共查询到20条相似文献,搜索用时 0 毫秒
1.
Community resistance and change to nutrient enrichment and fish manipulation in a vegetated lake littoral 总被引:6,自引:0,他引:6
1. High biomass of macrophytes is considered important in the maintenance of a clear‐water state in shallow eutrophic lakes. Therefore, rehabilitation and protection of aquatic vegetation is crucial to the management of shallow lakes. 2. We conducted field mesocosm experiments in 1998 and 1999 to study community responses in the plant‐dominated littoral zone of a lake to nutrient enrichment at different fish densities. We aimed to find the threshold fish biomass for the different nutrient enrichment levels below which large herbivorous zooplankton escapes control by fish. The experiments took place in the littoral of Lake Vesijärvi in southern Finland and were part of a series of parallel studies carried out jointly at six sites across Europe. 3. In 1998, when macrophyte growth was poor, a clear‐water state with low phytoplankton biomass occurred only in unenriched mesocosms without fish or with low fish biomass (4 g fresh mass m?2). Both nutrient enrichment and high fish biomass (20 g fresh mass m?2) provoked a turbid water state with high planktonic and periphytic algal biomass. The zooplankton community was dominated by rotifers and failed to control the biomass of algae in nutrient enriched mesocosms. The littoral community thus had low buffer capacity against nutrient enrichment. 4. In 1999, macrophytes, especially free‐floating Lemna trisulca L., grew well and the zooplankton community was dominated by filter‐feeding cladocerans. The buffer capacity of the littoral community against nutrient enrichment was high; a clear‐water state with low phytoplankton biomass prevailed even under the highest nutrient enrichment. High grazing rates by cladocerans, together with reduced light penetration into the water caused by L. trisulca, were apparently the main mechanisms behind the low algal biomass. 5. Effects of fish manipulations were less pronounced than effects of nutrient enrichment. In 1999, clearance rates of cladocerans were similar in fish‐free and low‐fish treatments but decreased in the high‐fish treatment. This suggests that the threshold fish biomass was between the low‐ and high‐fish treatments. In 1998, such a threshold was found only between fish‐free and low‐fish treatments. 6. The pronounced difference in the observed responses to nutrient enrichment and fish additions in two successive years suggests that under similar nutrient conditions and fish feeding pressure either clear or turbid water may result depending on the initial community structure and on weather. 相似文献
2.
Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading 总被引:9,自引:2,他引:9
J. KÖHLER S. HILT R. ADRIAN A. NICKLISCH H. P. KOZERSKI N. WALZ 《Freshwater Biology》2005,50(10):1639-1650
1. The responses of nutrient concentrations, plankton, macrophytes and macrozoobenthos to a reduction in external nutrient loading and to contemporary climatic change were studied in the shallow, moderately flushed Lake Müggelsee (Berlin, Germany). Weekly to biweekly data from 1979 to 2003 were compared with less frequently collected historical data. 2. A reduction of more than 50% in both total phosphorus (TP) and total nitrogen (TN) loading from the hypertrophic (1979–90) to the eutrophic period (1997–2003) was followed by an immediate decline in TN concentrations in the lake. TP concentrations only declined during winter and spring. During summer, phosphorus (P) release from the sediments was favoured by a drastic reduction in nitrate import. Therefore, Müggelsee acted as a net P source for 6 years after the external load reduction despite a mean water retention time of only 0.1–0.16 years. 3. Because of the likely limitation by P in spring and nitrogen (N) in summer, phytoplankton biovolume declined immediately after nutrient loading was reduced. The formerly dominant cyanobacteria (Oscillatoriales) Limnothrix redekei and Planktothrix agardhii disappeared, but the mean biovolume of the N2‐fixing species Aphanizomenon flos‐aquae remained constant. 4. The abundance of Daphnia spp. in summer decreased by half, while that of cyclopoid copepod species increased. Abundances of benthic macroinvertebrates (mainly chironomids) decreased by about 80%. A resource control of both phytoplankton and zooplankton is indicated by significant positive correlations between nutrient concentrations and phytoplankton biovolume and between phytoplankton and zooplankton biomass. 5. Water transparency in spring increased after nutrient reduction and resulted in re‐colonisation of the lake by Potamogeton pectinatus. However, this process was severely hampered by periphyton shading and grazing by waterfowl and fish. 6. Water temperatures in Müggelsee have increased in winter, early spring and summer since 1979. The earlier development of the phytoplankton spring bloom was associated with shorter periods with ice cover, while direct temperature effects were responsible for the earlier development of the daphnid maximum in spring. 相似文献
3.
Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics 总被引:7,自引:1,他引:7
ERIK JEPPESEN JENS PEDER JENSEN MARTIN SØNDERGAARD TORBEN L. LAURIDSEN 《Freshwater Biology》2005,50(10):1616-1627
1. For 13 years the response of the plankton and fish community to a decline in external phosphorus loading was studied in eight lakes with a mean depth <5 m. We conducted chi‐square analyses of sign of slope (positive or negative) of bimonthly averages of plankton variables for the eight lakes versus time. For fish, we compared results from two periods, i.e. 1989–1994 versus 1994–2001 as less data were available. 2. Fish community structure tended to respond to the lowered concentration of total phosphorus (TP), although not all changes were significant. While catch per unit effort (multi‐mesh sized gill nets) of cyprinids (especially bream, Abramis brama and roach, Rutilus rutilus) was highest in the first 5‐year period, the quantitative importance particularly of perch (Perca fluviatilis), pike (Esox lucius) and rudd (Scardinius erythropthalmus), a littoral species, increased significantly after 1994. 3. No changes occurred in zooplankton biomass, except for an increase in November and December. Biomass of small cladocerans, however, declined during summer and autumn, and the proportion of Daphnia to cladoceran biomass also increased. Average body weight of Daphnia and that of all cladocerans increased. The proportion of calanoids among copepods decreased in summer and the average body weight of cyclopoids and calanoids decreased during summer and autumn/early winter. 4. Total biovolume of phytoplankton declined significantly in March to June and tended to decline in November and December as well, while no significant changes were observed during summer and autumn. Non‐heterocystous cyanobacteria showed a decreasing trend during summer and autumn, while heterocystous cyanobacteria increased significantly in late summer. An increase in late summer was also evident for cryptophytes and chrysophytes, while diatoms tended to decline during most seasons. 5. We conclude that phytoplankton, and probably also fish, responded rapidly to reduced loading, whereas the effect on zooplankton was less pronounced. However, increases in body weight of cladocerans and the zooplankton to phytoplankton biomass ratio during summer indicate reduced top‐down control on zooplankton and enhanced grazing on phytoplankton. This conclusion is supported by a tendency for fish biomass to decline and a shift towards greater dominance by piscivores and, thus, an increased likelihood of predator control of zooplanktivorous cyprinids. 相似文献
4.
Monir Hossain George B. Arhonditsis James A. Hoyle Robert G. Randall Marten A. Koops 《Freshwater Biology》2019,64(5):967-983
- While total phosphorus (TP) is a critical determinant of freshwater ecosystem productivity, multiple stressors can induce shifts in energy pathways, with profound implications for ecosystem and fishery restoration. The Bay of Quinte (Lake Ontario, Canada) is a Great Lakes nearshore ecosystem that has been historically subjected to a variety of environmental perturbations: cultural eutrophication, low dissolved oxygen, reduced fisheries, climatic extremes, phosphorus (P) abatement, and aquatic invasive species. We used the Bay of Quinte to study how trophic state alterations affect fish assemblages in Great Lakes nearshore environments by examining the response of fish biomass to TP concentration variability in the presence of multiple stressors.
- Our analysis is based on a 42‐year (1972–2013) dataset from the Bay of Quinte for water quality through the food web to fishes. We employed a series of statistical tools that can offer insights into the structural changes induced by the events examined. We first used dynamic linear modelling to detect temporal trends in fish biomass, while accounting for year‐to‐year TP variability over three spatial segments of the bay. We then developed piecewise regression models to assess the extent to which specific ecological events induced distinct shifts in the fish assemblage. Multiple regression modelling was used to quantify the relative importance of TP, zooplankton, and surface water temperature on fish biomass.
- Based on gillnets, there were consistent fish biomass changes across the bay with increased biomass before P control (1972–1977), declines after P control followed by the establishment of a steady state or modest increase (1978–1994), and a declining trajectory during the recent period (1995–2013). Even when accounting for the role of water temperature and zooplankton, TP still had a significant effect on fish biomass. However, the strength and nature of the relationship varied among fish groups, and overall, the effect of TP on fish biomass has weakened in recent years.
- Our models show that fish biomass in the Bay of Quinte is shaped by the year‐to‐year TP variability. However, the relationship between P and fish abundance has been modulated by various ecological events with the consequence that the Bay of Quinte fish assemblage has changed and the food web now produces less fish biomass per unit of TP. A projected reduction of mean ambient TP levels from 30 to 25 μg/L, is expected to induce a 24% decline in total fish biomass, and further shift the fish assemblage with the biomass of planktivores and walleye declining by >60% and 30%, respectively.
- Recreational fishing provides important economic benefits in the Bay of Quinte, through tourism and other local business operations. Recognising the economic importance of fishing, our analysis provides critical insights regarding the on‐going management efforts to reduce external nutrient loadings (point and non‐point sources, urban storm water) and further lower ambient TP levels and primary productivity. The potential implications of already low nutrient concentrations for fish productivity represent a major challenge in effectively balancing water quality with fisheries management in the area.
5.
Ecological effects of reduced nutrient loading (oligotrophication) on lakes: an introduction 总被引:5,自引:0,他引:5
1. The variable ecological response of lakes to reduced nutrient loading (oligotrophication) at sites in Europe and North America was discussed at a workshop held in Silkeborg (Denmark) in January 2003. Studies of lake oligotrophication were presented based on both long‐term monitoring and data generated by palaeolimnological methods. 2. This introduction to the special issue provides short summaries of a series of the papers presented and their limnological context. Results show that the majority of lakes had approached a new equilibrium of phosphorus (P) and nitrogen (N) concentrations 10–15 years (P) and 0–5 years (N) after a major reduction in loading, irrespective of hydraulic retention time. Phytoplankton biomass decreased and a shift towards meso‐oligotrophic species dominance occurred. The fish responded surprisingly fast to the loading reduction in most lakes. As a result, the percentage of piscivores increased and total fish biomass declined markedly, which may explain an increase in the body size of cladocerans and an increase in the zooplankton to phytoplankton biomass ratio seen in many of the lakes. 3. Monitoring has in general been initiated after the effects of eutrophication became apparent. In this context palaeolimnological techniques become very useful because they allow limnologists to extend time scales of coverage and to define restoration targets and baseline conditions. Moreover, lake sediments pre‐dating anthropogenic disturbance can be used to examine ecological response to, for instance, climate variability, allowing problems associated with multiple stressors to be addressed. 4. It is concluded that there is a great need for a synthetic, holistic approach to studying lake oligotrophication, combining multiple techniques of palaeolimnological sediment analysis with detailed but temporally limited long‐term monitoring of chemical and biological variables. This is important, not least to assess future responses to nutrient loading reductions, as global warming will interact with a range of external stressors and ultimately affect lake management strategies to deal with the resultant feedbacks. 相似文献
6.
SUSANNE LILDAL AMSINCK AGNIESZKA STRZELCZAK RIKKE BJERRING FRANK LANDKILDEHUS TORBEN L. LAURIDSEN KIRSTEN CHRISTOFFERSEN ERIK JEPPESEN 《Freshwater Biology》2006,51(11):2124-2142
1. This study describes the environmental conditions and cladoceran community structure of 29 Faroese lakes with special focus on elucidating the impact of fish planktivory. In addition, long‐term changes in biological structure of the Faroese Lake Heygsvatn are investigated. 2. Present‐day species richness and community structure of cladocerans were identified from pelagial snapshot samples and from samples of surface sediment (0–1 cm). Multivariate statistical methods were applied to explore cladoceran species distribution relative to measured environmental variables. For Lake Heygsvatn, lake development was inferred by cladoceran‐based paleolimnological investigations of a 14C‐dated sediment core covering the last ca 5700 years. 3. The 29 study lakes were overall shallow, small‐sized, oligotrophic and dominated by brown trout (Salmo trutta). Cladoceran species richness was overall higher in the surface sediment samples than in the snapshot samples. 4. Fish abundance was found to be of only minor importance in shaping cladoceran community and body size structure, presumably because of predominance of the less efficient zooplanktivore brown trout. 5. Canonical correspondence analysis showed maximum lake depth (Zmax) to be the only significant variable in explaining the sedimentary cladoceran species (18 cladoceran taxa, two pelagic, 16 benthic) distribution. Multivariate regression trees revealed benthic taxa to dominate in lakes with Zmax < 4.8 m and pelagic taxa to dominate when Zmax was > 4.8 m. 6. Predictive models to infer Zmax were developed using variance weighted‐averaging procedures. These were subsequently applied to subfossil cladoceran assemblages identified from a 14C‐dated sediment core from Lake Heygsvatn and showed inferred Zmax to correspond well to the present‐day lake depth. A recent increase in inferred Zmax may, however, be an artefact induced by, for instance, eutrophication. 相似文献
7.
MIRVA NYKÄNEN TOMMI MALINEN KIRSI VAKKILAINEN MIKKO LIUKKONEN TIMO KAIRESALO 《Freshwater Biology》2010,55(6):1164-1181
1. We studied the role of zooplankton in biomanipulation and the subsequent recovery phase in the Enonselkä basin of Lake Vesijärvi, using subfossil cladocerans in annually laminated sediment. Measures to restore the Enonselkä basin included reduction in external nutrient loading and mass removal of plankti‐ and benthivorous fish. Water clarity increased and the lake changed from a eutrophic to a mesotrophic state. However, some signs of increased turbidity were observed after 5–10 years of successful recovery. 2. Annual laminae in a freeze core sample were identified and sliced, based on the seasonal succession of diatoms. Cladoceran remains and rotifer eggs were counted, and Daphnia ephippia and Eubosmina and Bosmina ephippia and carapaces were measured. Annual changes in pelagic species composition were studied with principal component analysis. Individual species abundance, size measurements and various cladoceran‐based indices or ratios (commonly used to reconstruct changes in trophic state and fish predation) were tested for change between four distinct periods: I (1985–1988) dense fish stocks, poor water quality; II (1989–1992) fish removal; III (1993–1997) low fish density, improved water quality; IV (1998–2002) slightly increased fish density and poorer water quality. 3. After the removal of fish, the mean size of Daphnia ephippia and Eubosmina crassicornis ephippia and carapaces increased significantly. In contrast, the percentage of Daphnia did not increase. When based on ephippia, the ratio Daphnia/(Daphnia + E. crassicornis) increased, but the interpretation was obscured by the tolerance of fish predation by small Daphnia and by the fact that bosminids were the preferred food of roach. Moreover, ephippial production by E. crassicornis decreased in recent years. 4. The abundance of Diaphanosoma brachyurum and Limnosida frontosa increased significantly after the fish population was reduced, while that of Ceriodaphnia and rotifers decreased. 5. The expanding littoral vegetation along with improved water clarity was clearly reflected in the concentration of littoral species in the deep sediment core. The species diversity index for the entire subfossil community also increased. 6. The period of faltering recovery was characterised by greater interannual variability and an increased percentage of rotifers. Nevertheless, the mean sizes of Daphnia ephippia and E. crassicornis ephippia and carapaces indicated a low density of fish. The deteriorating water quality was apparently related to multiple stressors in the catchment after rehabilitation, such as intensified lakeshore building, as well as to exceptional weather conditions, challenging the management methods in use. 相似文献
8.
Short-term and long-term effects of zooplanktivorous fish removal in a shallow lake: a synthesis of 15 years of data from Lake Zwemlust 总被引:1,自引:0,他引:1
SUMMARY 1. Removal of zooplanktivorous fish (mainly bream) in 1987 from a shallow eutrophic lake in the Netherlands, Lake Zwemlust, resulted in a quick switch from a turbid state with cyanobacteria blooms to a clear state dominated by macrophytes.
2. The clear state was not stable in the long term, however, because of high nutrient loadings.
3. In 1999, another removal of zooplanktivorous fish (mainly rudd) had similar effects as in 1987, although macrophytes returned more slowly.
4. In the years directly following both interventions there was a 'transition period' of very clear water with high densities of zooplanktonic grazers in the absence of macrophytes; low oxygen concentrations indicate that during those years primary production was low relative to heterotrophic activity.
5. The transition period appears to provide the light climate necessary for the return of macrophytes.
6. Reduction of nutrient loading is necessary to improve water quality in Lake Zwemlust in the long term. In the short term, repeated fish stock reduction is a reasonable management strategy to keep Lake Zwemlust clear. 相似文献
2. The clear state was not stable in the long term, however, because of high nutrient loadings.
3. In 1999, another removal of zooplanktivorous fish (mainly rudd) had similar effects as in 1987, although macrophytes returned more slowly.
4. In the years directly following both interventions there was a 'transition period' of very clear water with high densities of zooplanktonic grazers in the absence of macrophytes; low oxygen concentrations indicate that during those years primary production was low relative to heterotrophic activity.
5. The transition period appears to provide the light climate necessary for the return of macrophytes.
6. Reduction of nutrient loading is necessary to improve water quality in Lake Zwemlust in the long term. In the short term, repeated fish stock reduction is a reasonable management strategy to keep Lake Zwemlust clear. 相似文献
9.
10.
Fire is widely used for conservation management in the savannah landscapes of northern Australia, yet there is considerable uncertainty over the ecological effects of different fire regimes. The responses of insects and other arthropods to fire are especially poorly known, despite their dominant roles in the functioning of savannah ecosystems. Fire often appears to have little long‐term effect on ordinal‐level abundance of arthropods in temperate woodlands and open forests of southern Australia, and this paper addresses the extent to which such ordinal‐level resilience also occurs in Australia’s tropical savannahs. The data are from a multidisciplinary, landscape‐scale fire experiment at Kapalga in Kakadu National Park. Arthropods were sampled in the two major savannah habitats (woodland and open forest) using pitfall traps and sweep nets, in 15–20 km2 compartments subjected to one of three fire regimes, each with three replicates: ‘early’ (annual fires lit early in the dry season), ‘late’ (annual fires lit late in the dry season), and ‘unburnt’ (fires absent during the five‐year experimental period 1990–94). Floristic cover, richness and composition were also measured in each sampling plot, using point quadrats. There were substantial habitat differences in floristic composition, but fire had no measured effect on plant richness, overall composition, or cover of three of the four dominant species. Of the 11 ordinal arthropod taxa considered from pitfall traps, only four were significantly affected by fire according to repeated‐measures ANOVA . There was a marked reduction in ant abundance in the absence of fire, and declines in spiders, homopterans and silverfish under late fires. Similarly, the abundances of only four of the 10 ordinal taxa from sweep catches were affected by fire, with crickets and beetles declining in the absence of fire, and caterpillars declining under late fires. Therefore, most of the ordinal taxa from the ground and grass‐layer were unaffected by the fire treatments, despite the treatments representing the most extreme fire regimes possible in the region. This indicates that the considerable ordinal‐level resilience to fire of arthropod assemblages that has previously been demonstrated in temperate woodlands and open forests of southern Australia, also occurs in tropical savannah woodlands and open forests of northern Australia. 相似文献
11.
Eva Ehrnsten Alf Norkko Brbel Müller‐Karulis Erik Gustafsson Bo G. Gustafsson 《Global Change Biology》2020,26(4):2235-2250
Nutrient loading and climate change affect coastal ecosystems worldwide. Unravelling the combined effects of these pressures on benthic macrofauna is essential for understanding the future functioning of coastal ecosystems, as it is an important component linking the benthic and pelagic realms. In this study, we extended an existing model of benthic macrofauna coupled with a physical–biogeochemical model of the Baltic Sea to study the combined effects of changing nutrient loads and climate on biomass and metabolism of benthic macrofauna historically and in scenarios for the future. Based on a statistical comparison with a large validation dataset of measured biomasses, the model showed good or reasonable performance across the different basins and depth strata in the model area. In scenarios with decreasing nutrient loads according to the Baltic Sea Action Plan but also with continued recent loads (mean loads 2012–2014), overall macrofaunal biomass and carbon processing were projected to decrease significantly by the end of the century despite improved oxygen conditions at the seafloor. Climate change led to intensified pelagic recycling of primary production and reduced export of particulate organic carbon to the seafloor with negative effects on macrofaunal biomass. In the high nutrient load scenario, representing the highest recorded historical loads, climate change counteracted the effects of increased productivity leading to a hyperbolic response: biomass and carbon processing increased up to mid‐21st century but then decreased, giving almost no net change by the end of the 21st century compared to present. The study shows that benthic responses to environmental change are nonlinear and partly decoupled from pelagic responses and indicates that benthic–pelagic coupling might be weaker in a warmer and less eutrophic sea. 相似文献
12.
JONATHAN GREY CONOR T. GRAHAM J. ROBERT BRITTON CHRIS HARROD 《Freshwater Biology》2009,54(8):1663-1670
1. There is increasing interest in the use of stable isotope analysis of archived materials to study the long-term impacts of lake perturbations, including nutrient manipulation or species invasion. We tested the utility of this approach in a shallow productive lake using the zooplanktivorous early life stages of roach ( Rutilus rutilus ), a fish species that is widespread throughout Eurasian lakes.
2. Barton Broad is a shallow lake with a well-documented history of earlier eutrophication followed by nutrient reduction, including sediment removal from 1997 to 2000. Using scale samples collected pre- and post-sediment removal, we demonstrated a strong, positive relationship between roach scale δ13 C and total phosphorus. We argue that this reflects a decrease in the phytoplankton production which had dominated dissolved inorganic carbon dynamics, and a relative increase in the contribution of respired carbon in the food web.
3. We also derived a scale : muscle isotope relationship for roach which allowed us to model changes in fish muscle against putative prey. Concomitant isotopic shifts in preserved zooplankton samples indicated that the phosphorus reduction measures had an ecosystem-wide impact and that changes in roach scale isotope values were not a result of fish switching diet.
4. Roach scale δ15 N increased after sediment removal. Since this was not due to a switch in fish diet, we suggest that it probably reflects the loss of nitrogen-fixing, heterocystous cyanobacteria from the plankton. 相似文献
2. Barton Broad is a shallow lake with a well-documented history of earlier eutrophication followed by nutrient reduction, including sediment removal from 1997 to 2000. Using scale samples collected pre- and post-sediment removal, we demonstrated a strong, positive relationship between roach scale δ
3. We also derived a scale : muscle isotope relationship for roach which allowed us to model changes in fish muscle against putative prey. Concomitant isotopic shifts in preserved zooplankton samples indicated that the phosphorus reduction measures had an ecosystem-wide impact and that changes in roach scale isotope values were not a result of fish switching diet.
4. Roach scale δ
13.
Per Hyenstrand Emil Rydin Malin Gunnerhed Jeff Linder & Peter Blomqvist 《Freshwater Biology》2001,46(6):735-741
1. This study considers whether the availability of iron and boron are important influences on the development of the cyanobacterium Gloeotrichia echinulata in Lake Erken, Sweden.
2. In an in situ experiment, phosphate and nitrate were added to all enclosures, but pelagic colonies of G. echinulata only increased in abundance in enclosures to which iron had also been added.
3. An even greater increase in the abundance of G. echinulata occured in enclosures in which the additions of phosphate, nitrate and iron were complemented by additions of boron.
4. Boron additions, together with phosphate and nitrate but without iron, did not stimulate the growth of G. echinulata . 相似文献
2. In an in situ experiment, phosphate and nitrate were added to all enclosures, but pelagic colonies of G. echinulata only increased in abundance in enclosures to which iron had also been added.
3. An even greater increase in the abundance of G. echinulata occured in enclosures in which the additions of phosphate, nitrate and iron were complemented by additions of boron.
4. Boron additions, together with phosphate and nitrate but without iron, did not stimulate the growth of G. echinulata . 相似文献
14.
15.
Matthew P. Greenwell Tom Brereton John C. Day David B. Roy Tom H. Oliver 《Ecology and evolution》2019,9(20):11775-11790
Understanding how environmental change affects ecosystem function delivery is of primary importance for fundamental and applied ecology. Current approaches focus on single environmental driver effects on communities, mediated by individual response traits. Data limitations present constraints in scaling up this approach to predict the impacts of multivariate environmental change on ecosystem functioning. We present a more holistic approach to determine ecosystem function resilience, using long‐term monitoring data to analyze the aggregate impact of multiple historic environmental drivers on species' population dynamics. By assessing covariation in population dynamics between pairs of species, we identify which species respond most synchronously to environmental change and allocate species into “response guilds.” We then use “production functions” combining trait data to estimate the relative roles of species to ecosystem functions. We quantify the correlation between response guilds and production functions, assessing the resilience of ecosystem functioning to environmental change, with asynchronous dynamics of species in the same functional guild expected to lead to more stable ecosystem functioning. Testing this method using data for butterflies collected over four decades in the United Kingdom, we find three ecosystem functions (resource provisioning, wildflower pollination, and aesthetic cultural value) appear relatively robust, with functionally important species dispersed across response guilds, suggesting more stable ecosystem functioning. Additionally, by relating genetic distances to response guilds we assess the heritability of responses to environmental change. Our results suggest it may be feasible to infer population responses of butterflies to environmental change based on phylogeny—a useful insight for conservation management of rare species with limited population monitoring data. Our approach holds promise for overcoming the impasse in predicting the responses of ecosystem functions to environmental change. Quantifying co‐varying species' responses to multivariate environmental change should enable us to significantly advance our predictions of ecosystem function resilience and enable proactive ecosystem management. 相似文献
16.
Miguel A. Piñeros Geraldo M. A. Cançado Lyza G. Maron Sangbom M. Lyi Marcelo Menossi Leon V. Kochian 《The Plant journal : for cell and molecular biology》2008,53(2):352-367
The phytotoxic effects of aluminum (Al) on root systems of crop plants constitute a major agricultural problem in many areas of the world. Root exudation of Al-chelating molecules such as low-molecular-weight organic acids has been shown to be an important mechanism of plant Al tolerance/resistance. Differences observed in the physiology and electrophysiology of root function for two maize genotypes with contrasting Al tolerance revealed an association between rates of Al-activated root organic acid release and Al tolerance. Using these genotypes, we cloned ZmALMT1 , a maize gene homologous to the wheat ALMT1 and Arabidopsis AtALMT1 genes that have recently been described as encoding functional, Al-activated transporters that play a role in tolerance by mediating Al-activated organic acid exudation in roots. The ZmALMT1 cDNA encodes a 451 amino acid protein containing six transmembrane helices. Transient expression of a ZmALMT1 ::GFP chimera confirmed that the protein is targeted to the plant cell plasma membrane. We addressed whether ZmALMT1 might underlie the Al-resistance response (i.e. Al-activated citrate exudation) observed in the roots of the Al-tolerant genotype. The physiological, gene expression and functional data from this study confirm that ZmALMT1 is a plasma membrane transporter that is capable of mediating elective anion efflux and influx. However, gene expression data as well as biophysical transport characteristics obtained from Xenopus oocytes expressing ZmALMT1 indicate that this transporter is implicated in the selective transport of anions involved in mineral nutrition and ion homeostasis processes, rather than mediating a specific Al-activated citrate exudation response at the rhizosphere of maize roots. 相似文献
17.
18.
19.
Two NHX‐type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress 下载免费PDF全文
Yang Zeng Qing Li Haiya Wang Jianliang Zhang Jia Du Huimin Feng Eduardo Blumwald Ling Yu Guohua Xu 《Plant biotechnology journal》2018,16(1):310-321
The NHX‐type cation/H+ transporters in plants have been shown to mediate Na+(K+)/H+ exchange for salinity tolerance and K+ homoeostasis. In this study, we identified and characterized two NHX homologues, HtNHX1 and HtNHX2 from an infertile and salinity tolerant species Helianthus tuberosus (cv. Nanyu No. 1). HtNHX1 and HtNHX2 share identical 5′‐ and 3′‐UTR and coding regions, except for a 342‐bp segment encoding 114 amino acids (L272 to Q385) which is absent in HtNHX2. Both hydroponics and soil culture experiments showed that the expression of HtNHX1 or HtNHX2 improved the rice tolerance to salinity. Expression of HtNHX2, but not HtNHX1, increased rice grain yield, harvest index, total nutrient uptake under K+‐limited salt‐stress or general nutrient deficiency conditions. The results provide a novel insight into NHX function in plant mineral nutrition. 相似文献
20.
The scales of whitefish Coregonus lavaretus were used in place of dorsal muscle, which necessitates killing the fish, to study food webs from the δ13 C and δ15 N isotopic ratios in the organic fraction. As scales are composed of both organic and calcified fractions, a protocol for scale decalcification was first devised. The δ13 C and δ15 N values of the decalcified scales were then shown to be closely correlated to those of the dorsal muscle, demonstrating that scales could be used in place of muscle to study food webs. Changes in the δ13 C of whitefish were determined from a scale collection that extended over the period during which the trophic state of Lake Geneva was recovering. 相似文献