首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surgical repair of heart and vascular disease often requires implanting synthetic grafts. While synthetic grafts have been successfully used for medium-to-large sized arteries, applications for small diameter arteries (<6 mm) is limited due to high rates of occlusion by thrombosis. Our objective was to develop a tissue engineered vascular graft (TEVG) for small diameter arteries. TEVGs composed of polylactic acid nanofibers with inner luminal diameter between 0.5 and 0.6 mm were surgically implanted as infra-renal aortic interposition conduits in 25 female C17SCID/bg mice. Twelve mice were given sham operations. Survival of mice with TEVG grafts was 91.6% at 12 months post-implantation (sham group: 83.3%). No instances of graft stenosis or aneurysmal dilatation were observed over 12 months post-implantation, assessed by Doppler ultrasound and microCT. Histologic analysis of explanted TEVG grafts showed presence of CD31-positive endothelial monolayer and F4/80-positive macrophages after 4, 8, and 12 months in vivo. Cells positive for α-smooth muscle actin were observed within TEVG, demonstrating presence of smooth muscle cells (SMCs). Neo-extracellular matrix consisting mostly of collagen types I and III were observed at 12 months post-implantation. PCR analysis supports histological observations. TEVG group showed significant increases in expressions of SMC marker, collagen-I and III, matrix metalloproteinases-2 and 9, and itgam (a macrophage marker), when compared to sham group. Overall, patency rates were excellent at 12 months after implantation, as structural integrity of these TEVG. Tissue analysis also demonstrated vessel remodeling by autologous cell.  相似文献   

2.
The present study was performed to compare vascularized and nonvascularized onlay bone grafts to investigate the potential effect of graft-to-recipient bed orientation on long-term bone remodeling and changes in thickness and microarchitectural patterns of remodeling within the bone grafts. In two groups of 10 rabbits each, bone grafts were raised bilaterally from the supraorbital processes and placed subperiosteally on the zygomatic arch. The bone grafts were oriented parallel to the zygomatic arch on one side and perpendicular to the arch on the contralateral side. In the first group, vascularized bone grafts were transferred based on the auricularis anterior muscle, and in the second group nonvascularized bone grafts were transferred. Fluorochrome markers were injected during the last 3 months of animal survival, and animals were killed either 6 or 12 months postoperatively. The nonvascularized augmented zygoma showed no significant change in thickness 6 months after bone graft placement and a significant decrease in thickness 1 year after graft placement (p < 0.01). The vascularized augmented zygoma showed a slight but statistically significant decrease in thickness 6 months after graft placement (p < 0.003), with no significant difference relative to its initial thickness 1 year after graft placement. In animals killed 6 months after bone graft placement, both the rate of remodeling and the bone deposition rate measured during the last 3 months of survival were significantly higher in the vascularized bone grafts compared with their nonvascularized counterparts (p < 0.02). By 1 year postoperatively, there were no significant differences in thickness, mineral apposition rate, or osteon density between bone grafts oriented perpendicular and parallel to the zygomatic arch. These findings indicate that the vascularity of a bone graft has a significant effect on long-term thickness and histomorphometric parameters of bone remodeling, whereas the direction of placement of a subperiosteal graft relative to the recipient bed has minimal effect on these parameters. In vascularized bone grafts, both bone remodeling and deposition are accelerated during the initial period following graft placement. Continued bone deposition renders vascularized grafts better suited for the long-term maintenance of thickness and contour relative to nonvascularized grafts.  相似文献   

3.
Surgical treatment of vascular disease has become common, creating the need for a readily available, small-diameter vascular graft. However, the use of synthetic materials is limited to grafts larger than 5-6 mm because of the frequency of occlusion observed with smaller-diameter prosthetics. An alternative to synthetic materials would be a biomaterial that could be used in the design of a tissue-engineered graft. We demonstrate that a small-diameter (4 mm) graft constructed from a collagen biomaterial derived from the submucosa of the small intestine and type I bovine collagen has the potential to integrate into the host tissue and provide a scaffold for remodeling into a functional blood vessel. The results obtained using a rabbit arterial bypass model have shown excellent hemostasis and patency. Furthermore, within three months after implantation, the collagen grafts were remodeled into cellularized vessels that exhibited physiological activity in response to vasoactive agents.  相似文献   

4.

Objectives

Spontaneously hypertensive rats (SHR) have been used frequently as a model for human essential hypertension. However, both the SHR and its normotensive control, the Wistar Kyoto rat (WKY), consist of genetically different sublines. We tested the hypothesis that the pathophysiology of vascular remodeling in hypertension differs among rat sublines.

Methods and Results

We studied mesenteric resistance arteries of WKY and SHR from three different sources, at 6 weeks and 5 months of age. Sublines of WKY and SHR showed differences in blood pressure, body weight, vascular remodeling, endothelial function, and vessel ultrastructure. Common features in small mesenteric arteries from SHR were an increase in wall thickness, wall-to-lumen ratio, and internal elastic lamina thickness.

Conclusions

Endothelial dysfunction, vascular stiffening, and inward remodeling of small mesenteric arteries are not common features of hypertension, but are subline-dependent. Differences in genetic background associate with different types of vascular remodeling in hypertensive rats.  相似文献   

5.
Autogenous saphenous vein has been the material of choice for small-vessel angioplasty and for circulatory access graft reconstruction. In an effort to conserve autogenous saphenous vein, we used expanded polytetrafluoroethylene (PTFE) grafts in 45 patients over a 12-month period. We used Gore-Tex(*) to reconstruct 17 circulatory access grafts, 16 carotid arteries, two brachial arteries, seven femoral arteries, and three popliteal anterior or posterior tibial arteries. The indications for reconstruction were chronic occlusion of the access grafts, trauma to the brachial and anterior tibial arteries, and atherosclerotic disease of the carotid, femoral, and popliteal-tibial arteries. Of the reconstructed circulatory access grafts, one failed immediately because of technical problems in the conduit, and one failed 11 months after reconstruction. All other grafts have functioned well and have produced a marked improvement in flow. Of the 28 patients who underwent reconstruction of arteries measuring 3 mm or less, two had patent arteries but died shortly after operation. The remaining 26 have been followed for one to 43 months. All reconstructed arteries are patent, and there have been no instances of distal embolization or false aneurysm formation. From this brief experience, we conclude that Gore-Tex is a suitable short-term alternative to saphenous vein for small vessel arterioplasty; it also may be the material of choice for reconstructing the outflow tract of occluded access grafts.  相似文献   

6.
Arterial adaptations to altered blood flow   总被引:3,自引:0,他引:3  
Arterial remodeling in response to altered blood flow is believed to be critical to vascular adaptations to developmental, physiological, pathological, and therapeutically induced changes in blood flow. To assess this remodeling, we used left-to-right carotid anastomosis to increase blood flow in the right common carotid arteries of adult rabbits by 60%. After 2 months, these vessels exhibited no compensatory enlargement. In contrast, the same procedure performed in 5- to 6-week-old weanling rabbits resulted in accelerated growth of the vessels: diameters exceeded those of control arteries by 19% after 2 months. Common carotid arteries in adult rabbits remodeled to produce a diameter reduced by 23% when blood flow was reduced by 63% by external carotid ligation. This adaptation restored shear stress exerted on the vessel wall to control levels. The reduced diameter was not reversed when the vessels were maximally dilated with nitroprusside, adenosine, and forskolin; however, normal diameters were restored within 1 week when normal blood flows were reestablished. Thus, the adult arteries did not respond to increased blood flow produced by the anastomosis, but this procedure did reverse adaptations to decreased flow. In contrast, immature arteries were responsive to this increase in blood flow, even in the absence of prior flow modulation.  相似文献   

7.
BackgroundChronic thromboembolic pulmonary hypertension (CTEPH) is generally recognized to be caused by persistent organized thrombi that occlude the pulmonary arteries. The aim of this study was to investigate the characteristics of small vessel remodeling and its impact on the hemodynamics in CTEPH patients.ConclusionThe vascular remodeling of the pulmonary muscular arteries was closely associated with the hemodynamics of CTEPH. Severe pulmonary arteriopathy might be related to residual pulmonary hypertension after PEA. Those altered pulmonary arteries might be a new target for the persistent PH after the operation.  相似文献   

8.
The early (3 months) and later (6 months) patterns of incorporation and bone formation have been evaluated histomorphometrically for different types of bone grafts; that is, vascularized and nonvascularized autografts with and without ciclosporin, and vascularized and nonvascularized dog leukocyte antigen (DLA)-mismatched allografts with and without ciclosporin. The vascularized bones were superior to the nonvascularized ones in healing and remodeling their grafted segments. In the autograft bones, ciclosporin did not alter the incorporation process 3 months after transplantation but delayed and increased the remodeling activities in the long run (6 months). Nonvascularized allografts underwent vigorous resorption, and were markedly porotic. Ciclosporin administration significantly reduced resorption and enhanced remodeling in nonvascularized allografts. The remodeling of allografts was similar to that of autografts in the presence of ciclosporin, but stopped soon after the administration of ciclosporin ceased.  相似文献   

9.
Chorioamnionitis is associated with preterm delivery and bronchopulmonary dysplasia (BPD), characterized by impaired alveolar and pulmonary vascular development and vascular dysfunction. To study the vascular effects in a model of chorioamnionitis, preterm lambs were exposed to 20 mg of intra-amniotic endotoxin or saline for 1, 2, 4, or 7 days and delivered at 122 days gestational age (term = 150 days). This intra-amniotic endotoxin dose was previously shown to induce lung maturation. The effect of intra-amniotic endotoxin on expression of endothelial proteins was evaluated. Muscularization of the media and collagen deposition in adventitia of small pulmonary arteries was used to assess vascular remodeling. Compared with controls, bronchoalveolar lavage fluid protein content was increased 2 days after intra-amniotic endotoxin exposure. Vascular endothelial growth factor (VEGF) 165 isoform mRNA decreased 2-4 days after intra-amniotic endotoxin. VEGF, VEGF receptor-2, endothelial nitric oxide synthase (eNOS), platelet endothelial cell adhesion molecule-1, and Tie-2 protein expression in the lung coordinately decreased 1-7 days after intra-amniotic endotoxin. Intra-amniotic endotoxin appeared to selectively decrease eNOS expression in small pulmonary vessels compared with large vessels. Medial smooth muscle hypertrophy and increased adventitial fibrosis were observed 4 and 7 days after intra-amniotic endotoxin. These results demonstrate that, in the preterm lamb lung, antenatal inflammation inhibits endothelial cell protein expression followed by vascular remodeling changes in small pulmonary arteries. Exposure to antenatal inflammation may cause vascular remodeling and contribute to the development of BPD.  相似文献   

10.
Stem cell transplantation (SCT) is a curative treatment for malignant and non malignant diseases. However, transplantation-related complications including cardiovascular disease deteriorate the clinical outcome and quality of life. We have investigated the acute effects of conditioning regimen on the pharmacology, physiology and structure of large elastic arteries and small resistance-sized arteries in a SCT mouse model. Mesenteric resistance arteries and aorta were dissected from Balb/c mice conditioned with busulphan (Bu) and cyclophosphamide (Cy). In vitro isometric force development and pharmacology, in combination with RT-PCR, Western blotting and electron microscopy were used to study vascular properties. Compared with controls, mesenteric resistance arteries from the Bu-Cy group had larger internal circumference, showed enhanced endothelium mediated relaxation and increased expression of endothelial nitric oxide synthase (eNOS). Bu-Cy treated animals had lower mean blood pressure and signs of endothelial injury. Aortas of treated animals had a higher reactivity to noradrenaline. We conclude that short-term consequences of Bu-Cy treatment divergently affect large and small arteries of the cardiovascular system. The increased noradrenaline reactivity of large elastic arteries was not associated with increased blood pressure at rest. Instead, Bu-Cy treatment lowered blood pressure via augmented microvascular endothelial dependent relaxation, increased expression of vascular eNOS and remodeling toward a larger lumen. The changes in the properties of resistance arteries can be associated with direct effects of the compounds on vascular wall or possibly indirectly induced via altered translational activity associated with the reduced hematocrit and shear stress. This study contributes to understanding the mechanisms that underlie the early effects of conditioning regimen on resistance arteries and may help in designing further investigations to understand the late effects on vascular system.  相似文献   

11.

Background

Aging-associated changes in the cardiovascular system increase the risk for disease development and lead to profound alterations in vascular reactivity and stiffness. Elucidating the molecular response of arteries to injury and age will help understand the exaggerated remodeling of aging vessels.

Methodology/Principal Findings

We studied the gene expression profile in a model of mechanical vascular injury in the iliac artery of aging (22 months old) and young rats (4 months old). We investigated aging-related variations in gene expression at 30 min, 3 d and 7 d post injury. We found that the Myosin Light Chain gene (MYL9) was the only gene differentially expressed in the aged versus young injured arteries at all time points studied, peaking at day 3 after injury (4.6 fold upregulation (p<0.05) in the smooth muscle cell layers. We confirmed this finding on an aging aortic microarray experiment available through NCBI''s GEO database. We found that Myl9 was consistently upregulated with age in healthy rat aortas. To determine the arterial localization of Myl9 with age and injury, we performed immunohistochemistry for Myl9 in rat iliac arteries and found that in healthy and injured (30 days post injury) arteries, Myl9 expression increased with age in the endothelial layers.

Conclusions/Significance

The consistent upregulation of the myosin light chain protein (Myl9) with age and injury in arterial tissue draws attention to the increased vascular permeability and to the age-caused predisposition to arterial constriction after balloon angioplasty.  相似文献   

12.
A molecular configuration tensor Pij was introduced to analyze the distribution of fibrous proteins in vascular cells for studying cells and tissues biomechanics. We have used this technique to study the biomechanics of vascular remodeling in response to the changes of blood pressure and flow. In this paper, the remodeling of the geometrical arrangement of F-actin fibers in the smooth muscle cells in rat's pulmonary arteries in hypoxic hypertension was studied. The rats were exposed to a hypoxia condition of 10% for 0, 2, 12, and 24 hr at sea level. Remodeling of blood vessels were studied at the in vivo state under normal perfusion, no-load state when small rings from blood vessels were excised, and zero-stress state after the rings were cut open radially to release the residual stress. Tissue remodeling in response to changes in blood pressure is reflected in the zero-stress state. The tensor components were determined by analyzing the configuration of phalloidin stained F-actin fibers in the media layer of pulmonary arteries. The values of P31, P32, P33 in the in-vivo state, the no-load state, and the zero-stress state are obtained. This study demonstrated the distributions of fibrous molecules in tissue remodeling can be described quantitatively using the molecular configuration tensor.  相似文献   

13.
Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein–SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1.  相似文献   

14.
PurposeLong-term failure of vein grafts due to neointimal hyperplasia remains an important problem in coronary artery bypass graft surgery. Endothelial to mesenchymal transition (EndMT) contributes to vein graft vascular remodeling. However, there is little study on microRNA-mediated EndMT contributions to neointimal formation in vein graft. We hypothesized that microRNA-92a (miR-92a) might play an important role in determining EndMT contributions to neointimal formation.MethodsmiR-92a and EndMT-related proteins detected by qRT-PCR and Western blot in vitro and in vivo. Adeno-associated virus 6 (AAV6) delivery gene therapy was used to inhibit neointimal formation in vivo. The intimal hyperplasia of vein grafts was measured by HE staining, the expression of EndMT-related protein in vein grafts was measured by immunofluorescence. Immunohistochemistry and luciferase assay were used to detect potential targets of miR-92a.ResultsThe expression of miR-92a was found to be upregulated in neointimal hyperplasic lesions after vein grafting. Using cultured human umbilical vein endothelial cells (HUVECs), we show that TGF-β1 treatment of HUVECs significantly increased miR-92a expression and induced EndMT, characterized by suppression of endothelial-specific markers (CD31 and VE-cadherin) and an increase in mesenchymal-specific markers (a-SMA and vimentin), while inhibition of miR-92a expression blunted EndMT in cultured HUVECs. Furthermore, AAV6 mediated miR-92a suppression gene therapy effectively resulted in decreased EndMT and less neointimal formation in vein grafts in vivo. We further identified that integrin alpha 5 (ITGA5) is a potential target gene involved in the development of neointima formation in these vein grafts.ConclusionThis data suggests that neointimal formation does not solely rely on vascular smooth muscle cell phenotypic switching but is also related to EndMT, and miR-92a-mediated EndMT is an important mechanism underlying neointimal formation in vein grafts.  相似文献   

15.
Many older patients, because of their high prevalence of coronary artery disease, are candidates for percutaneous coronary interventions (PCI), but the effects of vascular aging on restenosis after PCI are not yet well understood. Balloon injury to the right carotid artery was performed in adult and old rats. Vascular smooth muscle cell (VSMC) proliferation, apoptotic cell death, together with Akt induction, telomerase activity, p27kip1, and endothelial nitric oxide synthase (eNOS) expression was assessed in isolated arteries. Neointima hyperplasia and vascular remodeling along with endothelial cell regeneration were also measured after balloon injury. Arteries isolated from old rats exhibited a significant reduction of VSMC proliferation and an increase in apoptotic death after balloon injury when compared with adult rats. In the vascular wall of adult rats, balloon dilation induced Akt phosphorylation, and this was barely present in old rats. In arteries from old rats, Akt-modulated cell cycle check points like telomerase activity and p27kip1 expression were decreased and increased, respectively, compared with adults. After balloon injury, old rats showed a significant reduction of neointima formation and an increased vascular negative remodeling compared with adults. These results were coupled by a marked delay in endothelial regeneration in aged rats, partially mediated by a decreased eNOS expression and phosphorylation. Interestingly, chronic administration of L-arginine prevented negative remodeling and improved reendothelialization after balloon injury in aged animals. A decreased neointimal proliferation, an impaired endothelial regeneration, and an increase in vascular remodeling after balloon injury were observed in aged animals. The molecular mechanisms underlying these responses seem to be a reduced Akt and eNOS activity.  相似文献   

16.
This study investigated the effect of L-arginine (L-Arg) on the apoptosis of pulmonary arterysmooth muscle cells (PASMC) in rats with hypoxic pulmonary vascular structural remodeling,and itsmechanisms.Seventeen Wistar rats were randomly divided into a control group (n=5),a hypoxia group(n=7),and a hypoxia L-Arg group (n=5).The morphologic changes of lung tissues were observed underoptical microscope.Using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay,the apoptosis of PASMC was examined.Fas expression in PASMC wasexamined using immunohistochemistry.The results showed that the percentage of muscularized artery insmall pulmonary vessels,and the relative medial thickness and relative medial area of the small and medianpulmonary muscularized arteries in the hypoxic group were all significantly increased.Pulmonary vascularstructural remodeling developed after hypoxia.Apoptotic smooth muscle cells of the small and median pul-monary arteries in the hypoxia group were significantly less than those in the control group.After 14 d ofhypoxia,Fas expression by smooth muscle cells of median and small pulmonary arteries was significantlyinhibited.L-Arg significantly inhibited hypoxic pulmonary vascular structural remodeling in association withan augmentation of apoptosis of smooth muscle cells as well as Fas expression in PASMC.These resultsshowed that L-Arg could play an important role in attenuating hypoxic pulmonary vascular structural remod-eling by upregulating Fas expression in PASMC,thus promoting the apoptosis of PASMC.  相似文献   

17.
Studies in animal models have shown that, following lobectomy (LBX), there is compensatory growth in the remaining lung. The vascular growth response following right LBX (R-LBX) is poorly understood. To test the hypothesis that arterial growth and remodeling occur in response to LBX, in proportion to the amount of right lung tissue removed, two (24% of lung mass; R-LBX2 group) or three right lobes (52% of lung mass; R-LBX3 group) were removed via thoracotomy from adult rats. Sham control animals underwent thoracotomy only. Arteriograms were generated 3 wk after surgery. The areas of the left lung arteriogram, arterial branching, length of arterial branches, arterial density, and arterial-to-alveolar ratios were measured. To determine whether R-LBX causes vascular remodeling and pulmonary hypertension, muscularization of arterioles and right ventricular hypertrophy were assessed. Lung weight and volume indexes were greater in R-LBX3. Arterial area of the left lung increased 26% in R-LBX2 and 47% in R-LBX3. The length of large arteries increased in R-LBX3 and to a lesser extent in R-LBX2. The ratio of distal pulmonary arteries to alveoli was similar after R-LBX2 compared with sham but was 30% lower in R-LBX3. Muscularization of arterioles increased after R-LBX3, but not in R-LBX2. Right ventricular hypertrophy increased 50-70% in R-LBX3, but not in R-LBX2. Whereas removal of three right lung lobes induced arterial growth in the left lungs of adult rats, which was proportionate to the number of lobes removed, the ratio of distal pulmonary arteries to alveoli was not normal, and vascular remodeling and pulmonary hypertension developed.  相似文献   

18.
After many years of research, small diameter, synthetic vascular grafts still lack the necessary biologic integration to perform ideally in clinical settings. Endothelialization of vascular grafts has the potential to improve synthetic graft function, and endothelial outgrowth cells (EOCs) are a promising autologous cell source. Yet no work has established the link between endothelial cell functions and outcomes of implanted endothelialized grafts. This work utilized steady flow, oscillatory flow, and tumor necrosis factor stimulation to alter EOC phenotype and enable the formulation of a model to predict endothelialized graft performance. To accomplish this, EOC in vitro expression of coagulation and inflammatory markers was quantified. In parallel, in non-human primate (baboon) models, the platelet and fibrinogen accumulation on endothelialized grafts were quantified in an ex vivo shunt, or the tissue ingrowth on implanted grafts were characterized after 1mth. Oscillatory flow stimulation of EOCs increased in vitro coagulation markers and ex vivo platelet accumulation. Steady flow preconditioning did not affect platelet accumulation or intimal hyperplasia relative to static samples. To determine whether in vitro markers predict implant performance, a linear regression model of the in vitro data was fit to platelet accumulation data—correlating the markers with the thromboprotective performance of the EOCs. The model was tested against implant intimal hyperplasia data and found to correlate strongly with the parallel in vitro analyses. This research defines the effects of flow preconditioning on EOC regulation of coagulation in clinical vascular grafts through parallel in vitro, ex vivo, and in vivo analyses, and contributes to the translatability of in vitro tests to in vivo clinical graft performance.  相似文献   

19.
Chronic obstructive lung disease (COPD) is a common cause of death in industrialized countries often induced by exposure to tobacco smoke. A substantial number of patients with COPD also suffer from pulmonary hypertension that may be caused by hypoxia or other hypoxia-independent stimuli - inducing pulmonary vascular remodeling. The Ca2+ binding protein, S100A4 is known to play a role in non-COPD-driven vascular remodeling of intrapulmonary arteries. Therefore, we have investigated the potential involvement of S100A4 in COPD induced vascular remodeling. Lung tissue was obtained from explanted lungs of five COPD patients and five non-transplanted donor lungs. Additionally, mice lungs of a tobacco-smoke-induced lung emphysema model (exposure for 3 and 8 month) and controls were investigated. Real-time RT-PCR analysis of S100A4 and RAGE mRNA was performed from laser-microdissected intrapulmonary arteries. S100A4 immunohistochemistry was semi-quantitatively evaluated. Mobility shift assay and siRNA knock-down were used to prove hypoxia responsive elements (HRE) and HIF binding within the S100A4 promoter. Laser-microdissection in combination with real-time PCR analysis revealed higher expression of S100A4 mRNA in intrapulmonary arteries of COPD patients compared to donors. These findings were mirrored by semi-quantitative analysis of S100A4 immunostaining. Analogous to human lungs, in mice with tobacco-smoke-induced emphysema an up-regulation of S100A4 mRNA and protein was observed in intrapulmonary arteries. Putative HREs could be identified in the promoter region of the human S100A4 gene and their functionality was confirmed by mobility shift assay. Knock-down of HIF1/2 by siRNA attenuated hypoxia-dependent increase in S100A4 mRNA levels in human primary pulmonary artery smooth muscle cells. Interestingly, RAGE mRNA expression was enhanced in pulmonary arteries of tobacco-smoke exposed mice but not in pulmonary arteries of COPD patients. As enhanced S100A4 expression was observed in remodeled intrapulmonary arteries of COPD patients, targeting S100A4 could serve as potential therapeutic option for prevention of vascular remodeling in COPD patients.  相似文献   

20.
A 55-year-old man was referred for the evaluation of frequent chest pain and syncope. While in the hospital, he experienced severe chest pain accompanied by transient ST segment elevation and a slight elevation of cardiac enzyme levels. Multiple coronary arteriograms were recorded at various times during an interval of 2 months. On one occasion, the results were normal; on another occasion, they showed total occlusion of the left anterior descending, diagonal, and circumflex coronary arteries. The occlusion was completely relieved with sublingual nitroglycerin. Because the patient's clinical condition deteriorated rapidly, double aortocoronary saphenous vein bypass was performed to the left anterior descending and circumflex coronary arteries. During the induction of anesthesia, ventricular fibrillation occurred, and the patient died from refractory recurrent fibrillation 4 hours after surgery. Postmortem examination revealed normal coronary arteries, patent vein grafts, and multiple focal areas of recent and old myocardial fibrosis. Thus, it appears that coronary spasm, in the presence of otherwise normal coronary arteries, can produce myocardial infarction with necrosis, and that medical management may provide a more successful method of treating such patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号