首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinal and bulbar muscular atrophy (SBMA) is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. Only males develop symptoms, while female carriers usually are asymptomatic. A specific treatment for SBMA has not been established. The molecular basis of SBMA is the expansion of a trinucleotide CAG repeat, which encodes the polyglutamine (polyQ) tract, in the first exon of the androgen receptor (AR) gene. The pathologic hallmark is nuclear inclusions (NIs) containing the mutant and truncated AR with expanded polyQ in the residual motor neurons in the brainstem and spinal cord as well as in some other visceral organs. Several transgenic (Tg) mouse models have been created for studying the pathogenesis of SBMA. The Tg mouse model carrying pure 239 CAGs under human AR promoter and another model carrying truncated AR with expanded CAGs show motor impairment and nuclear NIs in spinal motor neurons. Interestingly, Tg mice carrying full-length human AR with expanded polyQ demonstrate progressive motor impairment and neurogenic pathology as well as sexual difference of phenotypes. These models recapitulate the phenotypic expression observed in SBMA. The ligand-dependent nuclear localization of the mutant AR is found to be involved in the disease mechanism, and hormonal therapy is suggested to be a therapeutic approach applicable to SBMA.  相似文献   

2.
Katsuno M  Adachi H  Kume A  Li M  Nakagomi Y  Niwa H  Sang C  Kobayashi Y  Doyu M  Sobue G 《Neuron》2002,35(5):843-854
Spinal and bulbar muscular atrophy (SBMA) is a polyglutamine disease caused by the expansion of a CAG repeat in the androgen receptor (AR) gene. We generated a transgenic mouse model carrying a full-length AR containing 97 CAGs. Three of the five lines showed progressive muscular atrophy and weakness as well as diffuse nuclear staining and nuclear inclusions consisting of the mutant AR. These phenotypes were markedly pronounced in male transgenic mice, and dramatically rescued by castration. Female transgenic mice showed only a few manifestations that markedly deteriorated with testosterone administration. Nuclear translocation of the mutant AR by testosterone contributed to the phenotypic difference with gender and the effects of hormonal interventions. These results suggest the therapeutic potential of hormonal intervention for SBMA.  相似文献   

3.
4.
Long CAG repeat tracts cause human hereditary neurodegenerative diseases and have a propensity to expand during parental passage. Unusual physical properties of CAG repeat tracts are thought to contribute to their instability. We investigated whether their unusual properties alter the organization of CAG repeat tract chromatin. We report that CAG repeat tracts, embedded in yeast chromosomes, have a noncanonical chromatin organization. Digestion of chromatin with the restriction enzyme Fnu4HI reveals hypersensitive sites occurring approximately 125 bp apart in the repeat tract. To determine whether a non-histone protein establishes this pattern, we performed a yeast one-hybrid screen using CAG repeat tracts embedded in front of two reporter genes. The screen identified the high mobility group box protein Hmo1. Chromatin immunoprecipitation of epitope-tagged Hmo1 selectively precipitates CAG repeat tracts DNAs that range from 26 to 126 repeat units. Moreover, deletion of HMO1 drastically alters the Fnu4HI digestion pattern of CAG repeat chromatin. These results show that Hmo1 binds to CAG repeat tracts in vivo and establish the basis of their novel chromatin organization.  相似文献   

5.
Spinal and bulbar muscular atrophy (SBMA, Kennedy's disease) is one of a group of progressive neurodegenerative diseases resulting from a polyglutamine repeat expansion. In SBMA the polymorphic trinucleotide CAG repeat in exon 1 of the androgen receptor (AR) gene is increased, resulting in expansion of a polyglutamine tract. Patient autopsy material reveals neuronal intranuclear inclusions (NII) in affected regions that contain only amino-terminal epitopes of the AR. Cell models have previously been unable to produce intranuclear inclusions containing only a portion of the AR. We report here the creation of an inducible cell model of SBMA that reproduces this important characteristic of disease pathology. PC12 cells expressing highly expanded AR form ubiquitinated intranuclear inclusions containing amino-terminal epitopes of the AR as well as heat shock proteins. Inclusions appear as distinct granular electron-dense structures in the nucleus by immunoelectron microscopy. Dihydrotestosterone treatment of mutant AR-expressing cells results in increased inclusion load. This model mimics the formation of ubiquitinated intranuclear inclusions containing the amino-terminal portion of AR observed in patient tissue and reveals a role for ligand in the pathogenesis of SBMA.  相似文献   

6.
Yang J  Freudenreich CH 《Gene》2007,393(1-2):110-115
Trinucleotide repeat diseases, such as Huntington's disease, are caused by the expansion of trinucleotide repeats above a threshold of about 35 repeats. Once expanded, the repeats are unstable and tend to expand further both in somatic cells and during transmission, resulting in a more severe disease phenotype. Flap endonuclease 1 (Fen1), has an endonuclease activity specific for 5' flap structures and is involved in Okazaki fragment processing and base excision repair. Fen1 also plays an important role in preventing instability of CAG/CTG trinucleotide repeat sequences, as the expansion frequency of CAG/CTG repeats is increased in FEN1 mutants in vitro and in yeast cells defective for the yeast homolog, RAD27. Here we have tested whether one copy of yeast FEN1 is enough to maintain CAG/CTG tract stability in diploid yeast cells. We found that CAG/CTG repeats are stable in RAD27 +/- cells if the tract is 70 repeats long and exhibit a slightly increased expansion frequency if the tract is 85 or 130 repeats long. However for CAG-155 tracts, the repeat expansion frequency in RAD27 +/- cells is significantly higher than in RAD27 +/+ cells. This data indicates that cells containing longer CAG/CTG repeats need more Fen1 protein to maintain tract stability and that maintenance of long CAG/CTG repeats is particularly sensitive to Fen1 levels. Our results may explain the relatively small effects seen in the Huntington's disease (HD) FEN1 +/- heterozygous mice and myotonic dystrophy type 1 (DM1) FEN1 +/- heterozygous mice, and suggest that inefficient flap processing by Fen1 could play a role in the continued expansions seen in humans with trinucleotide repeat expansion diseases.  相似文献   

7.
8.
Spinal and bulbar muscular atrophy (SBMA) or Kennedy''s disease is an X-linked CAG/polyglutamine expansion motoneuron disease, in which an elongated polyglutamine tract (polyQ) in the N-terminal androgen receptor (ARpolyQ) confers toxicity to this protein. Typical markers of SBMA disease are ARpolyQ intranuclear inclusions. These are generated after the ARpolyQ binds to its endogenous ligands, which promotes AR release from chaperones, activation and nuclear translocation, but also cell toxicity. The SBMA mouse models developed so far, and used in preclinical studies, all contain an expanded CAG repeat significantly longer than that of SBMA patients. Here, we propose the use of SBMA patients adipose-derived mesenchymal stem cells (MSCs) as a new human in vitro model to study ARpolyQ toxicity. These cells have the advantage to express only ARpolyQ, and not the wild type AR allele. Therefore, we isolated and characterized adipose-derived MSCs from three SBMA patients (ADSC from Kennedy''s patients, ADSCK) and three control volunteers (ADSCs). We found that both ADSCs and ADSCKs express mesenchymal antigens, even if only ADSCs can differentiate into the three typical cell lineages (adipocytes, chondrocytes and osteocytes), whereas ADSCKs, from SBMA patients, showed a lower growth potential and differentiated only into adipocyte. Moreover, analysing AR expression on our mesenchymal cultures we found lower levels in all ADSCKs than ADSCs, possibly related to negative pressures exerted by toxic ARpolyQ in ADSCKs. In addition, with proteasome inhibition the ARpolyQ levels increased specifically in ADSCKs, inducing the formation of HSP70 and ubiquitin positive nuclear ARpolyQ inclusions. Considering all of this evidence, SBMA patients adipose-derived MSCs cultures should be considered an innovative in vitro human model to understand the molecular mechanisms of ARpolyQ toxicity and to test novel therapeutic approaches in SBMA.  相似文献   

9.
Several human neurodegenerative disorders are caused by expansion of CAG repeats that occurs during meiosis or gametogenesis. We anticipated that the CAG repeats cloned in a plasmid of Saccharomyces cerevisiae might undergo a change in the number of repeats during meiosis and sporulation. To test this possibility, we devised a new method to change in vitro the number of CAG repeats and constructed plasmids carrying (CAG)39, (CAG)65 or (CAG)123 from a plasmid carrying (CAG)18. We monitored the number of colonies showing an altered length of the repeat tracts during mitosis and meiotic growth. Contraction of long CAG repeat was found to occur frequently, whereas a few cases of expansion were observed. The contraction was equally enhanced in both orientations when the host cells grew through meiosis. Thus, our results suggest that long CAG repeats are destabilized during meiosis or gametogenesis in S. cerevisiae.  相似文献   

10.
X连锁脊延髓肌萎缩症(SBMA)或肯尼迪病是一种成年人发病的神经变性疾病,以肌无力与慢性、进行性肌萎缩为特征. 通过PCR片段测序和基因分型法准确检测雄激素受体(AR)基因CAG复制数目,兄弟俩(来自同一个中国家庭)被确诊为隐性遗传性SBMA. 为了得到该中国家庭SMBA家系人员AR基因的CAG复制数目,我们采用了PCR片段测序和基因分型两种方法. 在该SMBA家系中有两个已发病的成年男性、未发病的年轻男性,及女性基因携带者. 两个已发病男性患者AR基因中CAG三核苷酸串重复数目分别是48和45. 以前的研究表明特定三核苷酸串重复数目的扩增可导致人类遗传性神经障碍疾病发病。我们的研究结果完全支持这一观点,SMBA中国家系的三核苷酸CAG拷贝数目检测结果表明,AR基因CAG扩增数目与SMBA发病相关. 关键词雄性激素受体; CAG多重三核苷酸重复; 肯尼迪病; 脊延髓肌萎缩症; X连锁  相似文献   

11.
Expansion of trinucleotide repeats (TNRs) is the causative mutation in several human genetic diseases. Expanded TNR tracts are both unstable (changing in length) and fragile (displaying an increased propensity to break). We have investigated the relationship between fidelity of lagging-strand replication and both stability and fragility of TNRs. We devised a new yeast artificial chromomosme (YAC)-based assay for chromosome breakage to analyze fragility of CAG/CTG tracts in mutants deficient for proteins involved in lagging-strand replication: Fen1/Rad27, an endo/exonuclease involved in Okazaki fragment maturation, the nuclease/helicase Dna2, RNase HI, DNA ligase, polymerase delta, and primase. We found that deletion of RAD27 caused a large increase in breakage of short and long CAG/CTG tracts, and defects in DNA ligase and primase increased breakage of long tracts. We also found a correlation between mutations that increase CAG/CTG tract breakage and those that increase repeat expansion. These results suggest that processes that generate strand breaks, such as faulty Okazaki fragment processing or DNA repair, are an important source of TNR expansions.  相似文献   

12.
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.  相似文献   

13.
Trinucleotide repeat expansions are responsible for more than two dozens severe neurological disorders in humans. A double-strand break between two short CAG/CTG trinucleotide repeats was formerly shown to induce a high frequency of repeat contractions in yeast. Here, using a dedicated TALEN, we show that induction of a double-strand break into a CAG/CTG trinucleotide repeat in heterozygous yeast diploid cells results in gene conversion of the repeat tract with near 100% efficacy, deleting the repeat tract. Induction of the same TALEN in homozygous yeast diploids leads to contractions of both repeats to a final length of 3–13 triplets, with 100% efficacy in cells that survived the double-strand breaks. Whole-genome sequencing of surviving yeast cells shows that the TALEN does not increase mutation rate. No other CAG/CTG repeat of the yeast genome showed any length alteration or mutation. No large genomic rearrangement such as aneuploidy, segmental duplication or translocation was detected. It is the first demonstration that induction of a TALEN in an eukaryotic cell leads to shortening of trinucleotide repeat tracts to lengths below pathological thresholds in humans, with 100% efficacy and very high specificity.  相似文献   

14.
15.
We have investigated meiotic changes in CAG repeat tracts embedded in a yeast chromosome. Repeat tracts undergo either conversion events between homologs or expansion and contraction events that appear to be confined to a single chromatid. We did not find evidence for conversion of tract interruptions or excess exchange of flanking markers.  相似文献   

16.
Ireland MJ  Reinke SS  Livingston DM 《Genetics》2000,155(4):1657-1665
We have examined the stability of long tracts of CAG repeats in yeast mutants defective in enzymes suspected to be involved in lagging strand replication. Alleles of DNA ligase (cdc9-1 and cdc9-2) destabilize CAG tracts in the stable tract orientation, i.e., when CAG serves as the lagging strand template. In this orientation nearly two-thirds of the events recorded in the cdc9-1 mutant were tract expansions. While neither DNA ligase allele significantly increases the frequency of tract-length changes in the unstable orientation, the cdc9-1 mutant produced a significant number of expansions in tracts of this orientation. A mutation in primase (pri2-1) destabilizes tracts in both the stable and the unstable orientations. Mutations in a DNA helicase/deoxyribonuclease (dna2-1) or in two RNase H activities (rnh1Delta and rnh35Delta) do not have a significant effect on CAG repeat tract stability. We interpret our results in terms of the steps of replication that are likely to lead to expansion and to contraction of CAG repeat tracts.  相似文献   

17.
18.
19.
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The N-terminal fragment of AR containing the expanded polyglutamine tract aggregates in cytoplasm and/or in nucleus and induces cell death. Some chaperones such as Hsp40 and Hsp70 have been identified as important regulators of polyglutamine aggregation and/or cell death in neuronal cells. Recently, Hsp105alpha, expressed at especially high levels in mammalian brain, has been shown to suppress apoptosis in neuronal cells and prevent the aggregation of protein caused by heat shock in vitro. However, its role in polyglutamine-mediated cell death and toxicity has not been studied. In the present study, we examined the effects of Hsp105alpha on the aggregation and cell toxicity caused by expansion of the polyglutamine tract using a cellular model of SBMA. The transient expression of truncated ARs (tARs) containing an expanded polyglutamine tract caused aggregates to form in COS-7 and SK-N-SH cells and concomitantly apoptosis in the cells with the nuclear aggregates. When Hsp105alpha was overexpressed with tAR97 in the cells, Hsp105alpha was colocalized to aggregates of tAR97, and the aggregation and cell toxicity caused by expansion of the polyglutamine tract were markedly reduced. Both beta-sheet and alpha-helix domains, but not the ATPase domain, of Hsp105alpha were necessary to suppress the formation of aggregates in vivo and in vitro. Furthermore, Hsp105alpha was found to localize in nuclear inclusions formed by ARs containing an expanded polyglutamine tract in tissues of patients and transgenic mice with SBMA. These findings suggest that overexpression of Hsp105alpha suppresses cell death caused by expansion of the polyglutamine tract without chaperone activity, and the enhanced expression of the essential domains of Hsp105alpha in brain may provide an effective therapeutic approach for CAG repeat diseases.  相似文献   

20.
Spinal and bulbar muscular atrophy (SBMA) is an inherited neurodegenerative disorder caused by the expansion of the polyglutamine (polyQ) tract of the androgen receptor (AR-polyQ). Characteristics of SBMA include proximal muscular atrophy, weakness, contraction fasciculation and bulbar involvement. MicroRNAs (miRNAs) are a diverse class of highly conserved small RNA molecules that function as crucial regulators of gene expression in animals and plants. Recent functional studies have shown the potent activity of specific miRNAs as disease modifiers both in vitro and in vivo. Thus, potential therapeutic approaches that target the miRNA processing pathway have recently attracted attention. Here we describe a novel therapeutic approach using the adeno-associated virus (AAV) vector–mediated delivery of a specific miRNA for SBMA. We found that miR-196a enhanced the decay of the AR mRNA by silencing CUGBP, Elav-like family member 2 (CELF2). CELF2 directly acted on AR mRNA and enhanced the stability of AR mRNA. Furthermore, we found that the early intervention of miR-196a delivered by an AAV vector ameliorated the SBMA phenotypes in a mouse model. Our results establish the proof of principle that disease-specific miRNA delivery could be useful in neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号