首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the mouse Langendorff heart perfusion model, the signaling pathways that regulate cardiac CREB-S133 phosphorylation have been defined. In mouse hearts stimulated with isoproterenol (ISO) (10(-8) M), endothelin-1 (ET-1) (10(-8) M), and phorbol 12-myristate 13-acetate (TPA) (10(-7) M), CREB-S133 phosphorylation was attained only by TPA-treatment. Activation of protein kinase A (PKA) was achieved by ISO. ISO- and ET-1-stimulation activated Ca2+/calmodulin-dependent kinase II (CaMKII). Protein kinase C (PKC) and p90(RSK) were activated with all three stimuli. Inhibition of ERK1/2 with PD98059 (10(-5) M) completely inhibited the activation of p90(RSK), but did not block CREB-S133 phosphorylation in TPA-perfused heart, indicating that PKA, CaMKII, and p90(RSK) do not phosphorylate CREB-S133 in the murine heart. PKC activation is signal specific. Analyses of PKC isoforms suggest that CREB phosphorylation is mediated by PKC epsilon translocating into nucleus only with TPA stimulation. These results, unlike those reported in other tissues, demonstrate that cardiac CREB is not a multi-signal target.  相似文献   

2.
Murine embryonic stem cells (mESC) are capable of unlimiting proliferation with maintenance of pluripotency during long-term cultivation. Signaling pathways regulating the cell cycle of mESC are of the great interest for further investigation. This review concerns to the cell cycle regulation of mESC through different signaling pathways (LIF-STAT3, PI3K-Akt, Wnt-beta-catenin) and to the mechanisms of unlimited proliferation of mESC and their inability to undergo long-term block of proliferation in response to DNA-damaging and stress factors. The functioning of negative cell cycle regulators (cyclin-kinase inhibitors and Rb) and positive cell cycle regulators (cyclin-kinase complexes and E2F factors) are also topics of this review. It is considered that, permanent mitogenic stimuli are needed to prevent induction of apoptosis. Therefore, the agents which cause prolonged halt of proliferation without ongoing onset of differentiation or induction of apoptosis are currently unknown. The main focus is given to the role of the Wnt signaling pathway in sustaining the pluripotent state of mESC. The cell cycle regulation by downstream targets of LIF-STAT3, PI3-kinase and Wnt-beta-catenin pathways is discussed in light of cooperative action of these pathways for maintenance of undifferentiated state of mESC.  相似文献   

3.
The astrocytomas represent the most common primary tumors of the brain. Despite efforts to improve the treatment of astrocytomas, these tumors and in particular the high-grade astrocytoma termed glioblastoma multiforme still carry a poor prognosis. In recent years, there has been an intensive effort to gain an understanding of the cellular and molecular mechanisms that contribute to the pathogenesis of astrocytomas as a first step toward the development of better treatments for these devastating tumors. Here, we will review our current understanding of the signaling pathways that underlie glial transformation. Studies of astrocytomas have led to the identification of two major groups of signaling proteins whose abnormalities contribute to gliomagenesis: the cell cycle pathways and the growth factor-regulated signaling pathways. Among the cell cycle proteins, the p16-cdk4-pRb and ARF-MDM2-p53 cell cycle arrest pathways play a prominent role in glial transformation. In addition, deregulation of polypeptide growth factors acting via receptor tyrosine kinases (RTKs) and of intracellular signals, including the lipid phosphatase PTEN, that regulate cellular responses to RTKs plays a critical role in gliomagenesis. In addition to the identification of the signaling proteins targeted in glial transformation, the cell-of-origin of astrocytomas has been investigated. Genetic modeling of astrocytomas in mice suggests that neuroepithelial precursor cells represent preferred cellular substrates of gliomas or that either astrocytes or precursor cells constitute potential cells-of-origin of astrocytomas. During normal brain development, neuroepithelial precursor cells, including neural stem cells, differentiate into astrocytes. As the mechanisms that control gliogenesis during normal brain development become better understood, it will be important to determine if deregulation of these mechanisms might contribute to the pathogenesis of astrocytomas. The elucidation of the molecular underpinnings of astrocytomas holds the promise of improved treatment options for patients with these devastating brain tumors.  相似文献   

4.
Although embryonic patterning and early development of the nervous system have been studied for decades, our understanding of how signals instruct ectodermal derivatives to acquire specific identities has only recently started to form a coherent picture. In this mini-review, we summarize recent findings and models of how a handful of well-known secreted signals influence progenitor cells in successive binary decisions to adopt various cell type specific differentiation programs.  相似文献   

5.
Signaling pathways regulating TC21-induced tumorigenesis   总被引:3,自引:0,他引:3  
TC21(R-Ras2), a Ras-related GTPase with transforming potential similar to H-, K- and N-Ras, is implicated in the pathogenesis of human cancers. Transforming growth factor beta (TGF-beta), a cytokine that plays a significant role in modulating tumorigenesis, normally prevents uncontrolled cell proliferation but paradoxically induces proliferation in H-Ras-transformed cancer cells. Although TC21 activates some pathways that mediate cellular transformation by the classical Ras proteins, the mechanisms through which TC21 induces tumor formation and how TGF-beta regulates TC21 transformed cells is not known. To better understand the role of TC21 in cancer progression, we overexpressed an activated G23V mutant of TC21 in a nontumorigenic murine mammary epithelial (EpH4) cell line. Mutant TC21-expressing cells were significantly more oncogenic than cells expressing activated G12V H-Ras both in vivo and in vitro. TC21-induced transformation and proliferation required activation of p38 MAPK, mTOR (the mammalian target of rapamycin), and phosphoinositide 3-kinase but not Akt/PKB. Transformation by TC21 rendered EpH4 cells insensitive to the growth inhibitory effects of TGF-beta, and the soft agar growth of these cells was increased upon TGF-beta stimulation. Despite losing responsiveness to TGF-beta-mediated growth inhibition, both Smad-dependent and independent pathways remained intact in TC21-transformed cells. Thus, overexpression of active TC21 in EpH4 cells induces tumorigenicity through the phosphoinositide 3-kinase, p38 MAPK, and mTOR pathways, and these cells lose their sensitivity to the normal growth inhibitory role of TGF-beta.  相似文献   

6.
Mouse embryonic stem (MES) cells possess joint abilities for unlimited proliferation and maintenance of pluripotency during long-term cultivation. The regulation of the cell cycle of these cells is of great interest. This review is focused on the regulation of the cell cycle of these cells via different signaling pathways (LIF-STAT3, PI3K-Akt, Wnt-β-catenin). The mechanisms underlying the unlimited proliferation of MES cells and their inability to long-term block of proliferation in response to DNA-damaging and stress factors are discussed. The functioning of negative (cyclin-kinase inhibitors and Rb) and positive (cyclin-kinase complexes and E2F factors) cell cycle regulators are also the topics of this survey. Permanent mitogenic stimuli are thought to prevent the induction of apoptosis; in any case, agents which cause a prolonged halt to proliferation without stimulating the onset of differentiation or the induction of apoptosis are currently unknown. Special concern is given to the role of the Wnt signaling pathway in sustaining the pluripotent state of MES cells. Cell cycle regulation by downstream targets of LIF-STAT3, PI3-kinase and Wnt-β-catenin pathways is discussed in light of the cooperative action of these pathways in the maintenance of undifferentiated states of MES cells.  相似文献   

7.
Unlike most other organs, development of the mammary gland occurs predominantly after birth, under the control of steroid and peptide hormones. Once the gland is established, cycles of proliferation, functional differentiation, and death of alveolar epithelium occur repeatedly with each pregnancy. Although it is unique in this respect, the signaling pathways utilized by the gland are shared with other cell types, and have been tailored to meet the needs of this secretory tissue. Here we discuss the signaling pathways that have been adopted by the mammary gland for its own purposes, and the functions they perform.  相似文献   

8.
9.
Zhang Y  Yang Z  Wu J 《The FEBS journal》2007,274(17):4349-4359
The mammalian preimplantation embryo is a critical and unique stage in embryonic development. This stage includes a series of crucial events: the transition from oocyte to embryo, the first cell divisions, and the establishment of cellular contacts. These events are regulated by multiple signal-transduction pathways. In this article we describe patterns of stage-specific expression in several signal-transduction pathways and try to give a profile of the signaling transduction network in preimplantation development of mammalian embryo.  相似文献   

10.
11.
Dictyostelium discoideum development is regulated through receptor/G protein signal transduction using cAMP as a primary extracellular signal. Signaling pathways will be discussed as well as the regulation and function of individual cAMP receptors and G alpha subunits. Finally potential downstream targets including protein kinases and nuclear events will be explored.  相似文献   

12.
13.
14.
Cdx1 encodes a mammalian homeobox gene involved in vertebral patterning. Retinoic acid (RA) is likewise implicated in vertebral patterning. We have previously shown that Cdx1 is a direct retinoid target gene, suggesting that Cdx1 may convey some of the effects of retinoid signaling. However, RA appears to be essential for only early stages of Cdx1 expression, and therefore other factors must be involved in maintaining later stages of expression. Based on function and pattern of expression, Wnt family members, in particular Wnt3a, are candidates for regulation of expression of Cdx1. Consistent with this, we confirm prior results which demonstrated that Cdx1 can be directly regulated by Wnt signaling, and identify functional LEF/TCF response motifs essential for this response. We also find that Cdx1 expression is markedly attenuated in a stage- and tissue-specific fashion in the Wnt3a hypomorph vestigial tail, and present data demonstrating that Wnt3a and RA synergize strongly to activate Cdx1. Finally, we show that Cdx1 positively regulates its own expression. These data prompt a model whereby retinoid and Wnt signaling function directly and synergistically to initiate Cdx1 expression in the caudal embryo. Expression is then maintained, at least in part, by an autoregulatory mechanism at later stages.  相似文献   

15.
Signaling pathways mediating melanogenesis.   总被引:7,自引:0,他引:7  
Pigmentation of the skin, due to the synthesis and dispersion of melanin in the epidermis, is of great cosmetic and societal significance. It is also the key physiologic defense against sun-induced injuries such as sunburn, photocarcinogenesis and photoaging. During recent decades, there has been a dramatic increase in skin cancers, including melanoma, due to habitual sun exposure (Rigel, 1992; Weinstock, 1989). At present, in the United States, about one in 75 individuals is projected to develop malignant melanoma during his or her lifetime (Rigel, 1992). Unfortunately, progress in preventing sun-related injuries has been slow, in part due to lack of understanding of the molecular mechanisms involved in pigmentation. This article reviews recent progress in identifying signal transduction pathways that mediate melanogenesis.  相似文献   

16.
Invasion of viruses and bacteria is initially sensed by the host innate immune system, and evokes a rapid inflammatory response. Nucleotides from RNA viruses are recognized by retinoic-acid-inducible gene I-like helicases and Toll-like receptors, and this recognition triggers signaling cascades that induce antiviral mediators such as type I interferons. By contrast, Toll-like receptors recognizing bacterial components induce the expression of proinflammatory cytokines. Furthermore, recent studies suggest that viral and bacterial DNA also induce interferons in a Toll-independent mechanism, possibly through unidentified cytoplasmic receptor(s).  相似文献   

17.
18.
Chen YC  Chang MF  Chen Y  Wang SM 《FEBS letters》2005,579(20):4337-4343
This study focused on identifying the signalling mediating the effect of magnolol on corticosterone production. Magnolol-induced corticosterone production was completely inhibited by mitogen-activated protein kinase kinase (MEK)-inhibitor PD98059, tyrosine kinase (TK)-inhibitor genistein or Janus tyrosine kinase 2 (JAK2)-inhibitor AG490, suggesting that extracellular signal-regulated kinase (ERK) and JAK2 are both involved in this signaling cascade. Further, magnolol induced the transient phosphorylation of MEK, ERK, cAMP response-element binding protein (CREB) and the expression of 32 and 30 kDa steroidogenic acute regulatory protein (StAR) in a time-dependent manner. Inhibition of TK or JAK2 activities blocked magnolol-induced phosphorylation of MEK and ERK, again supporting the upstream role of JAK2. The activation of JAK2 or MEK apparently mediated the magnolol-induced phosphorylation of CREB and the upregulation of StAR. These findings demonstrate a novel pathway for magnolol to induce the expression of StAR, which regulates the rate-limiting step in sterodiogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号