CB8 and CB10 also occurred. Reproducible patterns of peptide reactivity were defined in each strain and reflected both RT1 and non-RT1 genotypes plus the species of immunizing collagen. BN non-RT1 gene products moderated clinical arthritis but increased the levels of reactivity to CB11 in three strains carrying RT1l,n,av1 haplotypes. WF (RT1u) rats were susceptible to collagen-induced arthritis (CIA) and developed very high levels of autoantibodies with dominant responses to rat CB11 after CII injections and to rat CB11 and CB9,7 after BII injections. DA (RT1av1) rats developed the most severe arthritis but had only moderate (total) levels of anti-RII IgG: a broad response to CB11, CB10, and CB9,7 after CII injections but predominantly to CB12 and CB9,7 after BII injections. Three RT1n strains--DA.1N(BN), WF.1N(MAXX), and BN--were resistant to BII-induced CIA but developed mild arthritis after immunization with CII. After BII: BN IgG reacted with CB9-7, CB11, and CB12; DA.1N and WF.1N IgG reacted with CB9,7 and CB12. After CII: BN IgG reacted broadly with CB11, CB9-7, CB12, and CB8; WF.1N IgG reacted to CB9-7, CB11, CB8, and CB12; DA.1N IgG reacted with CB8, CB11, and CB9-7. Thus, selective induction of CIA in BN, WF.1N, and DA.1N rats by CII correlated with serum IgG reactivity to rat CB11, but overall strain results identified no single cyanogen-bromide peptide as expressing the sole "arthritogenic" epitope in CIA.  相似文献   

2.
Rat Chromosome 10 (RNO10) harbors Cia5, a non-MHC quantitative trait locus (QTL) that regulates the severity of type II collagen-induced arthritis (CIA) in DAxF344 and DAxBN F2 rats. CIA is an animal model with many features that resemble rheumatoid arthritis. To facilitate analysis of Cia5 independently of the other CIA regulatory loci on other chromosomes, DA recombinant QTL speed congenic rats, DA.F344(Cia5), were generated. These QTL congenic rats have a large chromosomal segment containing Cia5 (interval size < or =80.1 cM) from CIA-resistant F344 rats introgressed into their genome. Phenotypic analyses of these rats for susceptibility and severity of CIA confirmed that Cia5 is an important disease-modifying locus. CIA severity was significantly lower in the Cia5 congenic rats than in DA controls. We also generated DA Cia5 speed sub-congenic rats, DA.F344(Cia5a), which had a smaller segment of the F344 genome, Cia5a, comprising only the distal q-telomeric end (interval size < or = 22.5 cM) of Cia5, introgressed into their genome. DA.F344(Cia5a) sub-congenic rats also exhibited reduced CIA disease severity compared with the parental DA rats. The regulatory effects in both congenic strains were sex influenced. The disease-ameliorating effect of the larger fragment, Cia5, was greater in males than in females, but the effect of the smaller fragment, Cia5a, was greater in females. We also present an improved genetic linkage map covering the Cia5/Cia5a region, which we have integrated with two rat radiation hybrid maps. Comparative homology analysis of this genomic region with mouse and human chromosomes was also undertaken. Regulatory loci for multiple autoimmune/inflammatory diseases in rats (RNO10), mice (MMU11), and humans (HSA17 and HSA5q23-q31) map to chromosomal segments homologous to Cia5 and Cia5a.  相似文献   

3.
Cia5 is a locus on rat chromosome 10 which regulates the severity of collagen- and pristane-induced arthritis (CIA and PIA). To refine the region toward positional identification, Cia5 subcongenic strains were generated and studied in PIA and CIA. The protective effect of the telomeric locus Cia5a was confirmed in both models. A second arthritis severity locus (Cia5d) was identified within the most centromeric portion of Cia5. DA.F344(Cia5d) rats had a significantly lower median arthritis severity index in PIA, but not in CIA, compared with DA. On histologic analyses DA.F344(Cia5a) and DA.F344(Cia5d) congenics with PIA preserved a nearly normal joint architecture compared with DA, including significant reduction in synovial hyperplasia, pannus, angiogenesis, inflammatory infiltration, bone and cartilage erosions. Cia5 and Cia5a synovial levels of IL-1beta mRNA were reduced. Although both DA.F344(Cia5) and DA.F344(Cia5a) rats were protected in CIA, the arthritis scores of DA.F344(Cia5) were significantly higher than those of DA.F344(Cia5a), suggesting the existence of a third locus where F344-derived alleles centromeric from Cia5a contribute to increased arthritis severity. The existence of the third locus was further supported by higher levels of autoantibodies against rat type II collagen in DA.F344(Cia5) congenics compared with DA.F344(Cia5a). Our results determined that Cia5 contains three major arthritis severity regulatory loci regulating central events in the pathogenesis of arthritis, and differentially influencing CIA and PIA. These loci are syntenic to regions on human chromosomes 17q and 5q implicated in the susceptibility to rheumatoid arthritis, suggesting that the identification of these genes will be relevant to human disease.  相似文献   

4.
T cell recognition of the type II collagen (CII) 260-270 peptide is a bottleneck for the development of collagen-induced arthritis (CIA), an animal model of rheumatoid arthritis. We have earlier made C3H.Q mice expressing CII with glutamic acid instead of aspartic acid at position 266 (the MMC-C3H.Q mouse), similar to the rat and human CII epitope, which increases binding to MHC class II and leads to effective presentation of the peptide in vivo. These mice show T cell tolerance to CII, but also develop severe arthritis. The present investigation shows that non-MHC genes play a decisive role in determining tolerance and arthritis susceptibility. We bred MMC into B10.Q mice, which display similar susceptibility to CIA induced with rat CII as the C3H.Q mice. In contrast to MMC-C3H.Q mice, MMC-B10.Q mice were completely resistant to arthritis. Nontransgenic (B10.Q x C3H.Q)F(1) mice were more susceptible to CIA than either of the parental strains, but introduction of the MMC transgene leads to CIA resistance, showing that the protection is dominantly inherited from B10.Q. In an attempt to break the B10-mediated CIA protection in MMC-transgenic mice, we introduced a transgenic, CII-specific, TCR beta-chain specific for the CII(260-270) glycopeptide, in the highly CIA-susceptible (B10.Q x DBA/1)F(1) mice. The magnification of the autoreactive CII-specific T cell repertoire led to increased CIA susceptibility, but the disease was less severe than in mice lacking the MMC transgene. This finding is important for understanding CIA and perhaps also rheumatoid arthritis, as in both diseases MHC class II-restricted T cell recognition of the glycosylated CII peptide occurs.  相似文献   

5.
A comparison of splenic cells from various inbred rat strains indicated that DA, Lewis, Buffalo, August, Wistar Furth, and (LEW X BN)F1 all responded well to the Mycoplasma arthritidis T cell mitogen, phytohemagglutinin and concanavalin A, but cells from BN and MAXX rats were very weakly or nonresponsive. Cells from congenic strains expressing nonresponder background genes, and responder haplotypes at RT1 (BN.1L(LEW), RT1; BN.1A(DA), RT1av1) failed to respond significantly to the mitogens. Rats expressing responder background genes but the nonresponder haplotype at RT1 at RT1 (WF.1N-(MAXX), RT1n) exhibited high responses to all mitogens. The controlling role of non-RT1 genes was confirmed by testing tissue-typed (DA X BN)F2 progeny and (DA X BN)F1 X DA and (DA X BN)F1 X BN progeny. No association was seen between the expression of a/a, a/n, or n/n at RT1 and the degree of response to the mitogens. In contrast, as the proportion of DA non-RT1 genes increased, so did the degree of mitogenic responsiveness. Similar results were obtained by using a partially purified preparation of the mycoplasma T cell mitogen. The results indicated that in the (DA X BN)F1 hybrids, responsiveness to all mitogens was recessive: this contrasts with the (LEW X BN)F1 hybrids in which responsiveness was dominant. Finally, we showed that both responder and nonresponder splenic cells were capable of binding the M. arthritidis mitogen. The data contrast with those obtained with nonresponder mouse strains the cells of which failed to bind mitogen due to the absence of the E alpha chain of the I-E-coded molecule.  相似文献   

6.
T cell subsets from rat strains that have been characterized as high and low responders to alloantigen were examined for their capacity to mediate lethal graft versus host disease (GVHD) across strain combinations incompatible for class I, class II, and non-MHC antigens. Inocula of 5 X 10(7) lymph node and spleen cells (LC) from low responder DA (RT1a) and high responder W/F (RT1u) strains caused lethal GVHD in (W/F X DA)F1 hybrids given 6 Gy whole body irradiation. W/F CD4+ (W3/25+) cells (2 X 10(7], equal to the number in 5 X 10(7) LC mediated lethal GVHD but 10(8) DA CD4+ cells were required to cause lethal GVHD. CD8+ (MRC OX8+) cells (5 X 10(7] from W/F rats alone caused lethal GVHD but those from DA rats could not. Mixtures of CD4+ and CD8+ DA T cells, equivalent to the number in 5 X 10(7) LC, did mediate lethal GVHD, demonstrating that synergy between the subsets was the predominant mechanism with DA cells. These results suggest that differences in alloreactivity between the strains tested may be due to alternate requirements for the alloactivation of T cell subsets; the high responder subsets being self-sufficient and the low responder subsets being dependent upon each other.  相似文献   

7.
Collagen-induced arthritis (CIA) represents an animal model of autoimmune polyarthritis with significant similarities to human rheumatoid arthritis that can be induced upon immunization with native type II collagen. As in rheumatoid arthritis, both cellular and humoral immune mechanisms contribute to disease pathogenesis. Genotypic studies have identified at least six genetic loci contributing to arthritis susceptibility, including the class II MHC. We have examined the mechanism of Ab-mediated inflammation in CIA joints, specifically the role of complement activation, by deriving a line of mice from the highly CIA-susceptible DBA/1LacJ strain that are congenic for deficiency of the C5 complement component. We show that such C5-deficient DBA/1LacJ animals mount normal cellular and humoral immune responses to native type II collagen, with the activation of collagen-specific TNF-alpha-producing T cells in the periphery and substantial intra-articular deposition of complement-fixing IgG Abs. Nevertheless, these C5-deficient mice are highly resistant to the induction of CIA. These data provide evidence for an important role of complement in Ab-triggered inflammation and in the pathogenesis of autoimmune arthritis.  相似文献   

8.
Analysis of class I MHC antigens in the rat by monoclonal antibodies   总被引:3,自引:0,他引:3  
Monoclonal antibodies (mAb) were made against class I MHC antigens of the i (mAb 42,70,39) and u (mAb 68-D) haplotypes in the rat by using specific strain combinations in order to obtain reagents for identifying the products of the RT1.An, RT1.Au, and RT1.Eu loci. These antibodies were hemagglutinating only; were IgG except for mAb 68-D3, which had a defective heavy chain; reacted identically with MHC-congenic strains and with their inbred donor strains; and precipitated class I MHC antigens. Strain distribution, sequential immunoprecipitation, and peptide mapping studies were used to define the specificities of the mAb, and the assignments were checked by comparing the specificities of the mAb with those of haplotype-specific alloantisera. The specificities were the following: mAb 42, An; mAb 68-D, Au; mAb 70, Eu; and mAb 39, an antigen encoded by a locus different from A and E. This new locus was designated RT1.F, and the allele detected by mAb 39, as Fa. The serologic data place RT1.F between RT1.A and RT1.D. The plasma membranes of DA.1I(BI) lymphocytes contain comparable amounts of An, Eu, and Fa antigens but express them on the cell surface in the order An much greater than Eu greater than Fa.  相似文献   

9.
Götze D 《Immunogenetics》1978,7(1):491-506
The antigenic determinants expressed on RBC and lymphocytes and coded for by the MHC, RT1,of the MNR (RT1 ( m )) rat strain were compared to those of the BN.DA(RT1 ( a )), ALB (RT1 ( b )), and AUG (RT1 ( c )) strains by direct cytotoxicity and absorption analysis with RT1 typing sera, sera produced against MNR cells, and sera produced in MNR responders against cells carrying thea, b, andc haplotype determinants. The results indicate that MNR shares major class I (A) antigens with DA, and major class II (B) determinants with AUG, but that MNR differs from DA and AUG with respect to both classes of determinant. It appears, therefore, that the MNR haplotype does not represent a simple composite of the two other haplotypes,RT1 ( a ) andRT1 ( c ), as reported earlier.  相似文献   

10.
The immunization of inbred Dark Agouti (DA) rats with an emulsion containing homogenized spinal cord and CFA induces chronic relapsing experimental autoimmune encephalomyelitis (EAE), a disease with many similarities to multiple sclerosis. We report here the first genome-wide search for quantitative trait loci regulating EAE in the rat using this model. We identified one quantitative trait locus on chromosome 9, Eae4, in a [DA(RT1av1) x BN(RT1n)]F2 intercross showing linkage to disease susceptibility and expression of mRNA for the proinflammatory cytokine IFN-gamma in the spinal cord. Eae4 had a larger influence on disease incidence among rats that were homozygous for the RT1av1 MHC haplotype (RT1av1 rats) compared with RT1n/av1 rats, suggesting an interaction between Eae4 and the MHC. Homozygosity for the DA allele at markers in Eae4 and in the MHC was sufficient for EAE. Thus, Eae4 is a major genetic factor determining susceptibility to EAE in this cross of DA rats. In addition, there was support for linkage to phenotypes of EAE on chromosomes 1, 2, 5, 7, 8, 12, and 15. The chromosome 12 region has been shown previously to predispose DA rats to arthritis, and the chromosome 2 region is syntenic to Eae3 in mice. We conclude that Eae4 and probably the other identified genome regions harbor genes regulating susceptibility to neuroinflammatory disease. The identification and functional characterization of these genes may disclose critical events in the pathogenesis of multiple sclerosis; understanding these events could be essential for the development of new therapies against the disease.  相似文献   

11.
D K Hansen  M E Hodes 《Teratology》1983,28(2):175-179
Inbred strains of mice differ in their response to the embryopathic effects of phenytoin (PHT). A/J animals, the most susceptible strain, were mated to C57BL/6J mice, the most resistant strain. The susceptibility of the F1 hybrid offspring was determined by the susceptibility of the mother. B6AF1 animals were as resistant as C57BL/6J parental mice, and AB6F1 hybrids were as susceptible as A/J mice. This was especially evident when orofacial anomalies were tallied. (B6A)F2 hybrid offspring were as resistant as their C57BL/6J grandparents.  相似文献   

12.
Myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease in rats that closely mimics many clinical and histopathological aspects of multiple sclerosis. Non-MHC quantitative trait loci regulating myelin oligodendrocyte glycoprotein-induced EAE have previously been identified in the EAE-permissive strain, DA, on rat chromosomes 4, 10, 15, and 18. To find any additional gene loci in another well-known EAE-permissive strain and thereby to assess any genetic heterogeneity in the regulation of the disease, we have performed a genome-wide linkage analysis in a reciprocal (LEW.1AV1 x PVG.1AV1) male/female F(2) population (n = 185). We examined reciprocal crosses, but no parent-of-origin effect was detected. The parental rat strains share the RT1(av1) MHC haplotype; thus, non-MHC genes control differences in EAE susceptibility. We identified Eae16 on chromosome 8 and Eae17 on chromosome 13, significantly linked to EAE phenotypes. Two loci, on chromosomes 1 and 17, respectively showed suggestive linkage to clinical and histopathological EAE phenotypes. Eae16 and Eae17 differ from those found in previously studied strain combinations, thus demonstrating genetic heterogeneity of EAE. Furthermore, we detected a locus-specific parent-of-origin effect with suggestive linkage in Eae17. Further genetic and functional dissection of these loci may disclose critical disease-regulating molecular mechanisms.  相似文献   

13.
14.
Collagen-induced arthritis (CIA) is a rodent arthritis model in which immunization with heterologous type II collagen induces an inflammatory polyarthritis. Susceptibility to the disease is mediated by major histocompatibility complex (MHC) genes as well as genes at other loci. Previous studies of the SWR/J mouse strain, which is resistant to CIA despite bearing the susceptible H-2 q haplotype, have suggested that this resistance is the result of a deletion of T-cell receptor (Tcr) Vb gene segments which is carried by this strain. Other studies have implicated a deficiency in complement component C5 as the cause for the resistance. In order to assess the relative importance of these two genes in susceptibility to CIA, and to provide an estimate of the number of independent genes involved in the disease, we analyzed 196 F2 progeny of a (DBA/1 × SWR/J) cross for arthritis susceptibility, and expression of both C5 and Tcr genes. Thirty of the F2 progeny developed arthritis. All of the arthritic mice had at least one copy of the wild-type C5 allele, while the Tcr-Vb haplotypes were distributed in Mendelian fashion. These results demonstrate that C5 sufficiency is an absolute requirement for CIA, but that Tcr-Vb genes located within the SWR deletion have little influence. Genetic analysis of the incidence rate suggests that there is polygenic control of susceptibility to CIA and that in addition to H-2, 5–6 other independent loci (including C5) may be involved.  相似文献   

15.
The RT1.A (H-2K,D type) class I major histocompatibility complex (MHC) antigens of the rat are well recognized as membrane-bound glycoproteins. In this report, we demonstrate that liver and kidney in the DA rat strain contain large amounts of a water-soluble RTl. A class I molecule with a discrete heavy chain approximately 5 kd smaller than the membrane-bound form. An identical molecule could be identified in DA rat serum. This small class I molecule carries all of the polymorphic antigenic determinants of the RT1.Aav1 class I molecule. The water-soluble molecule is readily denatured in its pure form when frozen and thawed, but this does not occur when it is mixed with serum, presumably because of a stabilizing interaction with one or more carrier proteins. The half-life of the class I molecule in serum was measured to be approximately 1.5 h. The LEW rat strain produced detectable but substantially smaller amounts of water-soluble RT1.A molecules. Our studies indicate that RT1.Aav1 class I MHC antigens are synthesized and presumably secreted in a smaller water-soluble form by liver, kidney, and possibly other tissues under physiological conditions, a point of con-siderable interest in view of the immunoregulatory functions of the membrane-bound forms of these molecules.  相似文献   

16.
Multiple sclerosis (MS) and its animal model, myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (MOG-EAE), share a complex genetic predisposition with contributions from the major histocompatibility complex class II genes and many other genes. Linkage mapping in F(2) crosses between the susceptible DA rat strain and the resistant ACI or BN rat strains in various models of autoimmune neuroinflammation have repeatedly displayed suggestive linkage to a region on rat chromosome 15. A direct study of this region was undertaken in congenic strains by transferring resistant ACI alleles to the susceptible DA background. Phenotypic analysis demonstrated lower maximal and cumulative EAE scores in the DA.ACI-D15Rat6-D15Rat71 (C15), DA.ACI-D15Rat6-D15Rat48, D15Rat126-D15Rat71 (C15R3b), and DA.ACI-D15Rat23-D15rat71 (C15R4) strains compared to the parental DA rat strain. Linkage analysis was then performed in a (DA x PVG.AV1)F(7) advanced intercross line, resulting in a LOD score of 4.7 for the maximal EAE score phenotype at the peak marker D15Rat71 and a confidence interval of 13 Mb, overlapping with the congenic fragment defined by the C15R3b and the C15R4 strains. Thus, a new MOG-EAE locus with the designation Eae19 is identified on rat chromosome 15. There are 32 confirmed or predicted genes in the confidence interval, including immune-responsive gene 1 and neuronal ceroid lipofuscinose gene 5. Definition of loci such as Eae19 enables the characterization of genetically regulated, evolutionary conserved disease pathways in complex neuroinflammatory diseases.  相似文献   

17.
Myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) in rats closely mimics the human disease multiple sclerosis (MS). As in MS, genetic predisposition to MOG-EAE is regulated by both MHC and non-MHC genes. Based on disease regulatory influences on MOG-EAE on chromosome 10 in an F2 cross between susceptible DA and resistant ACI rats, we have now isolated this locus in a congenic rat strain to enable further dissection of disease mechanisms. This region is of particular interest, since it is homologous to human 17q for which human whole-genome scans have indicated harbors genes regulating susceptibility to MS. Phenotypic comparison between DA and the congenic DA.ACI-D10Rat2-D10Rat29 strain confirms that the chromosomal segment harbors gene(s) conferring strong protection against MOG-EAE. Furthermore, resistance to EAE in this congenic strain is associated with absence or a low level of inflammation and demyelination in the central nervous system. Levels of anti-MOG antibody isotypes did not differ between parental and congenic rats, thus an action on Th1/Th2 differentiation is unlikely. In conclusion, this is the first example of an EAE-regulating locus isolated in a congenic rat strain with retained phenotype. The mechanism by which gene(s) in the region act is still unclear and will require further studies with this congenic rat strain as a tool.  相似文献   

18.
Intrauterine implantation of fertilized ova can be blocked by exposing recently inseminated females with an unfamiliar male. This selective pregnancy failure, designated as the Bruce effect (Bruce, Nature 1959; 184:105), is well studied in laboratory mice and has been confirmed in several other rodent species. However, no clear information exists concerning this phenomenon in the laboratory rat. The present study was conducted to investigate whether or not the Bruce effect exists in the rat. Females of two F1 hybrid strains (n(total) = 354) with different MHC genotypes (F344BNF1, RT1(lv1/n), and LEWPVGF1, RT1(l/c)) were mated with males of their own strain and subsequently exposed during the first 4 days postcoitus either to a male of the other hybrid strain or to an unfamiliar male of the same strain as the stud. The litter rate of each treatment group was determined. As a control, mated females of both strains were reexposed to the stud male to determine baseline litter rates. Female rats of both F1 hybrid strains showed a significantly lower litter rate when exposed to males of a different strain than their stud male, compared to the expected values of birth rates observed in control females (F344BNF1: P = 0.017; LEWPVGF1: P = 0.019). In contrast, there was no difference between expected and observed litter rates in females of both F1 hybrid strains after exposure to an unfamiliar male of the same strain as their stud. Our results demonstrate for the first time that the Bruce effect, well documented in mice, occurs in the Norway rat.  相似文献   

19.
20.
The role of T cell-mediated and humoral immunity to type II collagen has been well documented in collagen-induced arthritis (CIA). Previous work from our laboratory has indicated that genomic deletions of TCR V beta genes may play a role in CIA resistance in mice. This indicated a selectivity of TCR usage by autoreactive T cells in CIA in mice. Certain strains of mice, although having a normal genomic V beta TCR repertoire, can show clonal deletion of peripheral T cells that bear specific V beta gene products in their TCR. These clonally deleted T cells are reactive with self-Ag such as minor lymphocyte stimulation (Mls) Ag. An Mls-congenic strain, BALB.D2.Mlsa, which differs only at the Mls-1 a locus from BALB/c (Mls-1b), was used to examine the effect of clonal deletion of Mls-1a-reactive T cells in CIA. These two strains were crossed to three CIA-susceptible strains, B10.RIII (H-2r, Mls-1b), DBA/1 (H-2q, Mls-1a), and B10.Q (H-2q, Mls-1b), and the crosses were injected with type II collagen. A significantly decreased incidence of arthritis was observed in the (BALB.D2.Mlsa x B10.Q)F1 hybrids, compared with (BALB/c x B10.Q)F1 hybrids, upon immunization with chick type II collagen. The BALB.D2.Mlsa cross mice also had significantly lower levels of antimouse collagen antibodies. Flow cytometric analysis confirmed the clonal deletion of Mls-1a-reactive V beta 8.1, V beta 6, V beta 7, and V beta 9 subsets in the (BALB.D2.Mlsa x B10.Q)F1 hybrids. The study of H-2q/d mice in (BALB.D2.Mlsa x B10.Q) x B10.Q back-crosses demonstrated a significant correlation between CIA resistance and Mls-1a locus. On the other hand, B10.RIII crosses showed only a modest decrease in CIA incidence in the presence of Mls-1a. As expected, all the DBA/1 crosses had an equal incidence of CIA, which was somewhat less than that seen in DBA/1 mice themselves. These studies point out that the Mls-1a locus could play a role in decreasing CIA incidence by clonal deletion of T cells bearing specific V beta TCR, which may be involved in the pathogenesis of CIA. The influence of the clonal deletion of T cells on CIA, and hence the usage of specific V beta TCR by autoreactive anti-type II collagen T cells, however, depends not only on the source of the type II collagen and the MHC class II molecules involved but also on other background genes in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号