首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A selenium-dependent Bacillus sp. is able to grow well up to 3% sodium selenite-containing media. The bacterium completely failed to grow on media devoid of selenium. The presence of selenium in the growth media increased the bacterial contents of proteins, carbohydrates, and lipids. The highest quantities of amino acids were detected at 2% sodium selenite-containing media. The bacterium metabolized selenite into several protein selenoamino acids such as selenomethionine and selenocysteine/selenocystine, as well as nonprotein selenoamino acids, such as selenocystathionine. Several phosphoamino acids were detected in the presence of elevated levels of selenium. The synthesized protein seems not to be affected by the presence of selenium.  相似文献   

2.
Aspergillus funiculosus was isolated from rotted banana fruits, whereas Alternaria tenuis and Fusarium sp. were isolated from rotted tomato fruits. The isolated fungi tolerated relatively high levels of the fungicide, Dithane, up to 2560 ppm on solid medium, but grew well at 40 ppm when supplemented with liquid medium. They are able to tolerate selenite up to 2% (w/v) sodium selenite. A. funiculosus showed no growth in the presence of mixture of 2.5 ppm selenium and 20 ppm Dithane, whereas Fusarium sp. failed to grow at 2.5 ppm selenium and 10 ppm Dithane, or at 10 ppm of each. Nevertheless, Alternaria tenuis is more tolerant; it showed growth in the presence of relatively high levels of selenium and Dithane; up to 10 ppm selenium and 40 ppm Dithane, however, its growth was inhibited by the presence of a mixture of both. The results suggested new form of highly active fungicides. Selenium as an essential nutrient at such very low concentrations, as well as the application of very low concentrations of the fungicide, would certainly reduce the hazardous effect of such pollutant in the environment.  相似文献   

3.
Fusarium sp. was isolated from Sinai soil at Egypt. It showed tendency to tolerate high concentrations of selenium in the form of sodium selenite up to 3.5% (w/v). The microscopic examination revealed some morphological distortions. However, the fungus was capable to circumvent the toxic effect of selenium. The fungus possesses strong reducing ability as high quantities of elemental selenium were precipitated within the fungal cells as well as on the surface of the fungal hyphae and spores. The presence of selenium increased the cellular contents of carbohydrates, proteins, and lipids. Labeling studies indicate the incorporation of selenite into certain amino acids: selenocysteine and selenocysteic acid. Moreover, the presence of selenium induced the biosynthesis of several types of low molecular weight proteins. The results demonstrated different modes of detoxification of selenium toxicity.  相似文献   

4.
Summary The ability of several filamentous, polymorphic and unicellular fungi to reduce selenite to elemental selenium on solid medium was examined.Fusarium sp. andTrichoderma reeii were the only filamentous fungi, of those tested, which reduced selenite to elemental selenium on Czapek-Dox agar resulting in a red colouration of colonies. Other organisms (Aspergillus niger, Coriolus versicolor, Mucor SK, andRhizopus arrhizus) were able to reduce selenite only on malt extract agar. Several fungi were able to grow in the presence of sodium selenite but were apparently unable to reduce selenite to elemental selenium, indicating that other mechanisms of selenite tolerance were employed, such as reduced uptake and/or biomethylation to less toxic, volatile derivatives. Sodium selenate was more toxic toFusarium sp. than selenite, and the toxicity of both oxyanions was increased in sulphur-free medium, with this effect being more marked for selenate. Scanning electron microscopy ofAspergillus funiculosus andFusarium sp. incubated with sodium selenite showed the presence of needle-like crystals of elemental selenium on the surfaces of hyphae and conidia, while transmission electron microscopy ofA. funiculosus revealed the deposition of electron-dense granules in vacuoles of selenite-treated fungi. Several yeasts were able to grow on MYGP agar containing sodium selenate or sodium selenite at millimolar concentrations. Sone, notablyRhodotorula rubra andCandida lipolytica, and the polymorphic fungusAureobasidium pullulans were also effective at reducing selenite to elemental selenium, resulting in red-coloured colonies.Schizosaccharomyces pombe was able to grow at selenite concentrations up to 5 mmol L–1 without any evidence of reduction, again indicating the operation of other tolerance mechanisms.  相似文献   

5.
Aspergillus terreus was cultivated on Harrold's medium supplemented with 0.1% (w/v) cadmium chloride as well as on sulfur free medium amended with 0.1% (w/v) sodium selenite and potassium tellurite separately. The cell free extract of the fungus for each treatment was fractionated on a column packed with Sephadex G 75. The results demonstrated the ability of the fungus to synthesize several cadmium, selenium, and tellurium-binding proteins as well as metallothionein. The results suggested the biosynthesis of heavy metals chelators as well. The amino acids composition of a cadmium-binding metallothionein revealed the presence of high levels of both aromatic and sulfur amino acids in the hydrolysate.  相似文献   

6.
Production of Selenium-Enriched Biomass by Enterococcus durans   总被引:1,自引:0,他引:1  
Selenium (Se) is an essential micronutrient for several organisms, and there is an increased interest about adequate sources for dietary selenium supplementation. The aim of this study was to evaluate the selenium bioaccumulation capacity of an Enterococcus strain. The isolate LAB18s was identified as Enterococcus durans by the VITEK® 2 system and analysis of both 16S rDNA gene sequence (JX503528) and the 16S-23S rDNA intergenic spacer (ITS). After 24-h incubation, E. durans LAB18s bioaccumulated elevated Se(IV) concentrations, reaching 2.60 and 176.97 mg/g in media containing initial amounts of 15 and 240 mg/l sodium selenite, respectively. The isolate grew optimally and had high selenium bioaccumulation at initial pH of 7.0 and 30 °C. Time course studies showed that E. durans LAB18s displayed the highest bioaccumulation of Se(IV) after 6 h of incubation. Analyses from scanning electron microscopy (SEM) demonstrated the presence of filaments connecting the cells of E. durans LAB18s cultivated in the presence of sodium selenite. It was demonstrated that a considerable amount of Se(IV) was absorbed by E. durans LAB18s. Therefore, this strain may represent an alternative source of organic dietary selenium.  相似文献   

7.
Mobilization of Selenite by Ralstonia metallidurans CH34   总被引:3,自引:0,他引:3       下载免费PDF全文
Ralstonia metallidurans CH34 (formerly Alcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metallidurans CH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites.  相似文献   

8.
Mobilization of selenite by Ralstonia metallidurans CH34   总被引:2,自引:0,他引:2  
Ralstonia metallidurans CH34 (formerly Alcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metallidurans CH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites.  相似文献   

9.
Primary rabbit hepatocytes from 6 week old female New Zealand White rabbits (3.0 x 10(6) viable hepatocytes per treatment) were incubated for 24 h or 48 h with two basic variants of the selenium and vitamin E free DMEM/F12-HAM nutrition medium containing 2.5% or 10% fetal calf serum (FCS). Selenium and vitamin E concentrations of the media were varied by the addition of 0, 10, 50 and 100 ng Se/mL medium as sodium selenite and 100 microg alpha-tocopheryl acetate/mL. Lactic dehydrogenase (LDH) leakage of the hepatocytes was not influenced by the various selenium concentrations of the media, whereas vitamin E addition significantly inhibited LDH release. The activity of cellular glutathione peroxidase (GPx1) was markedly induced by increasing the selenium supplementation of the culture media. Vitamin E supply further enhanced GPx1 induction. In hepatocytes cultivated at the lower serum concentration (2.5% FCS), increasing the selenite concentration of the media raised GPx1 and reduced the intracellular levels of the reduced tripeptide glutathione (GSH). No vectored relation between the selenium concentration of the media and the activity of superoxide dismutase (SOD) could be observed. After both incubation periods (24 h and 48 h) SOD activity was significantly higher in the cytosol of hepatocytes grown in media containing 10% FCS as compared to cells incubated at the 2.5% FCS level. Furthermore, SOD activity was reduced by the addition of vitamin E to the media. In conclusion the results indicate an effective metabolism of rabbit hepatocytes for selenite even in amounts as low as nanograms. A general cytoprotective role for vitamin E can be shown by its ability to decrease LDH leakage and by the reduction of SOD activity.  相似文献   

10.
不仅在体内,而且在体外亚硒酸钠可引起晶状体蛋白质聚合。将亚硒酸钠加到pH7.4的晶状体蛋白质溶液中,在37℃保温30min后观察到蛋白质溶液变混浊,随时间的延长混浊程度加重并有沉淀形成。经SDS聚丙烯酰胺凝胶电泳发现,加硒保温后形成的不溶性蛋白质中有大量的高分子聚合物。当加入二硫苏糖醇后混浊的蛋白质溶液变清,其中的高分子聚合物也基本消失,我们还发现;在亚硒酸钠使晶状体蛋白质变混浊的同时,蛋白质巯基减少,而蛋白质结合的硒量增加,且二者之间有较固定的比例关系,即蛋白质上每增加一个硒原子,蛋白质巯基就减少4.26个。当用二硫苏糖醇还原后,68%的硒从蛋白质中释放出来。这些结果表明,亚硒酸钠可引起大鼠晶状体水溶性蛋白质聚合,其可能方式如下:4PSH+SeO_3~-→PSSP+PS-Se-SP+H_2O+2OH~-这可能是亚硒酸钠诱发白内障的主要原因。  相似文献   

11.
Summary Desulfovibrio desulfuricans (DSM 1924) can be adapted to grow in the presence of 10 mM selenate or 0.1 mM selenite. This growth occurred in media containing formate as the electron donor and either fumarate or sulfate as the electron acceptor. As determined by electron microscopy with energy-dispersive X-ray analysis, selenate and selenite were reduced to elemental selenium which accumulated inside the cells. Selenium granules resulting from selenite metabolism were cytoplasmic while granules of selenium resulting from selenate reduction appeared to be in the periplasmic region. The accumulation of red elemental selenium in the media following stationary phase resulted from cell lysis with the liberation of selenium granules. Growth did not occur with either selenate or selenite as the electron acceptor and13C nuclear magnetic resonance indicated that neither selenium oxyanion interfered with fumarate respiration. At 1 M selenate and 100 M selenite, reduction byD. desulfuricans was 95% and 97%, respectively. The high level of total selenate and selenite reduced indicated the suitability ofD. desulfuricans for selenium detoxification.  相似文献   

12.
培养方式对富硒产朊假丝酵母性能的影响   总被引:1,自引:0,他引:1  
在摇瓶和5 L发酵罐水平上分别考察亚硒酸钠浓度及其添加方式对高性能(高有机硒含量和高谷胱甘肽含量)富硒产朊假丝酵母制备的影响.结果表明:亚硒酸钠添加质量浓度为15 mg/L时,产朊假丝酵母具有较好的富硒效果,但一次性添加对酵母细胞有较大的毒害作用.采用分批次添加亚硒酸钠的方法获得了较好的制备高性能富硒产朊假丝酵母的培养方式:发酵起始添加L-蛋氨酸10 mmol/L,并在发酵过程的12和15 h分别添加亚硒酸钠10和5 mg/L.在此培养方式下,产朊假丝酵母胞内谷胱甘肽和有机硒含量分别达到172.3 mg/L和1194 μg/g.  相似文献   

13.
还原亚硒酸盐产生红色单质硒光合细菌菌株的筛选与鉴定   总被引:4,自引:0,他引:4  
从实验室保藏的光合细菌中筛选出一株对亚硒酸钠还原效率较高的菌株S3,其亚硒酸钠还原产物通过透射电子显微镜及EDX(Electron-Dispersive X-ray)分析确定为红色单质硒。菌株S3的形态学特征、生理生化特征及光合色素扫描结果与固氮红细菌(Rhodobacter azotoformans)的特征基本一致;16S rDNA序列(GenBank登录号为DQ402051)在系统发育树中与固氮红细菌同属一个类群,序列同源性为99%。根据上述结果将菌株S3鉴定为固氮红细菌。初步研究了该菌株还原亚硒酸钠的特性,首次报道固氮红细菌具有还原亚硒酸盐产生红色单质硒的能力,为今后利用微生物方法治理环境中硒污染、利用微生物方法获得活性红色单质硒以及对微生物还原亚硒酸盐产生红色单质硒的机理研究奠定了良好的基础。  相似文献   

14.
l-Selenomethionine (SeMet) and sodium selenite are widely used selenium nutritional supplements with potential benefit in preventing cancer. However, supplementation is not without risks of toxicity if intake is too high. The aim of the present study was to investigate SeMet and selenite metabolism in the gastrointestinal tract with particular focus on the formation of the volatile selenium excretion products, dimethylselenide (DMSe) and dimethyldiselenide (DMDSe). Adult male Wistar rats (n = 5) were euthanized, their intestinal tracts removed and the contents of jejunum, ileum, caecum and colon used to prepare 10% suspensions in saline. SeMet and selenite (0.5–0.6 mM) were then incubated with these suspensions at 37°C for 3 h. Caecum and colon contents were the most metabolically active towards SeMet with 30% and 15% metabolized over 3 h. DMDSe was the only volatile selenium metabolite detected accounting for 8.7 ± 1.3% of the selenium lost in caecum contents. Selenite was completely metabolized by caecum contents and 73% by colon contents under the same conditions forming DMSe (5.7 ± 0.9% of the selenium lost in caecum) and a precipitate of red amorphous elemental selenium. Based on previous literature and these results, we conclude that the gut microbiota contributes to the excretion of excess selenium through the production of methylated selenium compounds and elemental selenium.  相似文献   

15.
The interactions between selenium (sodium selenite), anthracycline antibiotics daunorubicin (DNR), and major contractile protein cardiac myosin (CM) were investigated. The results showed that the binding force between selenium and CM was 100 times stronger than that of DNR and CM. There was no marked influence on fluorescence intensity of DNR-CM at selenium concentrations of up to 20 μM. The co-administration of selenium (0.5-10.0 μg Se/ml) together with DNR resulted in a significant reduction in mice cardiotoxicity. However, selenium at the dose of 50.0 or 100.0 μg Se/ml afforded no obvious protection. The data indicate that selenium in the form of sodium selenite at appropriate dosage (<10.0 μg Se/ml) diminish the cardiac toxicity of DNR, potentially allowing the use of DNR at higher dosages in clinical cancer chemotherapy.  相似文献   

16.
Rhizobium sullae strain HCNT1 contains a nitric oxide-producing nitrite reductase of unknown function due to the absence of a complementary nitric oxide reductase. HCNT1 had the ability to grow on selenite concentrations as high as 50 mM, and during growth, selenite was reduced to the less toxic elemental selenium. An HCNT1 mutant lacking nitrite reductase grew poorly in the presence of 5 mM selenite, was unable to grow in the presence of 25 or 50 mM selenite and also showed no evidence of selenite reduction. A naturally occurring nitrite reductase-deficient R. sullae strain, CC1335, also showed little growth on the higher concentrations of selenite. Mobilization of a plasmid containing the HCNT1 gene encoding nitrite reductase into CC1335 increased its resistance to selenite. To confirm that this ability to grow in the presence of high concentrations of selenite correlated with nitrite reductase activity, a new nitrite reductase-containing strain was isolated from the same location where HCNT1 was isolated. This strain was also resistant to high concentrations of selenite. Inactivation of the gene encoding nitrite reductase in this strain increased selenite sensitivity. These data suggest that the nitrite reductase of R. sullae provides resistance to selenite and offers an explanation for the radically truncated denitrification found uniquely in this bacterium.  相似文献   

17.
Rhodobacter sphaeroides 2.4.1 exposed to selenate or selenite produced volatile selenium compounds. Total amounts of dimethyl selenide, dimethyl diselenide, dimethyl sulfide and dimethyl disulfide in culture medium and headspace were determined. The highest selenate volatilization occurred in the late stationary phase of growth. However, cultures deprived of light in the stationary phase of growth produced much less of the volatile organo-selenium compounds. Lower culture pHs increased the rate of selenium volatilization. Low sulfate concentration limited biomass production and selenium volatilization; high sulfate concentrations had an enhancing effect on the release of organo-selenium compounds. Cultures of R. sphaeroides reacted very differently to amendments with increasing amounts of selenate and selenite. Only small amounts of selenite were volatilized; meanwhile high amounts of methylated selenides were found in selenate-poisoned cultures. Received 03 February 1997/ Accepted in revised form 16 May 1997  相似文献   

18.
The objective of this study was to compare the efficiency of transfer of selenium (Se) to plasma and milk from inorganic sodium selenite, either free or microencapsulated, and from selenized yeast in dairy cows. The study consisted of an in situ-nylon bags incubation, and in an in vivo experiment to compare the Se status of cows supplemented with either sodium selenite, microencapsulated sodium selenite, or Se yeast. Thirty dairy cows, divided in five groups, were fed the following diets: the control group (CTR) received a total mixed ration supplemented with sodium selenite in order to have 0.3 mg/kg DM of total Se; 0.3M and 0.5M groups received the same control diet supplemented with lipid microencapsulated sodium selenite to provide 0.3 and 0.5 mg/kg DM of total Se, respectively; 0.3Y and 0.5Y groups received selenized yeast to provide 0.3 and 0.5 mg/kg of total Se, respectively. Cows were fed the supplements for 56 days during which milk, blood, and fecal samples were collected weekly to conduct analysis of Se and glutathione peroxidase (GSH-px) activity. Se concentration in the nylon bags was assessed to 72%, 64%, and 40% of the initial value (time 0) after 4, 8, and 24 h of incubation, respectively. In vivo, cows supplemented with 0.3 mg/kg of microencapsulated Se had higher milk Se concentration compared to CTR. The increment was more pronounced at the highest inclusion rate (0.5 mg/kg, 0.5M group). GSH-px activity was not significantly affected by treatments. The results indicate that lipid microencapsulation has the potential to protect nutrients from complete rumen reduction and that Se from microencapsulated selenite is incorporated in milk more efficiently than the free form. Microencapsulated sodium selenite was shown to be comparable to Se-yeast in terms of availability and incorporation in milk when fed at 0.3 mg/kg DM, whereas the inclusion in the diet at 0.5 mg/kg DM resulted in higher plasma and milk concentrations than selenized yeast.  相似文献   

19.
采用正交试验研究了碎米荠、韭菜、大豆、马铃薯的产量、含硒量与土壤酸碱度、硒酸盐、亚硒酸盐含量的关系。结果表明:影响作物含硒量最大的因素是作物品种,不同作物间差异极显著。在土壤中施用硒酸钠和亚硒酸钠均能够提高作物含硒量,用量均以1.0 mg/kg为宜;硒酸钠会使作物产量降低,用量过高使作物硒吸收总量下降;土壤pH值增加有利于植物对硒的吸收,但综合考虑作物产量、含硒量和硒摄入总量,土壤适合的pH值应在6.7~7.9之间。  相似文献   

20.
沼泽红假单胞菌对亚硒酸盐还原脱毒的研究   总被引:2,自引:0,他引:2  
主要研究沼泽红假单胞菌对亚硒酸盐还原脱毒作用及其脱毒机理。通过单因子实验、正交试验, 对影响亚硒酸盐还原脱毒的因素进行研究, 得到沼泽红假单胞菌还原亚硒酸盐的最佳条件为: 亚硒酸钠添加量是25 mg/L, 培养的第5天接种接种量15% (质量比)。在该条件下, 对亚硒酸钠去除率可达98.2%。研究发现, 亚硒酸盐还原酶主要存在于细胞质, 分子量约为182 kD, 由4个亚基组成。通过透射电子显微镜观察, 菌体表面出现粒径在5 nm?200 nm之间的高电子密度颗粒, 初步表明亚硒酸盐在沼泽红假单胞菌体内被  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号