首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulatory proteins of R-Ras, TC21/R-Ras2, and M-Ras/R-Ras3   总被引:8,自引:0,他引:8  
We studied the regulation of three closely related members of Ras family G proteins, R-Ras, TC21 (also known as R-Ras2), and M-Ras (R-Ras3). Guanine nucleotide exchange of R-Ras and TC21 was promoted by RasGRF, C3G, CalDAG-GEFI, CalDAG-GEFII (RasGRP), and CalDAG-GEFIII both in 293T cells and in vitro. By contrast, guanine nucleotide exchange of M-Ras was promoted by the guanine nucleotide exchange factors (GEFs) for the classical Ras (Ha-, K-, and N-), including mSos, RasGRF, CalDAG-GEFII, and CalDAG-GEFIII. GTPase-activating proteins (GAPs) for Ras, Gap1(m), p120 GAP, and NF-1 stimulated all of the R-Ras, TC21, and M-Ras proteins, whereas R-Ras GAP stimulated R-Ras and TC21 but not M-Ras. We did not find any remarkable difference in the subcellular localization of R-Ras, TC21, or M-Ras when these were expressed with a green fluorescent protein tag in 293T cells and MDCK cells. In conclusion, TC21 and R-Ras were regulated by the same GEFs and GAPs, whereas M-Ras was regulated as the classical Ras.  相似文献   

2.
The tumor suppressor PP2A Abeta regulates the RalA GTPase   总被引:4,自引:0,他引:4  
The serine-threonine protein phosphatase 2A (PP2A) is a heterotrimeric enzyme family that regulates numerous signaling pathways. Biallelic mutations of the structural PP2A Abeta subunit occur in several types of human tumors; however, the functional consequences of these cancer-associated PP2A Abeta mutations in cell transformation remain undefined. Here we show that suppression of PP2A Abeta expression permits immortalized human cells to achieve a tumorigenic state. Cancer-associated Abeta mutants fail to reverse tumorigenic phenotype induced by PP2A Abeta suppression, indicating that these mutants function as null alleles. Wild-type PP2A Abeta but not cancer-derived Abeta mutants form a complex with the small GTPase RalA. PP2A Abeta-containing complexes dephosphorylate RalA at Ser183 and Ser194, inactivating RalA and abolishing its transforming function. These observations identify PP2A Abeta as a tumor suppressor gene that transforms immortalized human cells by regulating the function of RalA.  相似文献   

3.
Multivesicular endosomes (MVBs) are major sorting platforms for membrane proteins and participate in plasma membrane protein turnover, vacuolar/lysosomal hydrolase delivery, and surface receptor signal attenuation. MVBs undergo unconventional inward budding, which results in the formation of intraluminal vesicles (ILVs). MVB cargo sorting and ILV formation are achieved by the concerted function of endosomal sorting complex required for transport (ESCRT)-0 to ESCRT-III. The ESCRT-0 subunit Vps27 is a key player in this pathway since it recruits the other complexes to endosomes. Here we show that the Pkh1/Phk2 kinases, two yeast orthologues of the 3-phosphoinositide–dependent kinase, phosphorylate directly Vps27 in vivo and in vitro. We identify the phosphorylation site as the serine 613 and demonstrate that this phosphorylation is required for proper Vps27 function. Indeed, in pkh-ts temperature-sensitive mutant cells and in cells expressing vps27S613A, MVB sorting of the carboxypeptidase Cps1 and of the α-factor receptor Ste2 is affected and the Vps28–green fluorescent protein ESCRT-I subunit is mainly cytoplasmic. We propose that Vps27 phosphorylation by Pkh1/2 kinases regulates the coordinated cascade of ESCRT complex recruitment at the endosomal membrane.  相似文献   

4.
NK cells are innate immune cells that can eliminate their targets through granule release. In this study, we describe a specialized role for the large GTPase Dynamin 2 (Dyn2) in the regulation of these secretory events leading to cell-mediated cytotoxicity. By modulating the expression of Dyn2 using small interfering RNA or by inhibiting its activity using a pharmacological agent, we determined that Dyn2 does not regulate conjugate formation, proximal signaling, or granule polarization. In contrast, during cell-mediated killing, Dyn2 localizes with lytic granules and polarizes to the NK cell-target interface where it regulates the final fusion of lytic granules with the plasma membrane. These findings identify a novel role for Dyn2 in the exocytic events required for effective NK cell-mediated cytotoxicity.  相似文献   

5.
Rab5 regulates motility of early endosomes on microtubules   总被引:1,自引:0,他引:1  
The small GTPase Rab5 regulates membrane docking and fusion in the early endocytic pathway. Here we reveal a new role for Rab5 in the regulation of endosome interactions with the microtubule network. Using Rab5 fused to green fluorescent protein we show that Rab5-positive endosomes move on microtubules in vivo. In vitro, Rab5 stimulates both association of early endosomes with microtubules and early-endosome motility towards the minus ends of microtubules. Moreover, similarly to endosome membrane docking and fusion, Rab5-dependent endosome movement depends on the phosphatidylinositol-3-OH kinase hVPS34. Thus, Rab5 functionally links regulation of membrane transport, motility and intracellular distribution of early endosomes.  相似文献   

6.
Nitric oxide (NO) inhibits vascular inflammation, but the molecular basis for its anti-inflammatory properties is unknown. We show that NO inhibits exocytosis of Weibel-Palade bodies, endothelial granules that mediate vascular inflammation and thrombosis, by regulating the activity of N-ethylmaleimide-sensitive factor (NSF). NO inhibits NSF disassembly of soluble NSF attachment protein receptor (SNARE) complexes by nitrosylating critical cysteine residues of NSF. NO may regulate exocytosis in a variety of physiological processes, including vascular inflammation, neurotransmission, thrombosis, and cytotoxic T lymphocyte cell killing.  相似文献   

7.
R-Ras contains a proline-rich motif that resembles SH3 domain-binding sites but that has escaped notice previously. We show here that this site in R-Ras is capable of binding SH3 domains and that the SH3 domain binding may be important for R-Ras function. A fusion protein containing the SH3 domains of the adaptor protein Nck interacted strongly with the R-Ras proline-rich sequence and with the intact protein. The binding was independent of whether R-Ras was in its GDP or GTP form. The Nck binding, which was mediated by the second of the three SH3 domains of Nck, was obliterated by mutations in the proline-rich sequence of R-Ras. The interaction of Nck with R-Ras could also be shown in yeast two-hybrid assays and by co-immunoprecipitation in human cells transfected with Nck and R-Ras. Previous results have shown that the expression of a constitutively active R-Ras mutant, R-Ras(38V), converts mouse 32D monocytic cells into highly adherent cells. Introducing the proline mutations into R-Ras(38V) suppressed the effect of R-Ras on 32D cell adhesion while not affecting GTP binding. These results reveal an unexpected regulatory pathway that controls R-Ras through an SH3 domain interaction. This pathway appears to be important for the ability of R-Ras to control cell adhesion.  相似文献   

8.
RalA is a small GTPase that is thought to facilitate exocytosis through its direct interaction with the mammalian exocyst complex. In this study, we report an essential role for RalA in regulated insulin secretion from pancreatic beta cells. We employed lentiviral-mediated delivery of RalA short hairpin RNAs to deplete endogenous RalA protein in mouse pancreatic islets and INS-1 beta cells. Perifusion of mouse islets depleted of RalA protein exhibited inhibition of both first and second phases of glucose-stimulated insulin secretion. Consistently, INS-1 cells depleted of RalA caused a severe inhibition of depolarization-induced insulin exocytosis determined by membrane capacitance, including a reduction in the size of the ready-releasable pool of insulin granules and a reduction in the subsequent mobilization and exocytosis of the reserve pool of granules. Collectively, these data suggest that RalA is a critical component in biphasic insulin release from pancreatic beta cells.  相似文献   

9.
Peroxynitrite is formed in the organism by activated neutrophils as a result of the enhanced production of nitrogen monoxide and superoxide anion radical in the inflammation foci. Since peroxynitrite modifies the structure of macromolecules, including the elements of actin cytoskeleton, it can influence signal transduction pathways that regulate intracellular granule exocytosis. In this paper we explore a dual effect of peroxynitrite on the processes of neutrophil degranulation by the methods of flow cytometry, light microscopy, and atomic force microscopy. We showed that peroxynitrite at concentrations less than 300 μM activated graded exocytosis of neutrophil intracellular granules, which resulted in the enhancement of neutrophil adhesion to the substrate, cell spreading on the substrate, and activation of neutrophil ability to kill microorganisms. Peroxynitrite at higher concentrations inhibited exocytosis of neutrophil granules and hindered cell adhesion to the substrate. The character of influence of the specific agents, such as colchicine and cytochalasin that selectively disrupt cytoskeletal structures, on peroxynitrite-induced changes in neutrophil morphology indicates an important role of actin cytoskeleton in the regulation of intracellular granule exocytosis induced by peroxynitrite. Our results support the hypothesis suggesting that peroxynitrite is a natural regulator of neutrophil effector functions.  相似文献   

10.
To investigate the possible roles of the Ras/Rho family members in the inside-out signals to activate integrins, we examined the ability of Ras/Rho small GTPases to stimulate avidity of alpha(5)beta(1) (VLA-5) to fibronectin in bone marrow-derived mast cells. We found that both Ha-Ras(Val-12) and R-Ras(Val-38) had strong stimulatory effects on adhesion and ligand binding activity of VLA-5 to fibronectin. However, only Ha-Ras(Val-12)-, but not R-Ras(Val-38)-induced adhesion was inhibited by wortmannin, which suggests that Ha-Ras(Val-12) is dependent on phosphatidylinositol (PI) 3-kinase on adhesion whereas R-Ras(Val-38) has another PI 3-kinase independent pathway to induce adhesion. The effector loop mutant Ha-Ras(Val-12)E37G, but not Y40C retained the ability to stimulate adhesion of mast cells to fibronectin. Consistently, PI 3-kinase p110delta, predominantly expressed in mast cells, interacted with Ha-Ras(Val-12) E37G, but not Y40C, which was also correlated with the levels of Akt phosphorylation in mast cells. Furthermore, marked adhesion was induced by a membrane-targeted version of p110delta. These results indicate that Ha-Ras(Val-12) activated VLA-5 through PI 3-kinase p110delta. The mutational effects of the R-Ras effector loop region on adhesion were not correlated with PI 3-kinase activities, consistent with our contention that R-Ras has a distinct pathway to modulate avidity of VLA-5.  相似文献   

11.
Trafficking of mammalian ATG9A between the Golgi apparatus, endosomes and peripheral ATG9A compartments is important for autophagosome biogenesis. Here, we show that the membrane remodelling protein SNX18, previously identified as a positive regulator of autophagy, regulates ATG9A trafficking from recycling endosomes. ATG9A is recruited to SNX18‐induced tubules generated from recycling endosomes and accumulates in juxtanuclear recycling endosomes in cells lacking SNX18. Binding of SNX18 to Dynamin‐2 is important for ATG9A trafficking from recycling endosomes and for formation of ATG16L1‐ and WIPI2‐positive autophagosome precursor membranes. We propose a model where upon autophagy induction, SNX18 recruits Dynamin‐2 to induce budding of ATG9A and ATG16L1 containing membranes from recycling endosomes that traffic to sites of autophagosome formation.  相似文献   

12.
Bcl-2 regulates amplification of caspase activation by cytochrome c   总被引:10,自引:0,他引:10  
Caspases, a family of specific proteases, have central roles in apoptosis [1]. Caspase activation in response to diverse apoptotic stimuli involves the relocalisation of cytochrome c from mitochondria to the cytoplasm where it stimulates the proteolytic processing of caspase precursors. Cytochrome c release is controlled by members of the Bcl-2 family of apoptosis regulators [2] [3]. The anti-apoptotic members Bcl-2 and Bcl-xL may also control caspase activation independently of cytochrome c relocalisation or may inhibit a positive feedback mechanism [4] [5] [6] [7]. Here, we investigate the role of Bcl-2 family proteins in the regulation of caspase activation using a model cell-free system. We found that Bcl-2 and Bcl-xL set a threshold in the amount of cytochrome c required to activate caspases, even in soluble extracts lacking mitochondria. Addition of dATP (which stimulates the procaspase-processing factor Apaf-1 [8] [9]) overcame inhibition of caspase activation by Bcl-2, but did not prevent the control of cytochrome c release from mitochondria by Bcl-2. Cytochrome c release was accelerated by active caspase-3 and this positive feedback was negatively regulated by Bcl-2. These results provide evidence for a mechanism to amplify caspase activation that is suppressed at several distinct steps by Bcl-2, even after cytochrome c is released from mitochondria.  相似文献   

13.
Crk activation of JNK via C3G and R-Ras   总被引:3,自引:0,他引:3  
  相似文献   

14.
cAMP signaling is important for the regulation of insulin secretion in pancreatic beta-cells. The level of intracellular cAMP is controlled through its production by adenylyl cyclases and its breakdown by cyclic nucleotide phosphodiesterases (PDEs). We have previously shown that PDE3B is involved in the regulation of nutrient-stimulated insulin secretion. Here, aiming at getting deeper functional insights, we have examined the role of PDE3B in the two phases of insulin secretion as well as its localization in the beta-cell. Depolarization-induced insulin secretion was assessed and in models where PDE3B was overexpressed [islets from transgenic RIP-PDE3B/7 mice and adenovirally (AdPDE3B) infected INS-1 (832/13) cells], the first phase of insulin secretion, occurring in response to stimulation with high K(+) for 5 min, was significantly reduced ( approximately 25% compared to controls). In contrast, in islets from PDE3B(-/-) mice the response to high K(+) was increased. Further, stimulation of isolated beta-cells from RIP-PDE3B/7 islets, using successive trains of voltage-clamped depolarizations, resulted in reduced Ca(2+)-triggered first phase exocytotic response as well as reduced granule mobilization-dependent second phase, compared to wild-type beta-cells. Using sub-cellular fractionation, confocal microscopy and transmission electron microscopy of isolated mouse islets and INS-1 (832/13) cells, we show that endogenous and overexpressed PDE3B is localized to insulin granules and plasma membrane. We conclude that PDE3B, through hydrolysis of cAMP in pools regulated by Ca(2+), plays a regulatory role in depolarization-induced insulin secretion and that the enzyme is associated with the exocytotic machinery in beta-cells.  相似文献   

15.
Shoc2 is the putative scaffold protein that interacts with RAS and RAF, and positively regulates signaling to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). To elucidate the mechanism by which Shoc2 regulates ERK1/2 activation by the epidermal growth factor (EGF) receptor (EGFR), we studied subcellular localization of Shoc2. Upon EGFR activation, endogenous Shoc2 and red fluorescent protein tagged Shoc2 were translocated from the cytosol to a subset of late endosomes containing Rab7. The endosomal recruitment of Shoc2 was blocked by overexpression of a GDP-bound H-RAS (N17S) mutant and RNAi knockdown of clathrin, suggesting the requirement of RAS activity and clathrin-dependent endocytosis. RNAi depletion of Shoc2 strongly inhibited activation of ERK1/2 by low, physiological EGF concentrations, which was rescued by expression of wild-type recombinant Shoc2. In contrast, the Shoc2 (S2G) mutant, that is myristoylated and found in patients with the Noonan-like syndrome, did not rescue ERK1/2 activation in Shoc2-depleted cells. Shoc2 (S2G) was not located in late endosomes but was present on the plasma membrane and early endosomes. These data suggest that targeting of Shoc2 to late endosomes may facilitate EGFR-induced ERK activation under physiological conditions of cell stimulation by EGF, and therefore, may be involved in the spatiotemporal regulation of signaling through the RAS-RAF module.  相似文献   

16.
Ca2+-regulated exocytosis, previously believed to be restricted to specialized cells, was recently recognized as a ubiquitous process. In mammalian fibroblasts and epithelial cells, exocytic vesicles mobilized by Ca2+ were identified as lysosomes. Here we show that elevation in intracellular cAMP potentiates Ca2+-dependent exocytosis of lysosomes in normal rat kidney fibroblasts. The process can be modulated by the heterotrimeric G proteins Gs and Gi, consistent with activation or inhibition of adenylyl cyclase. Normal rat kidney cell stimulation with isoproterenol, a beta-adrenergic agonist that activates adenylyl cyclase, enhances Ca2+-dependent lysosome exocytosis and cell invasion by Trypanosoma cruzi, a process that involves parasite-induced [Ca2+]i transients and fusion of host cell lysosomes with the plasma membrane. Similarly to what is observed for T. cruzi invasion, the actin cytoskeleton acts as a barrier for Ca2+-induced lysosomal exocytosis. In addition, infective stages of T. cruzi trigger elevation in host cell cAMP levels, whereas no effect is observed with noninfective forms of the parasite. These findings demonstrate that cAMP regulates lysosomal exocytosis triggered by Ca2+ and a parasite/host cell interaction known to involve Ca2+-dependent lysosomal fusion.  相似文献   

17.
Neurons extend two types of neurites—axons and dendrites—that differ in structure and function. Although it is well understood that the cytoskeleton plays a pivotal role in neurite differentiation and extension, the mechanisms by which membrane components are supplied to growing axons or dendrites is largely unknown. We previously reported that the membrane supply to axons is regulated by lemur kinase 1 (LMTK1) through Rab11A-positive endosomes. Here we investigate the role of LMTK1 in dendrite formation. Down-regulation of LMTK1 increases dendrite growth and branching of cerebral cortical neurons in vitro and in vivo. LMTK1 knockout significantly enhances the prevalence, velocity, and run length of anterograde movement of Rab11A-positive endosomes to levels similar to those expressing constitutively active Rab11A-Q70L. Rab11A-positive endosome dynamics also increases in the cell body and growth cone of LMTK1-deficient neurons. Moreover, a nonphosphorylatable LMTK1 mutant (Ser34Ala, a Cdk5 phosphorylation site) dramatically promotes dendrite growth. Thus LMTK1 negatively controls dendritic formation by regulating Rab11A-positive endosomal trafficking in a Cdk5-dependent manner, indicating the Cdk5-LMTK1-Rab11A pathway as a regulatory mechanism of dendrite development as well as axon outgrowth.  相似文献   

18.
DENN (differentially expressed in normal cells and neoplasia) domain-containing proteins are a family of guanine nucleotide exchange factors (GEFs) for Rab small GTPases and coordinate a plethora of intracellular membrane trafficking events. FAM45A is a non-classical DENN domain protein, whose function was unknown. In this study, we characterized cellular roles of FAM45A. We found that FAM45A localized mainly in late/multivesicular endosomes. Depletion of FAM45A resulted in clustering of endosomes to the perinuclear region. The endocytosis of EGF receptor was impaired in FAM45A knockdown cells due to a delay in the early-to-late endosome transition. Furthermore, the secretion of selected exosome subpopulations was also attenuated in FAM45A knockdown cells. Consistent with these results, Rab27a and Rab27b, two Rabs involved in endosome motility and exosome biogenesis, were found to act downstream of FAM45A pathway. FAM45A colocalized with Rab27a/b and formed complex with them in a nucleotide-dependent manner. Taken together, FAM45A defines a novel regulatory step in the homeostasis of late endocytic pathway, including endosomal positioning, maturation and secretion, possibly through activating Rab proteins such as Rab27a/b.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号