首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anticancer activity of selenium (Se) has been demonstrated in myriad animal and in vitro studies, yet the mechanisms remain obscure. The main form of Se in animal tissues is selenocysteine in selenoproteins, but the relative importance of selenoproteins versus smaller Se compounds in cancer protection is unresolved. Selenoprotein W (SEPW1) is a highly conserved protein ubiquitously expressed in animals, bacteria, and archaea. SEPW1 depletion causes a delay in cell cycle progression at the G1/S transition of the cell cycle in breast and prostate epithelial cells. Tumor suppressor protein p53 is a master regulator of cell cycle progression and is the most frequently mutated gene in human cancers. p53 was increased in SEPW1 silenced cells and was inversely correlated with SEPW1 mRNA in cell lines with altered SEPW1 expression. Silencing SEPW1 decreased ubiquitination of p53 and increased p53 half-life. SEPW1 silencing increased p21(Cip1/WAF1/CDKN1A), while p27 (Kip1/CDKN1B) levels were unaffected. G1-phase arrest from SEPW1 knockdown was abolished by silencing p53 or p21. Cell cycle arrest from SEPW1 silencing was not associated with activation of ATM or phosphorylation of Ser-15 in p53, suggesting the DNA damage response pathway was not involved. Silencing GPX1 had no effect on cell cycle, suggesting that G1-phase arrest from SEPW1 silencing was not due to loss of antioxidant protection. More research is required to identify the function of SEPW1 and how it affects stability of p53.  相似文献   

2.
3.
c-Jun N-terminal kinases (JNKs) are the exclusive downstream substrates of mitogen-activated protein kinase kinase 7 (MKK7). Recently, we have shown that a single MKK7 splice variant, MKK7γ1, substantially changes the functions of JNKs in naïve PC12 cells. Here we provide evidence that MKK7γ1 blocks NGF-mediated differentiation and sustains proliferation by interfering with the NGF-triggered differentiation programme at several levels: (i) down-regulation of the NGF receptors TrkA and p75; (ii) attenuation of the differentiation-promoting pathways ERK1/2 and AKT; (iii) increase of JNK1 and JNK2, especially the JNK2 54 kDa splice variants; (iv) repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1, which normally supports NGF-mediated cell cycle arrest; (v) strong induction of the cell cycle promoter CyclinD1, and (vi) profound changes of p53 functions. Moreover, MKK7γ1 substantially changes the responsiveness to stress. Whereas NGF differentiation protects PC12 cells against taxol-induced apoptosis, MKK7γ1 triggers an escape from cell cycle arrest and renders transfected cells sensitive to taxol-induced death. This stress response completely differs from naïve PC12 cells, where MKK7γ1 protects against taxol-induced cell death. These novel aspects on the regulation of JNK signalling emphasise the importance of MKK7γ1 in its ability to reverse basic cellular programmes by simply using JNKs as effectors. Furthermore, our results highlight the necessity for the cells to balance the expression of JNK activators to ensure precise intracellular processes.  相似文献   

4.
5.
6.
7.
8.
Interleukin 1beta (IL-1beta) induces expression of the inducible nitric-oxide synthase (iNOS) with concomitant release of nitric oxide (NO) from glomerular mesangial cells. These events are preceded by activation of the c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38(MAPK). Our current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 SAPKbeta/JNK2 significantly reduces the iNOS protein expression and NO production induced by IL-1beta. Similarly, overexpression of the kinase-dead mutant form of p38alpha(MAPK) also inhibits IL-1beta-induced iNOS expression and NO production. In previous studies we demonstrated that IL-1beta can activate MKK4/SEK1, MKK3, and MKK6 in renal mesangial cells; therefore, we examined the role of these MAPK kinases in the modulation of iNOS induced by IL-1beta. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta-induced iNOS expression and NO production with inhibition of both SAPK/JNK and p38(MAPK) phosphorylation. Overexpression of the kinase-dead mutant form of MKK3 or MKK6 demonstrated that either of these two mutant kinase inhibited IL-1beta-induced p38(MAPK) (but not JNK/SAPK) phosphorylation and iNOS expression. Interestingly overexpression of wild type MKK3/6 was associated with phosphorylation of p38(MAPK); however, in the absence of IL-1beta, iNOS expression was not enhanced. This study suggests that the activation of both SAPK/JNK and p38alpha(MAPK) signaling cascades are necessary for the IL-1beta-induced expression of iNOS and production of NO in renal mesangial cells.  相似文献   

9.
Heterotrimeric G proteins stimulate the activities of two stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase in mammalian cells. In this study, we examined whether alpha subunits of G(i) family activate JNK using transient expression system in human embryonal kidney 293 cells. Constitutively activated mutants of Galpha(i1), Galpha(i2), and Galpha(i3) increased JNK activity. In contrast, constitutively activated Galpha(o) and Galpha(z) mutants did not stimulate JNK activity. To examine the mechanism of JNK activation by Galpha(i), kinase-deficient mutants of mitogen-activated protein kinase kinase 4 (MKK4) and 7 (MKK7), which are known to be JNK activators, were transfected into the cells. However, Galpha(i)-induced JNK activation was not blocked effectively by kinase-deficient MKK4 and MKK7. In addition, activated Galpha(i) mutant failed to stimulate MKK4 and MKK7 activities. Furthermore, JNK activation by Galpha(i) was inhibited by dominant-negative Rho and Cdc42 and tyrosine kinase inhibitors, but not dominant-negative Rac and phosphatidylinositol 3-kinase inhibitors. These results indicate that Galpha(i) regulates JNK activity dependent on small GTPases Rho and Cdc42 and on tyrosine kinase but not on MKK4 and MKK7.  相似文献   

10.
11.
12.
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) activates the c-Jun NH2-terminal kinase (JNK) pathway, although no substrates for MEKK3 have been identified. We have examined the regulation by MEKK3 of MAPK kinase 7 (MKK7) and MKK6, two novel MAPK kinases specific for JNK and p38, respectively. Coexpression of MKK7 with MEKK3 in COS-7 cells enhanced MKK7 autophosphorylation and its ability to activate recombinant JNK1 in vitro. MKK6 autophosphorylation and in vitro activation of p38alpha were also observed following coexpression of MKK6 with MEKK3. MEKK2, a closely related homologue of MEKK3, also activated MKK7 and MKK6 in COS-7 cells. Importantly, immunoprecipitates of either MEKK3 or MEKK2 directly activated recombinant MKK7 and MKK6 in vitro. These data identify MEKK3 as a MAPK kinase kinase specific for MKK7 and MKK6 in the JNK and p38 pathways. We have also examined whether MEKK3 or MEKK2 activates p38 in intact cells using MAPK-activated protein kinase-2 (MAPKAPK2) as an affinity ligand and substrate. Anisomycin, sorbitol, or the expression of MEKK3 in HEK293 cells enhanced MAPKAPK2 phosphorylation, whereas MEKK2 was less effective. Furthermore, MAPKAPK2 phosphorylation induced by MEKK3 or cellular stress was abolished by the p38 inhibitor SB-203580, suggesting that MEKK3 is coupled to p38 activation in intact cells.  相似文献   

13.
c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is involved in the regulation of various cellular functions including cell cycle, proliferation, apoptosis. However, whether JNK/SAPK directly regulates the angiogenesis of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor A (VEGFA) has not yet been fully elucidated. Our present study firstly demonstrated VEGFA-induced angiogenic responses including the increase of cell viability, migration, and tube formation with a concentration-dependent manner in HUVECs. Further results showed that VEGFA induced the activation of JNK/SAPK, p38 kinase and extracellular signal-regulated kinases 1 and 2 (ERK1/2), while JNK/SAPK inhibitor SP600125 and specific siRNA both blocked all those angiogenic effects induced by VEGFA. Furthermore, VEGFA induced the phosphorylation of ASK1, SEK1/MKK4, MKK7, and c-Jun, which are upstream or downstream signals of JNK/SAPK. In addition, in vivo matrigel plug assay further showed that SP600125 inhibited VEGFA-induced angiogenesis. Further results showed that SP600125 and JNK/SAPK siRNA decreased VEGFA-induced VEGFR2 (Flk-1/KDR) sustained phosphorylation in HUVECs. Taken together, all these results demonstrate that JNK/SAPK regulates VEGFA-induced VEGFR2 sustained phosphorylation, which plays important roles in VEGFA-induced angiogenesis in HUVECs.  相似文献   

14.
During normal development in the rat, hepatocytes undergo marked changes in the rate of proliferation. We have previously observed transient G(1) growth arrest at term, re-activation of proliferation immediately after birth, and a gradual transition to the quiescent adult hepatocyte phenotype after postnatal day 4. We hypothesized that these changes in proliferation are due in part to growth inhibitory effects mediated by the p38 mitogen-activated protein kinase pathway. p38 kinase activity measurements showed an inverse relationship with hepatocyte proliferation during the perinatal and postnatal transitions, whereas p38 content remained constant. Anisomycin activated the p38 pathway in fetal hepatocyte cultures while inducing growth inhibition that was sensitive to the p38 inhibitor, SB203580. Activation of p38 in these cultures, via transient transfection with a constitutively active form of its upstream kinase MKK6, also inhibited DNA synthesis as well as reducing cyclin D1 content. Transfection with inactive MKK6 did neither. Furthermore, MKK6-induced growth arrest was sensitive to SB203580. Finally, administration of SB203580 to near-term fetal rats in utero abrogated the transient hepatocyte growth arrest that occurs at term. These findings indicate a role for the p38 mitogen-activated protein kinase pathway in the physiological regulation of hepatocyte proliferation during normal development in the rat.  相似文献   

15.
JNK, a member of the mitogen-activated protein kinases (MAPKs), is activated by the MAPK kinases SEK1 and MKK7 in response to environmental stresses. In the present study, the effects of CdCl2 treatment on MAPK phosphorylation and HSP70 expression were examined in mouse embryonic stem (ES) cells lacking the sek1 gene, the mkk7 gene, or both. Following CdCl2 exposure, the phosphorylation of JNK, p38, and ERK was suppressed in sek1-/- mkk7-/- cells. When sek1-/- or mkk7-/- cells were treated with CdCl2, JNK phosphorylation, but not the phosphorylation of either p38 or ERK, was markedly reduced, while a weak reduction in p38 phosphorylation was observed in sek1-/- cells. Thus, both SEK1 and MKK7 are required for JNK phosphorylation, whereas their role in p38 and ERK phosphorylation could overlap with that of another kinase. We also observed that CdCl2-induced HSP70 expression was abolished in sek1-/- mkk7-/- cells, was reduced in sek1-/- cells, and was enhanced in mkk7-/- cells. Similarly, the phosphorylation of heat shock factor 1 (HSF1) was decreased in sek1-/- mkk7-/- and sek1-/- cells, but was increased in mkk7-/- cells. Transfection with siRNA specific for JNK1, JNK2, p38, ERK1, or ERK2 suppressed CdCl2-induced HSP70 expression. In contrast, silencing of p38 or p38 resulted in further accumulation of HSP70 protein. These results suggest that HSP70 expression is up-regulated by SEK1 and down-regulated by MKK7 through distinct MAPK isoforms in mouse ES cells treated with CdCl2.  相似文献   

16.
The p38 group of kinases belongs to the mitogen-activated protein (MAP) kinase superfamily with structural and functional characteristics distinguishable from those of the ERK, JNK (SAPK), and BMK (ERK5) kinases. Although there is a high degree of similarity among members of the p38 group in terms of structure and activation, each member appears to have a unique function. Here we show that activation of p38gamma (also known as ERK6 or SAPK3), but not the other p38 isoforms, is required for gamma-irradiation-induced G(2) arrest. Activation of the MKK6-p38gamma cascade is sufficient to induce G(2) arrest in cells, and expression of dominant negative alleles of MKK6 or p38gamma allows cells to escape the DNA damage-induce G(2) delay. Activation of p38gamma is dependent on ATM and leads to activation of Cds1 (also known as Chk2). These data suggest a model in which activation of ATM by gamma irradiation leads to the activation of MKK6, p38gamma, and Cds1 and that activation of both MKK6 and p38gamma is essential for the proper regulation of the G(2) checkpoint in mammalian cells.  相似文献   

17.
The p38 mitogen-activated protein kinase (p38MAPK) plays a key role in larval settlement of the barnacle Amphibalanus amphitrite. To study the signaling pathway associated with p38MAPK during larval settlement, we sought to identify the upstream kinase of p38MAPK. Three MKKs (MKK3, MKK4 and MKK7) and three MAPKs (p38MAPK, ERK and JNK) in A. amphitrite were cloned and recombinantly expressed in E. coli. Through kinase assays, we found that MKK3, but not MKK4 or MKK7, phosphorylated p38MAPK. Furthermore, MKK3 activity was specific to p38MAPK, as it did not phosphorylate ERK or JNK. To further investigate the functional relationship between MKK3 and p38MAPK in vivo, we studied the localization of phospho-MKK3 (pMKK3) and MKK3 by immunostaining. Consistent with the patterns of p38MAPK and phospho-p38MAPK (pp38MAPK), pMKK3 and MKK3 mainly localized to the antennules of the cyprids. Western blot analysis revealed that pMKK3 levels, like pp38MAPK levels, were elevated at cyprid stage, compared to nauplii and juvenile stages. Moreover, pMKK3 levels increased after treatment with adult barnacle crude extracts, suggesting that MKK3 might mediate the stimulatory effects of adult barnacle extracts on the p38MAPK pathway.  相似文献   

18.
19.
Dynamic microtubule changes after a cell stress challenge are required for cell survival and adaptation. Stathmin (STMN), a cytoplasmic microtubule-destabilizing phosphoprotein, regulates interphase microtubules during cell stress, but the signaling mechanisms involved are poorly defined. In this study ectopic expression of single alanine-substituted phospho-resistant mutants demonstrated that STMN Ser-38 and Ser-63 phosphorylation were specifically required to maintain interphase microtubules during hyperosmotic stress. STMN was phosphorylated on Ser-38 and Ser-63 in response to hyperosmolarity, heat shock, and arsenite treatment but rapidly dephosphorylated after oxidative stress treatment. Two-dimensional PAGE and Phos-tag gel analysis of stress-stimulated STMN phospho-isoforms revealed rapid STMN Ser-38 phosphorylation followed by subsequent Ser-25 and Ser-63 phosphorylation. Previously, we delineated stress-stimulated JNK targeting of STMN. Here, we identified cAMP-dependent protein kinase (PKA) signaling as responsible for stress-induced STMN Ser-63 phosphorylation. Increased cAMP levels induced by cholera toxin triggered potent STMN Ser-63 phosphorylation. Osmotic stress stimulated an increase in PKA activity and elevated STMN Ser-63 and CREB (cAMP-response element-binding protein) Ser-133 phosphorylation that was substantially attenuated by pretreatment with H-89, a PKA inhibitor. Interestingly, PKA activity and subsequent phosphorylation of STMN were augmented in the absence of JNK activation, indicating JNK and PKA pathway cross-talk during stress regulation of STMN. Taken together our study indicates that JNK- and PKA-mediated STMN Ser-38 and Ser-63 phosphorylation are required to preserve interphase microtubules in response to hyperosmotic stress.  相似文献   

20.
Mitogen-activated protein (MAP) kinase pathways are three-kinase modules that mediate diverse cellular processes and have been highly conserved among eukaryotes. By using a functional complementation screen in yeast, we have identified a human MAP kinase kinase kinase (MAPKKK) that shares homology with members of the mixed lineage kinase (MLK) family and therefore was called MRK (MLK-related kinase). We report the structure of the MRK gene, from which are generated two splice forms of MRK, MRK-alpha and MRK-beta, encoding for proteins of 800 and 456 amino acids, respectively. By using a combination of solid phase protein kinase assays, transient transfections in cells, and analysis of endogenous proteins in stably transfected Madin-Darby canine kidney cells, we found that MRK-beta preferentially activates ERK6/p38gamma via MKK3/MKK6 and JNK through MKK4/MKK7. We also show that expression of wild type MRK increases the cell population in the G(2)/M phase of the cell cycle, whereas dominant negative MRK attenuates the G(2) arrest caused by gamma-radiation. In addition, exposure of cells to gamma-radiation induces MRK activity. These data suggest that MRK may mediate gamma-radiation signaling leading to cell cycle arrest and that MRK activity is necessary for the cell cycle checkpoint regulation in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号