首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gap junctions (GJs) exhibit a complex modus of assembly and degradation to maintain balanced intercellular communication (GJIC). Several growth factors, including vascular endothelial growth factor (VEGF), have been reported to disrupt cell–cell junctions and abolish GJIC. VEGF directly stimulates VEGF-receptor tyrosine kinases on endothelial cell surfaces. Exposing primary porcine pulmonary artery endothelial cells (PAECs) to VEGF for 15 min resulted in a rapid and almost complete loss of connexin43 (Cx43) GJs at cell–cell appositions and a concomitant increase in cytoplasmic, vesicular Cx43. After prolonged incubation periods (60 min), Cx43 GJs reformed and intracellular Cx43 were restored to levels observed before treatment. GJ internalization correlated with efficient inhibition of GJIC, up to 2.8-fold increased phosphorylation of Cx43 serine residues 255, 262, 279/282, and 368, and appeared to be clathrin driven. Phosphorylation of serines 255, 262, and 279/282 was mediated by MAPK, whereas serine 368 phosphorylation was mediated by PKC. Pharmacological inhibition of both signaling pathways significantly reduced Cx43 phosphorylation and GJ internalization. Together, our results indicate that growth factors such as VEGF activate a hierarchical kinase program—including PKC and MAPK—that induces GJ internalization via phosphorylation of well-known regulatory amino acid residues located in the Cx43 C-terminal tail.  相似文献   

2.
The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell–cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif–deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43’s endocytosis and assembly into gap junctions.  相似文献   

3.
Luteinizing hormone (LH) acts on ovarian follicles to reinitiate meiosis in prophase-arrested mammalian oocytes, and this has been proposed to occur by interruption of a meioisis-inhibitory signal that is transmitted through gap junctions into the oocyte from the somatic cells that surround it. To investigate this idea, we microinjected fluorescent tracers into live antral follicle-enclosed mouse oocytes, and we demonstrate for the first time that LH causes a decrease in the gap junction permeability between the somatic cells, prior to nuclear envelope breakdown (NEBD). The decreased permeability results from the MAP kinase-dependent phosphorylation of connexin 43 on serines 255, 262 and 279/282. We then tested whether the inhibition of gap junction communication was sufficient and necessary for the reinitiation of meiosis. Inhibitors that reduced gap junction permeability caused NEBD, but an inhibitor of MAP kinase activation that blocked gap junction closure in response to LH did not prevent NEBD. Thus, both MAP kinase-dependent gap junction closure and another redundant pathway function in parallel to ensure that meiosis resumes in response to LH.  相似文献   

4.
Genetic ablation of connexin37 (Cx37) or connexin43 (Cx43), the two gap junction proteins expressed by mouse ovarian granulosa cells, has been shown to result in impaired follicle development. We used patch-clamp techniques to evaluate quantitatively the contribution of these connexins to gap junctional intercellular communication (GJIC) among granulosa cells. The coupling conductance derived from a voltage step-induced capacitive current transient was used as a measure of GJIC in cultured granulosa cells. Using this method, we determined that the conductance of wild-type (84.1 ± 28.6 nS; n = 6) and Cx37-deficient granulosa cells (83.7 ± 6.4 nS; n = 11) does not differ significantly (P = 0.35), suggesting a limited contribution, if any, of Cx37 to granulosa cell coupling. In contrast, the conductance between granulosa cells of Cx43-deficient mice (2.6 ± 0.8 nS; n = 5) was not significantly different from that of single, isolated wild-type granulosa cells (2.5 ± 0.7 nS, n = 5; P = 0.83), indicating that Cx43-deficient granulosa cells were not electrically coupled. A direct measurement of transjunctional conductance between isolated granulosa cell pairs using a dual patch-clamp technique confirmed this conclusion. Interestingly, a partial rescue of folliculogenesis was observed when the Cx43-null mutation in C57BL/6 mice was crossed into the CD1 strain, and capacitive current measurement demonstrated that this rescue was not due to reestablishment of GJIC. These results demonstrate that folliculogenesis is impaired in the absence of GJIC between granulosa cells, but they also indicate that the severity is dependent on genetic background, a phenomenon that cannot be attributed to the expression of additional connexins. ovarian follicle; oogenesis; connexin37; intercellular communication  相似文献   

5.
The oncogenic tyrosine kinase, v-Src, phosphorylates connexin43 (Cx43) on Y247 and Y265 and inhibits Cx43 gap junctional communication (GJC), the process of intercellular exchange of ions and metabolites. To test the role of a negative charge on Cx43 induced by tyrosine phosphorylation, we expressed Cx43 with glutamic acid substitutions at Y247 or Y265. The Cx43Y247E or Cx43Y265E channels were functional in Cx43 knockout fibroblasts, indicating that introducing a negative charge on Cx43 was not likely the mechanism for v-Src disruption of GJC. Cells coexpressing v-Src and the triple serine to alanine mutant, Cx43S255/279/282A, confirmed that mitogen-activated protein (MAP) kinase phosphorylation of Cx43 was not required for v-Src-induced disruption of GJC and that tyrosine phosphorylation was sufficient. In addition, v-Src cells containing v-Src-resistant gap junctions, Cx43Y247/265F, displayed properties of cell migration, adhesion, and proliferation similar to Cx43wt/v-Src cells, suggesting that Cx43 tyrosine phosphorylation and disruption of GJC are not involved in these transformed cell properties.  相似文献   

6.
Connexin 43 (Cx43), a gap junction protein expressed in differentiated granulosa cells, is necessary for normal follicular development. Cx43 expression and regulation by epidermal growth factor (EGF) were characterized in immature rabbit granulosa cells. Cx43 mRNA was expressed in the granulosa cells of primary follicles, but was undetectable in primordial follicles. Abundant expression of Cx43 mRNA was maintained in the granulosa cells of growing follicles through maturity. Granulosa cells were isolated from early preantral follicles and maintained in monolayer cultures for 72 hr. After the first 24 hr of culture, they were maintained for 48 hr in serum-free medium supplemented with 0, 1, 5, or 10 ng/ml of mouse EGF. Granulosa cell proteins were isolated, solubilized, and evaluated for Cx43 by Western blot analysis using antibodies to rat Cx43. Relative amounts of Cx43 protein (both phosphorylated and nonphosphorylated) were increased (P < 0.05) by EGF in a dose-dependent manner. Northern blot analysis of RNA from cultured granulosa cells demonstrated increased amounts of Cx43 mRNA in the EGF treated cultures (10 ng EGF/ml) relative to controls (P < 0.03). In summary, Cx43 gap junctions are synthesized in granulosa cells following the onset of folliculogenesis in vivo and their expression is enhanced by EGF in vitro.  相似文献   

7.
Gap junctions (GJs) traverse apposing membranes of neighboring cells to mediate intercellular communication by passive diffusion of signaling molecules. We have shown previously that cells endocytose GJs utilizing the clathrin machinery. Endocytosis generates cytoplasmic double-membrane vesicles termed annular gap junctions or connexosomes. However, the signaling pathways and protein modifications that trigger GJ endocytosis are largely unknown. Treating mouse embryonic stem cell colonies – endogenously expressing the GJ protein connexin43 (Cx43) – with epidermal growth factor (EGF) inhibited intercellular communication by 64% and activated both, MAPK and PKC signaling cascades to phosphorylate Cx43 on serines 262, 279/282, and 368. Upon EGF treatment Cx43 phosphorylation transiently increased up to 4-fold and induced efficient (66.4%) GJ endocytosis as evidenced by a 5.9-fold increase in Cx43/clathrin co-precipitation.  相似文献   

8.
In the ovarian follicle, granulosa cells adjacent to the oocyte extend processes through the zona pellucida matrix, and these projections establish gap junctions both with the oocyte and with neighboring transzonal projections. The identity of connexins contributing to gap junctions between transzonal projections has not been extensively studied. Here, we examined the expression pattern of Cx37 and Cx43 in mouse zona pellucida using multiple connexin-specific antibodies. Immunofluorescence staining revealed abundant Cx37 and Cx43 puncta within the zona pellucida of both preantral and antral follicles. Cx37 persisted in the zona pellucida of mature follicles up to 5 h after an ovulatory stimulus whereas Cx43 was reduced in the zona pellucida by 3 h after an ovulatory stimulus. We suggest that in addition to its role in oocyte-granulosa cell communication, Cx37 could enable a distinct communication pathway between those granulosa cells that are in direct contact with the oocyte.  相似文献   

9.
Connexins are the structural units of gap junctions, structures allowing interchanging of information between the adjacent cells. Connexin43 (Cx43) is the most abundant gap junction protein. Cx43 can be degraded by lysosome- and proteasome-mediated processes upon internalisation of the entire structure. Only little is known about the role of phosphorylation during the gap junction degradation. In Cx43, a protein containing 14 amino acids susceptible to be phosphorylated, amino acids S279 and S282 are phosphorylated upon epidermal growth factor (EGF) treatment by erk1/2 MAP kinases. Here, we show that the wild-type Cx43 protein, as well as HeLa cells expressing the mutated Cx43 proteins S279A, S282A, and S279A/S282A, is mainly located at the plasma membrane. However, the protein stability is not altered in the isolated single mutants, whereas the double mutant S279A/S282A is strongly degradation impaired upon EGF treatment. This effect is not due to the decreased Cx43 internalisation, but seems to be related to a reduced ubiquitination.  相似文献   

10.
In the ovarian follicle, granulosa cells adjacent to the oocyte extend processes through the zona pellucida matrix, and these projections establish gap junctions both with the oocyte and with neighboring transzonal projections. The identity of connexins contributing to gap junctions between transzonal projections has not been extensively studied. Here, we examined the expression pattern of Cx37 and Cx43 in mouse zona pellucida using multiple connexin-specific antibodies. Immunofluorescence staining revealed abundant Cx37 and Cx43 puncta within the zona pellucida of both preantral and antral follicles. Cx37 persisted in the zona pellucida of mature follicles up to 5 h after an ovulatory stimulus whereas Cx43 was reduced in the zona pellucida by 3 h after an ovulatory stimulus. We suggest that in addition to its role in oocyte-granulosa cell communication, Cx37 could enable a distinct communication pathway between those granulosa cells that are in direct contact with the oocyte.  相似文献   

11.
This study assessed the in vivo effects of recombinant growth hormone (rGH) administration on the expression of connexin-43 (Cx43) in bovine ovarian follicles. Two independent experiments were carried out using either estrous unsynchronized or synchronized multiparous Aberdeen Angus cows. rGH-treated animals were inoculated with a single dose of hormone (500 mg, intramuscular) while control animals were inoculated with hormone diluent. Five and 14 days after treatment (Experiments 1 and 2, respectively), ovarian Cx43 and apoptosis expression were assessed using immunohistochemistry. In both experiments primary, secondary, and tertiary follicles from rGH-treated and control groups distinctly expressed Cx43 protein. Primordial and atretic follicles were Cx43-negative. Interestingly, the number of Cx43 dots per granulosa cell did not show significant variation at different folliculogenesis stages neither in the rGH-treated nor in the control group. In unsynchronized animals, Cx43-positive follicles per total number of follicles ratio showed an interaction between stage of folliculogenesis and treatment due to significant differences between treatment groups in the early secondary follicle stage. In synchronized animals, there were significant differences between treatment groups and folliculogenesis stage. In both experiments, atretic follicles showed apoptosis-related DNA-fragmentation as determined by terminal uridin nick end labeling (TUNEL) assay. Tertiary follicles presented moderate TUNEL staining. Our results show significant increment in the number of ovarian follicles expressing the gap junction subunit Cx43 after in vivo rGH treatment. Therefore, we conclude that growth hormone can modulate in vivo gap junction assembly at early stages of folliculogenesis.  相似文献   

12.
Connexin 43 (Cx43), the most widely expressed and abundant vertebrate gap junction protein, is phosphorylated at multiple different serine residues during its life cycle. Cx43 is phosphorylated soon after synthesis and phosphorylation changes as it traffics through the endoplasmic reticulum and Golgi to the plasma membrane, ultimately forming a gap junction structure. The electrophoretic mobility of Cx43 changes as the protein proceeds through its life cycle, with prominent bands often labeled P0, P1 and P2. Many reports have indicated changes in “phosphorylation” based on these mobility shifts and others that occur in response to growth factors or other biological effectors. Here, we indicate how phosphospecific and epitope-specific antibodies can be utilized to show when and where certain phosphorylation events occur during the Cx43 life cycle. These reagents show that phosphorylation at S364 and/or S365 is involved in forming the P1 isoform, an event that apparently regulates trafficking to or within the plasma membrane. Phosphorylation at S325, S328 and/or S330 is necessary to form a P2 isoform; and this phosphorylation event is present only in gap junctions. Treatment with protein kinase C activators led to phosphorylation at S368, S279/S282 and S262 with a shift in mobility in CHO, but not MDCK, cells. The shift was dependent on mitogen-activated protein kinase activity but not phosphorylation at S279/S282. However, phosphorylation at S262 could explain the shift. By defining these phosphorylation events, we have begun to sort out the critical signaling pathways that regulate gap junction function.  相似文献   

13.
The ovarian follicle in mammals is a functional syncytium, with the oocyte being coupled with the surrounding cumulus granulosa cells, and the cumulus cells being coupled with each other and with the mural granulosa cells, via gap junctions. The gap junctions coupling granulosa cells in mature follicles contain several different connexins (gap junction channel proteins), including connexins 32, 43, and 45. Connexin43 immunoreactivity can be detected from the onset of folliculogenesis just after birth and persists through ovulation. In order to assess the importance of connexin43 gap junctions for postnatal folliculogenesis, we grafted ovaries from late gestation mouse fetuses or newborn pups lacking connexin43 (Gja1(-)/Gja1(-)) into the kidney capsules of adult females and allowed them to develop for up to 3 weeks (this was necessitated by the neonatal lethality caused by the mutation). By the end of the graft period, tertiary (antral) follicles had developed in grafted normal (wild-type or heterozygote) ovaries. Most follicles in Gja1(-)/Gja1(-) ovaries, however, failed to become multilaminar, with the severity of the effect depending on strain background. Dye transfer experiments indicated that intercellular coupling between granulosa cells is reduced, but not abolished, in the absence of connexin43, consistent with the presence of additional connexins. These results suggest that coupling between granulosa cells mediated specifically by connexin43 channels is required for continued follicular growth. Measurements of oocyte diameters revealed that oocyte growth in mutant follicles is retarded, but not arrested, despite the arrest of folliculogenesis. The mutant follicles are morphologically abnormal: the zona pellucida is poorly developed, the cytoplasm of both granulosa cells and oocytes is vacuolated, and cortical granules are absent from the oocytes. Correspondingly, the mutant oocytes obtained from 3-week grafts failed to undergo meiotic maturation and could not be fertilized, although half of the wild-type oocytes from 3-week grafted ovaries could be fertilized. We conclude that connexin43-containing gap junction channels are required for expansion of the granulosa cell population during the early stages of follicular development and that failure of the granulosa cell layers to develop properly has severe consequences for the oocyte.  相似文献   

14.
To investigate the interrelationship of inhibin alpha and growth differentiation factor 9 (GDF9) during early folliculogenesis, we generated mice lacking both inhibin alpha and GDF9. Our findings on these Inha Gdf9 double-mutant mice are as follows: 1). females develop ovarian tumors and a cachexia-like wasting syndrome, resembling mice lacking inhibin alpha alone. This indicates that the granulosa cells are competent to proliferate despite the lack of GDF9; 2). follicular development progresses to multiple-layer follicle stages before tumorigenesis. This demonstrates that the up-regulation of inhibin alpha in the Gdf9 knockout ovary directly prevents the proliferation of the granulosa cells at the primary follicle stage, an effect that is released in the absence of inhibin alpha; 3). a morphological theca forms around the preantral follicles with no detectable selective theca markers [i.e. 17alpha-hydroxylase (Cyp17), LH receptor (Lhr), and Kit]. These results indicate that the theca recruitment can occur independently of GDF9, but the differentiation of thecal cells is blocked; and 4). inhibin/activin subunits betaA, betaB, and Kit ligand (Kitl) mRNA are highly up-regulated, suggesting that the increased activins and KITL play functional roles in early folliculogenesis. Thus, GDF9 appears to function indirectly to regulate early granulosa cell proliferation and theca recruitment in vivo.  相似文献   

15.
16.
Ovarian granulosa cells arecoupled via gap junctions containing connexin43 (Cx43 or -1connexin). In the absence of Cx43, granulosa cells stop growing in anearly preantral stage. However, the fact that granulosa cells of maturefollicles express multiple connexins complicated interpretation of thisfinding. The present experiments were designed to clarify the role ofCx43 vs. these other connexins in the earliest stages offolliculogenesis. Dye injection experiments revealed that granulosacells from Cx43 knockout follicles are not coupled, and this wasconfirmed by ionic current injections. Furthermore, electron microscopyrevealed that gap junctions are extremely rare in mutant granulosacells. In contrast, mutant granulosa cells were able to form gapjunctions with wild-type granulosa cells in a dye preloading assay. Itwas concluded that mutant granulosa cells contain a population of connexons, composed of an unidentified connexin, that do not normally contribute to gap junctions. Therefore, although Cx43 is not the onlygap junction protein present in granulosa cells of early preantralfollicles, it is the only one that makes a significant contribution tointercellular coupling.

  相似文献   

17.
Lanthanum tracer and freeze-fracture electron microscope techniques were used to study junctional complexes between granulosa cells during the differentiation of the rabbit ovarian follicle. For convenience we refer to cells encompassing the oocyte, before antrum and gap junction formation, as follicle cells. After the appearance of an antrum and gap junctions we call the cells granulosa cells. Maculae adherentes are found at the interfaces of oocyte-follicle-granulosa cells throughout folliculogenesis. Gap junctions are first detected in follicles when the antrum appears. In early antral follicles typical large gap junctions are randomly distributed between granulosa cells. In freeze-fracture replicas, they are characterized by polygonally packed 90-Å particles arranged in rows separated by nonparticulate A-face membrane. A particle-sparse zone surrounds gap junctions and is frequently occupied by small particle aggregates of closely packed intramembranous particles. The gap junctions of granulosa cells appear to increase in size with further differentiation of the follicle. The granulosa cells of large Graafian follicles are adjoined by small and large gap junctions; annular gap junctions are also present. The large gap junctions are rarely surrounded by a particle-free zone on their A-faces, but are further distinguished by particle rows displaying a higher degree of organization.  相似文献   

18.
Characterization of integrin expression in the mouse ovary   总被引:7,自引:0,他引:7  
Integrin alpha:beta heterodimers mediate cell contacts to the extracellular matrix and initiate intracellular signaling cascades in response to a variety of factors. Integrins interact with many determinants of cellular phenotypes and play roles in controlling the development, structural integrity, and function of every type of tissue. Despite their importance, little is known about the regulation of integrin subunits in the mammalian ovary and how they function in folliculogenesis. To determine their relevance to ovarian physiology, we have studied the expression of integrin subunit mRNAs by Northern blot analysis and in situ hybridization in ovaries of wild-type, growth differentiation factor 9 (Gdf 9) knockout, FSHbeta (Fshb) knockout, and inhibin alpha (Inha) knockout mice. Integrin alpha6 mRNA is expressed in oocytes and granulosa cells of single-layer follicles and in oocytes and theca cells of multilayer follicles. Integrin alpha6 is highly expressed in Gdf 9 knockout ovaries, which are enriched in oocytes and primary (single layer) follicles because of a block at this stage of follicular development. Integrin alpha(v) mRNA is most highly expressed in the granulosa cells of multilayer growing follicles, and therefore only low levels of expression are detectable in the Gdf 9 knockout ovaries. Integrin beta1 mRNA exhibits a broad expression pattern in ovaries, including oocytes, granulosa cells, theca cells, and corpora lutea. Integrin beta3 mRNA is expressed in theca and interstitial cells and is upregulated in corpora lutea. It is nearly undetectable in ovaries of Fshb knockout mice, which develop preantral follicles but have no luteal cells. Integrin beta5 mRNA is predominantly expressed in granulosa cells of multilayer follicles. It is expressed at high levels in the Fshb knockout mice and in a compartmentalized manner in the granulosa cell/Sertoli cell tumors that develop in the Inha knockout mice. Specific integrins are associated with ovarian cellular phenotypes in mice, which raises intriguing possibilities as to integrin functions in oocyte competence, follicular development, luteinization, and granulosa cell proliferation.  相似文献   

19.
We have developed polyclonal antibodies (SA226P) to a peptide of the human connexin43 (Cx43) protein between amino acids 271 and 288 containing phosphorylated S279 and S282. Antibodies specific for the phosphorylated form of the peptide were isolated by double immunoaffinity chromatography and were characterised using proteins of the cell line WB-F344, known to contain large amounts of Cx43. SA226P recognises specifically the slowest migrating Cx43 band in immunoblots of proteins isolated from untreated cells. In immunofluorescence experiments SA226P scarcely stains the plasma membrane in untreated cells in contrast to a commercial antibody recognising all isoforms of the Cx43 protein. EGF or stress treatment of the cells results in a rapid increase in the phosphorylated forms of Cx43 as revealed by immunoblotting. Immunofluorescence experiments reveal that both phosphorylated and non-phosphorylated Cx43 could be found at the plasma membrane. Whether phosphorylation of S279/S282 takes place before or after incorporation of Cx43 into the membranes is so far unknown. More interestingly, confocal microscopy using our antibodies and a commercial antibody recognising all isoforms of Cx43 shows the coexistence of differentially phosphorylated forms of the protein at the plasma membrane. Our results indicate that MAP kinases erk1/2 are mainly responsible for this phosphorylation, as already published. Nevertheless, treatment of the cells with anisomycin, known to activate stress kinase p38 but not erk1/2, also results in a weak but reproducible Cx43 phosphorylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号