首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Five anti-Sm monoclonal antibodies, Y12, 7.13, KSm4, KSm6, and 128, stain similar discrete punctate structures distributed throughout the cytoplasm of hamster fibroblasts in addition to the expected intense nuclear staining. Several criteria suggest the cytoplasmic staining reflects the cytoplasmic pools of snRNP core proteins. The relative intensity of the cytoplasmic staining is similar to the 30% relative abundance of the cytoplasmic snRNP core proteins compared to the nuclear snRNP core proteins based on cell-fractionation studies. Moreover, the cytoplasmic staining is removed by the same extraction conditions that solubilize the pools of cytoplasmic snRNP core proteins. The cytoplasmic sites of staining are typically spherical but heterogeneous in diameter (0.2-0.5 microm). The larger particles greatly exceed the diameter of individual snRNP core particles and are likely to represent centers of many snRNP proteins or snRNP protein complexes. The staining, though punctate, is evenly dispersed throughout the cytoplasm with no evidence of major compartmentalization. The cytoplasmic staining pattern collapses into larger foci of intensely staining structures when cellular energy levels are depleted or when cells are exposed to hypertonic medium. Unlike the normal sites of snRNP protein cytoplasmic staining, these larger collapsed foci resist detergent extraction. These results suggest that the cytoplasmic staining identified with the anti-Sm monoclonal antibodies represents the large pools of snRNP core proteins in the cytoplasm.  相似文献   

5.
We sought to investigate the cellular uptake and antiviral activity for the M1 zinc finger peptides derived from influenza A and influenza B viruses in vitro. No cellular uptake was detected by fluorescent microscopy for the synthetic zinc finger peptides. When flanked to a cell permeable peptide Tp10, the zinc finger recombinant proteins were efficiently internalized by MDCK cells. However, no antiviral activity was detected against homologous or heterologous virus infections for the synthetic peptides or the Tp10-flanked recombinant proteins, regardless treated with or without Zn2+. Nevertheless, MDCK cell constitutively expressing the M1 zinc finger peptides in cell nuclei potently inhibited replication of homologous, but not heterologous influenza viruses. Adenoviral vector delivered M1 zinc finger peptides also exhibited potent antiviral activity against homologous viruses challenge. Transduction at 100 PFU dose of recombinant adenovirus efficiently protected 99% of the cells from 100 TCID50 of different virus infections for both peptides. These results brought new insight to the antiviral researches against influenza virus infections.  相似文献   

6.
7.
Nuclear dots containing PML and Sp100 proteins (NDs) play a role in the development of acute promyelocytic leukemia, are modified after infection with various viruses, and are autoimmunogenic in patients with primary biliary cirrhosis (PBC). PML and Sp100 gene expression is strongly enhanced by interferons (IFN). Based on immunostaining with a monoclonal antibody (mAb C8A2), a third protein, nuclear dot protein 52 (NDP52), was recently localized in NDs. Here we analyzed the cellular localization, expression, and structure of NDP52 in more detail. Our NDP52-specific sera revealed mainly cytoplasmic staining but no ND pattern, neither in untreated nor in IFN-treated cells. Cells transfected with NDP52 expression vectors showed exclusively cytoplasmic staining. In subcellular fractionation experiments, NDP52 was found in cytoplasmic and nuclear fractions. Unlike as described for Sp100 and PML, NDP52 mRNA and protein levels were only marginally enhanced by IFN γ and not enhanced at all by IFN β. NDP52 homodimerization but no heterodimerization with Sp100 or PML could be demonstrated. None of the 93 PBC sera tested contained autoantibodies against NDP52. Finally, mAb C8A2 reacted not only with NDP52 but also with a conformation-dependent epitope on the Sp100 protein. These data imply that NDP52 forms homodimers but no heterodimers with Sp100 and PML, lacks autoantigenicity in PBC, localizes mainly in the cytoplasm, and is associated with the nucleus, but not with NDs. Finally, unlike Sp100 and PML, NDP52 expression is neither markedly enhanced nor localization detectably altered by type I and II IFNs.  相似文献   

8.
A hybridoma producing a monoclonal antibody (MoAB) recognizing both the cellular and viral forms of fos has been generated by somatic cell hybridization techniques from spleen cells of mice immunized with a synthetic peptide corresponding to amino acids 128-152, a consensus region, of both the v-fos and c-fos oncogene products. Three proteins with molecular weights of 55,000, 44,000, and 42,000 were detected by immunoblotting. While MoAB 2G9C3 failed to immunoprecipitate fos from Finkel-Biskis-Jenkins murine osteosarcoma-virus-infected fibroblasts, both the 55,000 v-fos protein and the 39,000 cellular protein were coprecipitated using polyvalent rabbit antibodies to the same peptide. Whereas no cell surface membrane expression of fos was detected, after membrane permeabilization by a brief exposure to lysolecithin it was possible to specifically detect internal fos by immunofluorescence flow cytometry. Immunohistochemical staining of FBJ virus-infected cells revealed intense, nuclear staining.  相似文献   

9.
10.
11.
The connection of functional modules is effective for the design of DNA binding molecules with the desired sequence specificity. C(2)H(2)-type zinc finger proteins have a tandemly repeated array structure consisting of independent finger modules and are expected to recognize any DNA sequences by permutation, multi-connection, and the substitution of various sets of zinc fingers. To investigate the effects of the replacement of the terminal finger on the DNA recognition by other fingers, we have constructed the three zinc finger peptides with finger substitution at the N- or C-terminus, Sp1(zf223), Sp1(zf323), and Sp1(zf321). From the results of gel mobility shift assays, each mutant peptide binds preferentially to the target sequence that is predicted if the fingers act in a modular fashion. The methylation interference analyses demonstrate that in the cases of the N-terminal finger substitution mutants, Sp1(zf223) and Sp1(zf323), the N-terminal finger recognizes bases to different extents from that of the wild-type peptide, Sp1(zf123). Of special interest is the fact that the N-terminal finger of the C-terminal finger substitution mutant, Sp1(zf321), shows a distinct base recognition from those of Sp1(zf123) and Sp1(zf323). DNase I footprinting analyses indicate that the C-terminal finger (active finger) induces a conformational change in the DNA in the region for the binding of the N-terminal finger (passive finger). The present results strongly suggest that the extent of base recognition of the N-terminal finger is dominated by the binding of the C-terminal finger. This information provides an important clue for the creation of a zinc finger peptide with the desired specificity, which is applicable to the design of novel drugs and biological tools.  相似文献   

12.
13.
14.
Four monoclonal antibodies produced against the restricted component of the Epstein-Barr virus (EBV) early antigen (EA-R) precipitated a polypeptide with an approximate molecular weight of 85,000. Three of these antibodies prepared against the native 85,000-molecular-weight protein (85K protein) reacted by immunofluorescence with acetone-fixed smears but not methanol-fixed smears of EBV-producing cells activated with tumor-promoting agent and sodium butyrate. The fourth monoclonal antibody which was produced against the denatured 85K protein reacted with both acetone-fixed cells and methanol-fixed cells. Blocking of direct immunofluorescence by the different monoclonal antibodies established that these monoclonal antibodies were directed against three different epitopes expressed on the 85K protein. The cytoplasmic staining pattern produced by each antibody was granular during the first 24 to 28 h after induction, developed into filamentous structures about 36 h after induction, and then began to aggregate after 48 h. Similar structures were observed in human placental cells transfected by EBV DNA and stained with three of the monoclonal antibodies. These results suggest that the EA-R polypeptide is assembled into filaments during the EBV lytic cycle. The significance of this in regards to replication has yet to be determined. Biochemical characterization of this major EA-R component did not reveal any major differences in this protein isolated from different cell lines.  相似文献   

15.
M H Baron  D Baltimore 《Cell》1982,28(2):395-404
The genome-linked protein (VPg) of poliovirus has been chemically synthesized, coupled to bovine serum albumin carrier and injected into rabbits. An antibody response was elicited not only by the full-length synthetic VPg peptide, but also by a synthetic 14-amino acid carboxy-terminal peptide. All antisera reacted with virus-specific proteins from HeLa cells infected with poliovirus. Three of these proteins have previously been implicated by others as precursors of VPg. No free cytoplasmic VPg could be detected, and the antibodies did not react with radiolabeled proteins from uninfected cells.  相似文献   

16.
A cDNA encoding a full-length rat 5α-reductase was isolated using female rat liver mRNA and the polymerase chain reaction, and fused to the Escherichia coli trp E gene in a pATH expression vector. The trp E-5α-reductase fusion protein expressed in bacteria and a synthetic oligopeptide corresponding to the C-terminus of rat 5α-reductase were used as antigens to produce rabbit polyclonal antibodies to 5α-reductase. Antibodies to the 5α-reductase portion of the fusion protein and to the peptide were purified by affinity chromatography. Antibodies against the 5α-reductase fusion protein reacted with a single component of rat liver microsomes with Mr 26,000 on Western blots, consistent with the size of 5α-reductase predicted from its cDNA, and with a Mr 23,000 component on Western blots of detergent extracts of rat ventral prostate nuclei; other rat ventral prostate cellular fractions (mitochondrial, microsomal, cytosol) bound little or no antibody. Antibody against the synthetic peptide reacted with a Mr 26,000 component of rat liver microsomes as well as with several components in various cellular fractions of rat ventral prostate. With anti-5α-reductase fusion protein antibodies, specific immunocytochemical staining was observed in the epithelial cell nuclei of the rat ventral prostate, seminal vesicle, epididymis and other accessory sex glands. This nuclear staining was specific, since antibodies from non-immunized rabbits did not give nuclear staining and preincubation of the anti-5α-reductase fusion protein antibodies with the trp E-5α-reductase fusion protein eliminated nuclear staining. Incubation of antibodies with trp E (without the 5α-reductase fusion) had no effect on nuclear staining. Specific staining was not detected in the cytoplasm of these epithelial cells. Little or no specific staining was observed in stromal cells in these rat tissuess. Human prostate was also immunocytochemically stained with this antibody. Specific staining was found in both epithelial and stromal cell nuclei.  相似文献   

17.
18.
19.
Cys(2)-His(2)-type zinc finger proteins have a tandemly repeated array structure consisting of independent finger modules. They are expected to elevate the DNA binding affinity and specificity by increasing the number of finger modules. To investigate the relation between the number and the DNA binding affinity of the zinc finger, we have designed the two- to four-finger peptides by connecting the central zinc finger (finger 2) of Sp1 with the canonical linker sequence, Thr-Gly-Glu-Lys-Pro. Gel mobility shift assays reveal that the cognate three- and four-finger peptides, Sp1(zf222) and Sp1(zf2222), strongly bind to the predicted target sequences, but the two-finger peptide, Sp1(zf22), does not. Of special interest is the fact that the dissociation constant for Sp1(zf2222) binding to the target DNA is comparable to that for Sp1(zf222). The methylation interference, DNase I and hydroxyl radical footprintings, and circular permutation analyses demonstrate that Sp1(zf2222) binds to its target site with three successive zinc fingers and the binding of the fourth zinc finger is inhibited by DNA bending induced by the binding of the three-finger domain. The present results strongly indicate that the zinc finger protein binds to DNA by the three-finger domain as one binding unit. In addition, this information provides the basis for the design of a novel multifinger protein with high affinity and specificity for long DNA sequences, such as chromosomal DNAs.  相似文献   

20.
We have generated monoclonal antibodies by using a synthetic peptide corresponding to amino acid positions 4 to 17 of the human fos protein. The antibodies detected both v- and c-fos proteins by immunoprecipitation, immunoblotting, and indirect immunofluorescence. The monoclonal antibodies not only identified the fos protein complex with the cellular 39-kilodalton protein, but also recognized the modified forms of the mouse, rat, and human fos proteins. In day-17 rat embryos, nuclear-staining fos protein could be identified in the cartilage by immunohistochemical staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号