首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine whether inhibitors of tyrosine kinase attenuate vasodilation elicited by endogenously elaborated and exogenously applied nitric oxide in the in situ peripheral microcirculation. Using intravital microscopy, we found that pretreatment with genistein (1.0 microM) and tyrphostin 25 (10.0 microM), two structurally unrelated tyrosine kinase inhibitors, significantly attenuated acetylcholine-, bradykinin- and nitroglycerin-induced dilation of second-order arterioles (51 +/- 1 microm) in the in situ hamster cheek pouch (P < 0.05). Both inhibitors nearly abrogated acetylcholine-induced responses but only partially blocked bradykinin- and nitroglycerin-induced vasodilation. Genistein and tyrphostin 25 alone had no significant effects on resting arteriolar diameter and on adenosine-induced vasodilation in the cheek pouch. On balance, these data indicate that tyrosine kinase inhibitors attenuate endogenously elaborated and exogenously applied nitric oxide-induced vasodilation in the in situ hamster cheek pouch. However, the extent of tyrosine kinase inhibitor-sensitive pathway involvement in this response appears to be agonist dependent.  相似文献   

2.
We examined the effects of the tyrosine kinase (TK) inhibitors, genistein, and tyrphostin (RG-50864) on the contractile action of epidermal growth factor - urogastrone (EGF-URO), transforming growth factor-alpha (TGF-alpha), and other agonists in two smooth muscle bioassay systems (guinea pig gastric longitudinal muscle, LM, and circular muscle, CM). We also studied the inhibition by tyrphostin of EGF-URO stimulated protein phosphorylation in identical smooth muscle strips. The selective inhibition by genistein and tyrphostin of EGF-URO and TGF-alpha induced contraction, but not of carbachol- and bradykinin-mediated contraction, occurred at much lower concentrations (genistein, less than 7.4 microM (2 micrograms/mL); tyrphostin, less than 20 microM (4 micrograms/mL)) than those used in previously published studies with these TK inhibitors. In LM tissue, the IC50 values were for genistein 1.1 +/- 0.1 microM (0.30 micrograms/mL; mean +/- SEM) and 3.6 +/- 0.5 microM (0.74 micrograms/mL) for tyrphostin, yielding a molar potency ratio (GS: TP) of 1:3 in the longitudinal preparation. In CM tissue, the IC50 values were 3.0 +/- 0.3 microM (0.81 micrograms/mL) for genistein and 2.4 +/- 0.2 microM (0.49 micrograms/mL) for tyrphostin, yielding a molar potency ratio (GS:TP) of 1.0:0.8 in the circular strips. The inhibition by genistein and tyrphostin of EGF-URO and TGF-alpha mediated contraction was rapid (beginning within minutes) and was reversible upon washing the preparations free from the enzyme inhibitors. In intact tissue strips studied under bioassay conditions, tyrphostin (40 microM) also blocked EGF-URO triggered phosphorylation of substrates detected on Western blots using monoclonal antiphosphotyrosine antibodies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The purpose of this study was to determine whether human galanin, a pleiotropic 30-amino acid neuropeptide, expresses amphipathic properties in vitro and, if so, whether these properties modulate its vasoactive effects in the intact peripheral microcirculation. We found that human galanin aggregates in an aqueous solution and forms micelles with a critical micellar concentration (CMC) of 0.4 microM. In addition, the peptide interacted with model membrane as indicated by long and significant increase of the surface pressure of the biomimetic monolayer membrane in vitro. Interactions of human galanin with sterically stabilized phospholipid micelles (SMM) were not associated with a significant change in peptide conformation. Using intravital microscopy, we found that suffusion of human galanin alone elicited significant concentration-dependent vasoconstriction in the intact hamster cheek pouch. This response was amplified when human galanin in SSM was suffused onto the cheek pouch. The effects of human galanin alone and in SSM were mediated by galanin receptors because galantide, a galanin receptor antagonist, abrogated galanin-induced vasoconstriction. Collectively, these data show that human galanin expresses amphipathic properties in the presence of phospholipids which in turn amplifies its vasoactive effects in the intact peripheral microcirculation.  相似文献   

4.
The purpose of this study was to determine whether short-term exposure to an aqueous extract of hog barn dust increases macromolecular efflux from the intact hamster cheek pouch and, if so, to begin to determine the mechanism(s) underlying this response. By using intravital microscopy, we found that suffusion of hog barn dust extract onto the intact hamster cheek pouch for 60 min elicited a significant, concentration-dependent leaky site formation and increase in clearance of FITC-labeled dextran (molecular mass, 70 kDa). This response was significantly attenuated by suffusion of catalase (60 U/ml), but not by heat-inactivated catalase, and by pretreatment with dexamethasone (10 mg/kg iv) (P < 0.05). Catalase had no significant effects on adenosine-induced increase in macromolecular efflux from the cheek pouch. Suffusion of hog barn dust extract had no significant effects on arteriolar diameter in the cheek pouch. Taken together, these data indicate that hog barn dust extract increases macromolecular efflux from the in situ hamster cheek pouch, in part, through local elaboration of reactive oxygen species that are inactivated by catalase. This response is specific and attenuated by corticosteroids. We suggest that plasma exudation plays an important role in the genesis of upper airway dysfunction evoked by short-term exposure to hog barn dust.  相似文献   

5.
In the present study, we have investigated the effects of protein tyrosine kinase (PTK) inhibitors on the Ca(V)3.1 calcium channel stably transfected in HEK293 cells using the whole-cell configuration of the patch-clamp technique. We have tested two different tyrosine kinase inhibitors, genistein and tyrphostin AG213, and their inactive analogs, genistin and tyrphostin AG9. Bath application of genistein, but not genistin, decreased the T-type calcium current amplitude in a concentration-dependent manner with an IC(50) of 24.7+/-2.0 microM. This effect of genistein was accompanied by deceleration of channel activation and acceleration of channel inactivation. Intracellular application of neither genistein nor genistin had a significant effect on the calcium current. Extracellular application of 50 microM tyrphostin AG213 and its inactive analogue, tyrphostin AG9, did not affect the current through the Ca(V)3.1 channel. The effect of genistein on the channel was also not affected by the presence of catalytically active PTK, p60(c-src) inside the cell. We have concluded that genistein directly inhibited the channel. This mechanism does not involve a PTK-dependent pathway. The alteration of the channel kinetics by genistein suggests an interaction with the voltage sensor of the channel together with the channel pore occlusion.  相似文献   

6.
Helospectin I and II, two closely related mammalian neuropeptides of the secretin/glucagons/vasoactive intestinal peptide (VIP) superfamily of peptides, are co-localized with VIP in nerve fibers surrounding vascular smooth muscle. However, the role if any, VIP receptors play in transducing the vasorelaxant effects of helospectin I and II in the intact peripheral microcirculation is uncertain. The purpose of this study was to determine whether helospectin I and II elicit vasodilation in the intact peripheral microcirculation and, if so, whether this response is mediated, in part, by VIP or pituitary adenylate cyclase activating peptide (PACAP) receptor engagement, and through local elaboration of cyclooxygenase products of arachidonic acid metabolism. Using intravital microscopy, we found that suffusion of helospectin I and II (each, 1.0 nmol) evoked potent vasodilation and of similar magnitude in the intact hamster cheek pouch microcirculation (P < 0.05). Suffusion of 0.1 nmol helospectin I and II had no significant effects on arteriolar diameter. Pretreatment with VIP(10-28), a VPAC1/VPAC2 receptor antagonist, or PACAP(6-38), a PAC1/VPAC2 receptor antagonist, had no significant effects on helospectin I- and II-induced responses. In addition, pretreatment with indomethacin had no significant effects on helospectin I- and II-induced vasodilation. Collectively, these data indicate that helospectin I and II evoke potent vasodilation in the intact peripheral microcirculation that is not transduced by VIP or PACAP receptors nor through cyclooxygenase products of arachidonic acid metabolism.  相似文献   

7.
Selective inhibitors of tyrosine kinases, tyrphostin 23 and genistein, produced concentration-dependent inhibition of voltage-operated calcium channel currents in vascular smooth muscle cells isolated from rabbit ear artery. The potency of these two structurally dissimilar inhibitors was similar to that reported for their action as inhibitors of tyrosine kinases. Daidzein, an inactive analogue of genistein, had little inhibitory effect on calcium channel currents at concentrations below 300 microM consistent with an action of these agents at a tyrosine kinase. However, tyrphostin 1, a reportedly less active tyrphostin derivative, also inhibited calcium channel currents with a potency similar to tyrphostin 23. These findings suggest that voltage-operated calcium channels in vascular smooth muscle may be modulated by endogenous tyrosine kinase(s) which display different sensitivities to inhibitors compared with the epidermal growth factor (EGF) receptor. Alternatively the possibility of direct blocking actions of these inhibitors at voltage-operated calcium channels cannot be excluded.  相似文献   

8.
The phosphodiesterase activity in the HT4.7 neural cell line was pharmacologically characterized, and phosphodiesterase isozyme 4 (PDE4) was found to be the predominant isozyme. The Km for cAMP was 1-2 microM, indicative of a "low Km" phosphodiesterase, and the activity was inhibited by PDE4-selective inhibitors rolipram and Ro20-1724, but not PDE3- or PDE2-selective inhibitors. Calcium, calmodulin, and cGMP, regulators of PDE1, PDE2, and PDE3, had no effect on cAMP hydrolysis. The protein tyrosine kinase inhibitor, genistein, inhibited HT4.7 cAMP phosphodiesterase activity by 85-95% with an IC50 of 4 microM; whereas daidzein, an inactive structural analog of genistein, had little effect on phosphodiesterase activity. This is a common pharmacological criterion used to implicate the regulation by a tyrosine kinase. However, genistein still inhibited phosphodiesterase activity with a mixed pattern of inhibition even when ion-exchange chromatography was used to partially purify phosphodiesterase away from the tyrosine kinase activity. Moreover, tyrphostin 51, another tyrosine kinase inhibitor, was found to also inhibit partially purified phosphodiesterase activity noncompetitively. These data suggest that HT4.7 phosphodiesterase activity is dominated by PDE4 and can be regulated by genistein and tyrphostin 51 by a tyrosine kinase-independent mechanism.  相似文献   

9.
The present study investigated the role of protein tyrosine phosphorylation in myogenic responsiveness of rat skeletal muscle arterioles. Arteriolar segments were cannulated and pressurized without intraluminal flow. All vessels studied developed spontaneous tone and demonstrated significant myogenic constriction to step changes in pressure with a resultant increase in myogenic tone over an intraluminal pressure range of 50-150 mmHg. Step increases in intraluminal pressure from 50 to 120 mmHg caused a rapid and sustained elevation in intracellular [Ca(2+)], as measured using fura 2. Vessels with myogenic tone dilated in response to tyrosine kinase inhibitors genistein (10 or 30 microM) and tyrphostin A47 (10 or 30 microM) and constricted to the tyrosine phosphatase inhibitor pervanadate (1 or 10 microM). Despite the dilator effect, myogenic reactivity was not blocked by the inhibitors. Daidzein (10 microM), a compound structurally similar to genistein but without tyrosine kinase-inhibiting activity, did not alter vessel tone or myogenic responses. Preincubation of arterioles with genistein or tyrphostin A47 did not significantly alter baseline arteriolar [Ca(2+)], and neither drug reduced the increase in [Ca(2+)] following an acute increase in intraluminal pressure. Constriction induced by pervanadate (10 microM) was not accompanied by a significant increase in intracellular [Ca(2+)], even though removal of extracellular Ca(2+) reversed the constriction. Examination of smooth muscle tyrosine phosphorylation, using a fluorescent phosphotyrosine antibody and confocal microscopy, showed that increased intraluminal pressure resulted in an increase in anti-phosphotyrosine fluorescence. Because manipulation of tyrosine kinase activity was found to alter vessel diameter, these data support a role for tyrosine phosphorylation in modulation of arteriolar tone. However, the results indicate that acute arteriolar myogenic constriction does not require tyrosine phosphorylation.  相似文献   

10.
Rudrabhatla P  Rajasekharan R 《Biochemistry》2004,43(38):12123-12132
Serine/threonine/tyrosine (STY) protein kinase from peanut is developmentally regulated and is induced by abiotic stresses. In addition, STY protein kinase activity is regulated by tyrosine phosphorylation. Kinetic mechanism of plant dual specificity protein kinases is not studied so far. Recombinant STY protein kinase occurs as a monomer in solution as shown by gel filtration chromatography. The relative phosphorylation rate of kinase against increasing enzyme concentrations follows a first-order kinetics indicating an intramolecular phosphorylation mechanism. Moreover, the active recombinant STY protein kinase could not transphosphorylate a kinase-deficient mutant of STY protein kinase. Molecular docking studies revealed that the tyrosine kinase inhibitors bind the protein kinase at the same region as ATP. STY protein kinase activity was inhibited by the tyrosine kinase inhibitors, and the inhibitor potency series against the recombinant STY protein kinase was tyrphostin > genistein > staurosporine. The inhibition constant (K(i)), and the IC(50) value of STY protein kinase for tyrosine kinase inhibitors with ATP and histone are discussed. All the inhibitors competed with ATP. Genistein was an uncompetitive inhibitor with histone, whereas staurosporine and tyrphostin were linear mixed type noncompetitive inhibitors with histone. Molecular docking and kinetic analysis revealed that Y148F mutant of the "ATP-binding loop" and Y297F mutant of the "activation loop" showed a dramatic increase in K(i) values for genistein and tyrphostin with respect to wild-type STY protein kinase. Data presented here provide the direct evidence on the mechanism of inhibition of plant protein kinases by tyrosine kinase inhibitors. This study also suggests that tyrosine kinase inhibitors may be useful in unraveling the plant tyrosine phosphorylation signaling cascades.  相似文献   

11.
The purpose of this study was to determine whether all D-vasoactive intestinal peptide (VIP), an inactive optical isomer of L-VIP, modulates the vasorelaxant effects of human L-VIP and pituitary adenylate cyclase activating peptide (PACAP)1-38, two ubiquitous and pleiotropic neuropeptides that activate VPAC1 and VPAC2, two VIP subtype receptors, in the intact peripheral microcirculation. Using intravital microscopy, we found that suffusion of all D-VIP had no significant effects on arteriolar diameter in the intact hamster cheek pouch. However, all D-VIP significantly attenuated L-VIP-induced vasodilation in a concentration-dependent fashion (P<0.05). likewise, all D-VIP significantly attenuated the vasorelaxant effects of L-VIP associated with sterically stabilized phospholipid micelles (SSM; P<0.05). Although all D-VIP had no significant effects on L-PACAP1-38-induced vasodilation, it abrogated PACAP1-38 in SSM-induced responses (P<0.05). The effects of all D-VIP were specific because it had no significant effects on acetylcholine-, nitroglycerin- and bradykinin-induced vasodilation. Taken together, these data indicate that all D-VIP attenuates the vasorelaxant effects of random coil and alpha-helix L-VIP as well as those of alpha-helix but not random coil PACAP in the intact peripheral microcirculation in a specific fashion. These effects are mediated, most likely, through interactions with VPAC1/VPAC2 receptors. We suggest that all D-VIP could be exploited as a novel, safe and active targeting moiety of VPAC1/VPAC2 receptors in vivo.  相似文献   

12.
Contractile agonists may stimulate mitogenic responses in airway smooth muscle by mechanisms that involve tyrosine kinases. The role of contractile agonist-evoked activation of tyrosine kinases in contractile signaling is not clear. We addressed this issue using cultured rat airway smooth muscle cells. In these cells, serotonin (5-HT, 1 microM) caused contraction (quantitated by a decrease in cell area), which was blocked by the tyrosine kinase inhibitor genistein (40 microM). Genistein and tyrphostin 23 (40 and 10 microM, respectively) significantly decreased 5-HT-evoked peak Ca(2+) responses, and the effect of genistein could be observed in the absence of extracellular Ca(2+). The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 (30 microM) had no significant effect on peak Ca(2+) levels. Western analysis of cell extracts revealed that 5-HT caused a significant increase in tyrosine phosphorylation of proteins with molecular masses of approximately 70 kDa within 10 s of stimulation but no measurable tyrosine phosphorylation of the gamma isoform of phospholipase C (PLC-gamma). Tyrosine phosphorylation was inhibited by genistein. Furthermore, genistein (40 microM) significantly attenuated 5-HT-induced inositol phosphate production. We conclude that in airway smooth muscle contractile agonists acting on G protein-coupled receptors may activate tyrosine kinase(s), which in turn modulate calcium signaling by affecting, directly or indirectly, PLC-beta activity. It is unlikely that PLC-gamma or the mitogen-activated protein kinase pathway is involved in Ca(2+) signaling to 5-HT.  相似文献   

13.
Abstract: To study cross-talk mechanisms in rat pinealocytes, the role of tyrosine kinase or kinases in the regulation of adrenergic-stimulated cyclic AMP production was investigated. Both norepinephrine- and isoproterenol-stimulated cyclic AMP accumulation were increased by two distinct tyrosine kinase inhibitors, genistein or erbstatin, in a concentration-dependent manner. A similar increase was observed with two other inhibitors, tyrphostin B44 and herbimycin. In contrast, daidzein, an inactive analogue of genistein, was ineffective; whereas vanadate, a phosphotyrosine phosphatase inhibitor, reduced the adrenergic-stimulated cyclic AMP accumulation. The tyrosine kinase inhibitors were effective in potentiating the cholera toxin-or forskolin-stimulated cyclic AMP accumulation, indicating that their sites of action are at the postreceptor level. Neither an activator nor inhibitors of protein kinase C influenced the potentiation of the cyclic AMP responses by genistein, suggesting that the potentiation effect by tyrosine kinase inhibitors does not involve the phospholipase C/protein kinase C pathway. However, when the phosphodiesterase was inhibited by isobutylmethylxanthine, genistein failed to potentiate and vanadate did not inhibit the adrenergic-stimulated cyclic AMP accumulation, indicating that the phosphodiesterase is a probable site of action for these inhibitors. These results suggest that cyclic AMP metabolism in the pinealocytes is tonically inhibited by tyrosine kinase acting on the cyclic AMP phosphodiesterase.  相似文献   

14.
Protein tyrosine kinase activity, leading to tyrosine phosphorylation of the intracellular domains of receptors or non-receptor proteins, is an important feature of downstream signalling after receptor binding of a variety factors, such as growth factors and cytokines. Since several members of these classes of paracrine-autocrine mediator may be involved in the intraovarian events of ovulation, the present study was designed to evaluate the effect of protein tyrosine kinase inhibition on the in vitro perfused rat ovary. Immature rats were primed with 20 iu pregnant mares' serum gonadotrophin 48 h before surgical isolation of the right ovary with connecting vasculature. The ovary was placed in a perfusion system for either 10 h, to examine ovarian concentrations of the established ovulatory mediators plasminogen activator, prostaglandins E2 and F2 alpha, or for 20 h, enabling a complete ovulatory process to occur in vitro. Ovulation was induced by ovine LH (0.2 microgram ml-1) in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.2 mmol l-1) and the effects of two different protein tyrosine kinase inhibitors, genistein and tyrphostin A25, were studied. Unstimulated control ovaries did not ovulate and showed low secretion of progesterone and oestradiol. Addition of LH + 3-isobutyl-1-methylxanthine resulted in a marked stimulation of steroid release, and ovulations occurred in all ovaries (9.0 +/- 0.9; mean +/- SEM). The protein tyrosine kinase inhibitors, genistein and tyrphostin A25, significantly inhibited ovulation at the higher concentrations tested (3.0 +/- 0.3 at 100 mumol genistein l-1; 5.8 +/- 1.0 at 500 mumol tyrphostin A25 l-1) but no effect was seen at lower concentrations. The presence of genistein and tyrphostin A25 at any concentration used did not significantly decrease the LH + 3-isobutyl-1-methylxanthine-induced progesterone or oestradiol concentrations. The intraovarian concentrations of plasminogen activator activity, and prostaglandin E2 and F2 alpha were not altered by the presence genistein (100 mumol l-1). In conclusion, the results of the present study indicate that protein tyrosine kinase signalling pathways are integral parts of the mammalian ovulatory process but do not involve actions on the synthesis of steroids, plasminogen activator or prostaglandins.  相似文献   

15.
The effects of tyrosine protein kinases (TK) on the L-type Ca(2+) current (I(Ca)) were examined in whole cell patch-clamped human atrial myocytes. The TK inhibitors genistein (50 microM), lavendustin A (50 microM), and tyrphostin 23 (50 microM) stimulated I(Ca) by 132 +/- 18% (P < 0.001), 116 +/- 18% (P < 0.05), and 60 +/- 6% (P < 0.001), respectively. After I(Ca) stimulation by genistein, external application of isoproterenol (1 microM) caused an additional increase in I(Ca). Dialyzing the cells with a protein kinase A inhibitor suppressed the effect of isoproterenol on I(Ca) but not that of genistein. Inhibition of protein kinase C (PKC) by pretreatment of cells with 100 nM staurosporine or 100 nM calphostin C prevented the effects of genistein on I(Ca). The PKC activator phorbol 12-myristate 13-acetate (PMA), after an initial stimulation (75 +/- 17%, P < 0.05), decreased I(Ca) (-36 +/- 5%, P < 0.001). Once the inhibitory effect of PMA on I(Ca) had stabilized, genistein strongly stimulated the current (323 +/- 25%, P < 0.05). Pretreating myocytes with genistein reduced the inhibitory effect of PMA on I(Ca). We conclude that, in human atrial myocytes, TK inhibit I(Ca) via a mechanism that involves PKC.  相似文献   

16.
Basipetal auxin transport along the zucchini hypocotyl requires the cell-to-cell translocation of this hormone. Several authors have demonstrated that naphthylphthalamic acid (NPA) blocks auxin efflux. It is believed that NPA binds to a regulatory protein that modulates the activity of the carrier rather than to the carrier itself. A few regulatory mechanisms have been suggested but all lack strong supporting experimental evidence. Four classes of protein tyrosine kinase inhibitors (PTKIs) have been used to investigate the NPA perception pathway. First, six synthetic tyrphostins, inhibitors of the epidermal growth factor receptor (EGF-R), were shown to displace NPA on plasmalemma fractions. The most potent compound was (3,4-dihydroxybenzylidene)-thiocyanoacetamide (tyrphostin A47). The inactive counterpart of tyrphostin A47, (4-methoxybenzylidene)-malononitrile (tyrphostin A1), was unable to displace NPA. Tyrphostins did not inhibit auxin efflux but were antagonists of the inhibition of auxin efflux by NPA. Again, tyrphostin A47 was the most effective and tyrphostin A1 was inactive. Second, the flavonoid genistein, also an EGF-R inhibitor, showed an effect on NPA binding and NPA antagonism similar to the one for the tyrphostins. Daidzein, the inactive counterpart of genistein, was ineffective in displacing NPA and in antagonizing its inhibition of auxin efflux. Two other PTKIs, curcumin and lavendustin A, displayed similar characteristics. Calmodulin antagonists, protein serine/threonine kinase inhibitors, and phosphatase inhibitors were inactive. These results suggest that the NPA binding protein may be related to mammalian tyrosine kinases and may regulate the auxin efflux carrier by phosphorylation.  相似文献   

17.
To determine whether protein tyrosine kinase (PTK) modulates volume-sensitive chloride current (I(Cl.vol)) in human atrial myocytes and to identify the PTKs involved, we studied the effects of broad-spectrum and selective PTK inhibitors and the protein tyrosine phosphatase (PTP) inhibitor orthovanadate (VO(4)(-3)). I(Cl.vol) evoked by hyposmotic bath solution (0.6-times isosmotic, 0.6T) was enhanced by genistein, a broad-spectrum PTK inhibitor, in a concentration-dependent manner (EC(50) = 22.4 microM); 100 microM genistein stimulated I(Cl.vol) by 122.4 +/- 10.6%. The genistein-stimulated current was inhibited by DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, 150 microM) and tamoxifen (20 microM), blockers of I(Cl.vol). Moreover, the current augmented by genistein was volume dependent; it was abolished by hyperosmotic shrinkage in 1.4T, and genistein did not activate Cl(-) current in 1T. In contrast to the stimulatory effects of genistein, 100 microM tyrphostin A23 (AG 18) and A25 (AG 82) inhibited I(Cl.vol) by 38.2 +/- 4.9% and 40.9 +/- 3.4%, respectively. The inactive analogs, daidzein and tyrphostin A63 (AG 43), did not alter I(Cl.vol). In addition, the PTP inhibitor VO(4)(-3) (1 mM) reduced I(Cl.vol) by 53.5 +/- 4.5% (IC(50) = 249.6 microM). Pretreatment with VO(4)(-3) antagonized genistein-induced augmentation and A23- or A25-induced suppression of I(Cl.vol). Furthermore, the selective Src-family PTK inhibitor PP2 (5 microM) stimulated I(Cl.vol), mimicking genistein, whereas the selective EGFR (ErbB-1) kinase inhibitor tyrphostin B56 (AG 556, 25 microM) reduced I(Cl.vol), mimicking A23 and A25. The effects of both PP2 and B56 also were substantially antagonized by pretreatment with VO(4)(-3). The results suggest that I(Cl.vol) is regulated in part by the balance between PTK and PTP activity. Regulation is complex, however. Src and EGFR kinases, distinct soluble and receptor-mediated PTK families, have opposing effects on I(Cl.vol), and multiple target proteins are likely to be involved.  相似文献   

18.
The purpose of this study was to pharmacologically characterize the adenosine receptor subtype(s) that mediates adenosine-induced increases in macromolecular efflux from the intact hamster cheek pouch. Using intravital microscopy, we found that 1,3-dipropyl-8-(2-amino-4-chlorophenyl)-xanthine (PACPX), a selective adenosine receptor-1 antagonist, but not 3,7-dimethyl-1-propargylxanthine (DMPX), a selective adenosine receptor-2 antagonist, significantly attenuated adenosine-induced leaky site formation and increased clearance of fluorescein isothiocyanate-labeled dextran (molecular mass, 70 kDa) from the intact hamster cheek pouch (P < 0.05). Both compounds had no significant effects on bradykinin-induced responses. Nanomolar concentrations of R(-)-N(6)-(2-phenylisopropyl)-adenosine [R(-)-PIA], a selective adenosine A(1) agonist, evoked significant, concentration-dependent increases in macromolecular efflux. This response was significantly attenuated by PACPX but not by DMPX. In contrast, CGS-21680, a selective adenosine A(2) agonist, increased macromolecular efflux but only at micromolar concentrations. This response was significantly attenuated by DMPX but not by PACPX. Suffusion of nitroglycerin had no significant effects on R(-)-PIA- and CGS-21680-induced responses. In addition, suffusion of N(G)-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, had no significant effects on adenosine-induced responses. Indomethacin had no significant effects on adenosine-, R(-)-PIA-, and CGS-21680-induced increases in macromolecular efflux. Collectively, these data indicate that adenosine increases macromolecular efflux from the intact hamster cheek pouch by stimulating high-affinity adenosine A(1) receptors in a specific, nitric oxide- and prostaglandin-independent fashion.  相似文献   

19.
The purpose of this study was to determine whether dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux from the in situ hamster cheek pouch and, if so, whether this response is specific. By using intravital microscopy, we found that an aqueous extract of grain sorghum dust elicited significant, concentration-dependent leaky site formation and increase in clearance of FITC-labeled dextran (FITC-dextran; mol mass, 70 kDa) from the in situ hamster cheek pouch (P < 0.05). This response was significantly attenuated by dexamethasone (10 mg/kg iv). Dexamethasone also attenuated substance P-induced leaky site formation and increase in clearance of FITC-dextran from the cheek pouch but had no significant effects on adenosine-induced responses. Dexamethasone had no significant effects on arteriolar diameter in the cheek pouch. On balance, these data indicate that dexamethasone attenuates grain sorghum dust extract- and substance P-induced increases in macromolecular efflux from the in situ hamster cheek pouch in a specific fashion.  相似文献   

20.
The purpose of this study was to determine whether dexamethasone attenuates the acute increase in macromolecular efflux from the oral mucosa elicited by an aqueous extract of smokeless tobacco (STE) in vivo, and, if so, whether this response is specific. Using intravital microscopy, we found that 20-min suffusion of STE elicited significant, concentration-related leaky site formation and an increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass 70 kDa) from the in situ hamster cheek pouch (P < 0.05). This response was significantly attenuated by dexamethasone (10 mg/kg iv). Dexamethasone also attenuated the bradykinin-induced leaky site formation and the increase in clearance of FITC-dextran from the cheek pouch. However, it had no significant effects on adenosine-induced responses. Dexamethasone had no significant effects on baseline arteriolar diameter and on bradykinin-induced vasodilation in the cheek pouch. Collectively, these data indicate that dexamethasone attenuates, in a specific fashion, the acute increase in macromolecular efflux from the in situ oral mucosa evoked by short-term suffusion of STE. We suggest that corticosteroids mitigate acute oral mucosa inflammation elicited by smokeless tobacco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号