首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 1Current address: Biochemical Engineering Institute, Saarland University, Campus A 1.5, 66123 Saarbrücken, Germany Cysteine (Cys) has unique chemical properties of catalysis, metal chelation, and protein stabilization. While Cys biosynthesis is assumed to be very ancient, the actual time of origin of these metabolic pathways remains unknown. Here, we use the molecular clocks of protein folds and fold superfamilies to time the origin of Cys biosynthesis. We find that the tRNA-dependent biosynthetic pathway appeared ~3.5 billion years ago while the tRNA-independent counterpart emerged ~500 million years later. A deep analysis of the origins of Cys biosynthesis in the context of emerging biochemistry uncovers some intriguing features of the planetary environment of early Earth. Results suggest that iron-sulfur (Fe-S) proteins that use cysteinyl sulfur to bind iron atoms were not the first to arise in evolution. Instead, their origin coincides with the appearance of the first Cys biosynthetic pathway. It is therefore likely that Cys did not play an important role in the make up of primordial protein molecules and that Fe-S clusters were not part of active sites at the beginning of biological history.  相似文献   

2.
Abstract

Although cysteine (Cys) is beneficial to stabilize protein structures, it is not prevalent in ther-mophiles. For instance, the Cys contents in most thermophilic archaea are only around 0.7%. However, methanogenic archaea, no matter thermophilic or not, contain relatively abundant Cys, which remains elusive for a long time. Recently, Klipcan et al. correlated this intriguing property of methanogenic archaea with their unique tRNA-dependent Cys biosynthetic pathway. But, the deep reasons underlying the correlation are ambiguous. Considering the facts that free Cys is thermally labile and the tRNA-dependent Cys biosynthesis avoids the use of free Cys, we speculate that the unique Cys biosynthetic pathway represents a strategy to increase Cys contents by preventing it from thermal degradation, which may be relevant to the thermal adaptation of methanogenic archaeza ancestor.  相似文献   

3.
Camalexin (3-thiazol-2 -yl-indole) is the major phytoalexin found in Arabidopsis thaliana. Several key intermediates and corresponding enzymes have been identified in camalexin biosynthesis through mutant screening and biochemical experiments. Camalexin is formed when indole-3-acetonitrile (IAN) is catalyzed by the cytochrome P450 monooxygenase CYP71A13. Here, we demonstrate that the Ara- bidopsis GH3.5 protein, a multifunctional acetyl-amido synthetase, is involved in camalexin biosynthesis via conjugating indole-3-carboxylic acid (ICA) and cysteine (Cys) and regulating camalexin biosynthesis genes. Camalexin levels were increased in the activation-tagged mutant gh3.5-1D in both Col-0 and cyp71A13-2 mutant backgrounds after pathogen infection. The recombinant GH3.5 protein catalyzed the conjugation of ICA and Cys to form a possible intermediate indole-3-acyl-cysteinate (ICA(Cys)) in vitro. In support of the in vitro reaction, feeding with ICA and Cys increased camalexin levels in Col-0 and gh3.5-1D. Dihydrocamalexic acid (DHCA), the precursor of camalexin and the substrate for PAD3, was accumulated in gh3.5-1D/pad3-1, suggesting that ICA(Cys) could be an additional precursor of DHCA for camalexin biosynthesis. Furthermore, expression of the major camalexin biosynthesis genes CYP79B2, CYP71A12, CYP71A13 and PAD3 was strongly induced in gh3.5-1D. Our study suggests that GH3.5 is involved in camalexin biosynthesis through direct catalyzation of the formation of ICA(Cys), and upregulation of the major biosynthetic pathway genes.  相似文献   

4.
Su T  Xu J  Li Y  Lei L  Zhao L  Yang H  Feng J  Liu G  Ren D 《The Plant cell》2011,23(1):364-380
Camalexin, a major phytoalexin in Arabidopsis thaliana, consists of an indole ring and a thiazole ring. The indole ring is produced from Trp, which is converted to indole-3-acetonitrile (IAN) by CYP79B2/CYP79B3 and CYP71A13. Conversion of Cys(IAN) to dihydrocamalexic acid and subsequently to camalexin is catalyzed by CYP71B15. Recent studies proposed that Cys derivative, not Cys itself, is the precursor of the thiazole ring that conjugates with IAN. The nature of the Cys derivative and how it conjugates to IAN and subsequently forms Cys(IAN) remain obscure. We found that protein accumulation of multiple glutathione S-transferases (GSTs), elevation of GST activity, and consumption of glutathione (GSH) coincided with camalexin production. GSTF6 overexpression increased and GSTF6-knockout reduced camalexin production. Arabidopsis GSTF6 expressed in yeast cells catalyzed GSH(IAN) formation. GSH(IAN), (IAN)CysGly, and γGluCys(IAN) were determined to be intermediates within the camalexin biosynthetic pathway. Inhibitor treatments and mutant analyses revealed the involvement of γ-glutamyl transpeptidases (GGTs) and phytochelatin synthase (PCS) in the catabolism of GSH(IAN). The expression of GSTF6, GGT1, GGT2, and PCS1 was coordinately upregulated during camalexin biosynthesis. These results suggest that GSH is the Cys derivative used during camalexin biosynthesis, that the conjugation of GSH with IAN is catalyzed by GSTF6, and that GGTs and PCS are involved in camalexin biosynthesis.  相似文献   

5.
Withanolides are pharmaceutically important C(28)-phytochemicals produced in most prodigal amounts and diversified forms by Withania somnifera. Metabolic origin of withanolides from triterpenoid pathway intermediates implies that isoprenogenesis could significantly govern withanolide production. In plants, isoprenogenesis occurs via two routes: mevalonate (MVA) pathway in cytosol and non-mevalonate or DOXP/MEP pathway in plastids. We have investigated relative carbon contribution of MVA and DOXP pathways to withanolide biosynthesis in W. somnifera. The quantitative NMR-based biosynthetic study involved tracing of (13)C label from (13)C(1)-D-glucose to withaferin A in withanolide producing in vitro microshoot cultures of the plant. Enrichment of (13)C abundance at each carbon of withaferin A from (13)C(1)-glucose-fed cultures was monitored by normalization and integration of NMR signal intensities. The pattern of carbon position-specific (13)C enrichment of withaferin A was analyzed by a retro-biosynthetic approach using a squalene-intermediated metabolic model of withanolide (withaferin A) biosynthesis. The pattern suggested that both DOXP and MVA pathways of isoprenogenesis were significantly involved in withanolide biosynthesis with their relative contribution on the ratio of 25:75, respectively. The results have been discussed in a new conceptual line of biosynthetic load-driven model of relative recruitment of DOXP and MVA pathways for biosynthesis of isoprenoids. Key message The study elucidates significant contribution of DOXP pathway to withanolide biosynthesis. A new connotation of biosynthetic load-based role of DOXP/MVA recruitment in isoprenoid biosynthesis has been proposed.  相似文献   

6.
采用非甲羟戊酸途径抑制剂磷甘霉素和甲羟戊酸途径抑制剂洛伐它汀对中国红豆杉悬浮细胞培养物进行处理.在添加和未添加茉莉酸甲酯诱导的情况下,前者使紫杉醇产量减少了2/5和1/5,后者使紫杉醇产量减少了1/6和1/10,表明两种途径对紫杉醇的生物合成都具有贡献,其中非甲羟戊酸途径贡献较大;通过定量PCR技术分别检测两条途径的关键酶5-磷酸脱氧木酮糖还原异构酶(DXR)和3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)mRNA水平的变化,发现两种抑制剂都能够激活hmgr和dxr的转录,表明两种代谢途径之间存在协同作用,共同为紫杉醇的生物合成提供前体.  相似文献   

7.
SyrC, a component of the multienzyme system of syringomycin biosynthesis, has been shown to shuttle Thr/4-Cl-Thr between the thiolation domains SyrB1-T1 and SyrE-T8,9 by transiently linking it to Cys224 in the enzyme active site. We present data on the structure-function relationship in vivo of this protein and an in silico model of its three-dimensional structure. The biosynthetic activity of SyrC was not influenced when either Asp348 or His376 that together with Cys224 form a putative catalytic triad, were replaced with Ala, but it was abolished by the exchange Cys224 with Ser. The presence of the FLAG peptide on either the N- or C-terminus of the protein did not affect activity, whereas the deletion of the first 16 amino acids at the N-terminus or the insertion of Maltose Binding Protein abolished the production of syringomycin. We present the model of the three-dimensional structure of SyrC suggesting a homodimeric structure for the protein and biochemical data that are supportive of this model.  相似文献   

8.
Furaquinocin (FQ) A, produced by Streptomyces sp. strain KO-3988, is a natural polyketide-isoprenoid hybrid compound that exhibits a potent antitumor activity. As a first step toward understanding the biosynthetic machinery of this unique and pharmaceutically useful compound, we have cloned an FQ A biosynthetic gene cluster by taking advantage of the fact that an isoprenoid biosynthetic gene cluster generally exists in flanking regions of the mevalonate (MV) pathway gene cluster in actinomycetes. Interestingly, Streptomyces sp. strain KO-3988 was the first example of a microorganism equipped with two distinct mevalonate pathway gene clusters. We were able to localize a 25-kb DNA region that harbored FQ A biosynthetic genes (fur genes) in both the upstream and downstream regions of one of the MV pathway gene clusters (MV2) by using heterologous expression in Streptomyces lividans TK23. This was the first example of a gene cluster responsible for the biosynthesis of a polyketide-isoprenoid hybrid compound. We have also confirmed that four genes responsible for viguiepinol [3-hydroxypimara-9(11),15-diene] biosynthesis exist in the upstream region of the other MV pathway gene cluster (MV1), which had previously been cloned from strain KO-3988. This was the first example of prokaryotic enzymes with these biosynthetic functions. By phylogenetic analysis, these two MV pathway clusters were identified as probably being independently distributed in strain KO-3988 (orthologs), rather than one cluster being generated by the duplication of the other cluster (paralogs).  相似文献   

9.
Natural and directed biosynthesis of communesin alkaloids   总被引:1,自引:0,他引:1  
A role for tryptophan, acetate, mevalonate and methionine in the biosynthesis of communesins A and B, novel structurally-related and biologically-active Penicillium metabolites, has been established by isotopic labelling techniques. The incorporation of (14)C-tryptamine has also been demonstrated. dl-2-(13)C-tryptophan specifically enriched two carbon atoms in the (13)C NMR spectrum, thereby defining the intra-molecular arrangement of the two tryptophan-derived moieties. Feeding differentially labelled precursors during communesin production showed that tryptophan and methionine are involved early in the biosynthesis and that mevalonate provides an isoprene which is added later. A biosynthetic pathway involving an early precursor based on tryptophan is proposed. Indole-N-((13)C-methyl) tryptophan was not incorporated into communesins implying that N-methylation of tryptophan is not the first step of the communesin biosynthetic pathway. During deamination of indole-N-((13)C-methyl) tryptophan to 1-(13)C-methylindole-3-carboxylic acid communesin biosynthesis was inhibited. Of several halogenated indoles tested for directed biosynthesis, only dl-6-fluoro-tryptophan and 6-fluoro-tryptamine caused accumulation of the corresponding monofluoro-analogues of communesins A and B.  相似文献   

10.
Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific β-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.  相似文献   

11.
Bluensomycin (glebomycin) is an aminocyclitol antibiotic that differs structurally from dihydrostreptomycin in having bluensidine (1D-1-O-carbamoyl-3-guanidinodeoxy-scyllo-inositol) rather than streptidine (1,3-diguanidino-1,3-dideoxy-scyllo-inositol) as its aminocyclitol moiety. Extracts of the bluensomycin producer Streptomyces hygroscopicus form glebosus ATCC 14607 (S. glebosus) were found to have aminodeoxy-scyllo-inositol kinase activity but to lack 1D-1-guanidino-3-amino-1,3-dideoxy-scyllo-inositol kinase activity, showing for the first time that these two reactions in streptomycin producers must be catalyzed by different enzymes. S. glebosus extracts therefore possess the same five enzymes required for synthesis of guanidinodeoxy-scyllo-inositol from myo-inositol that are found in streptomycin producers but lack the next three of the four enzymes found in streptomycin producers that are required to synthesize the second guanidino group of streptidine-P. In place of a second guanidino group, S. glebosus extracts were found to catalyze a Mg2(+)-dependent carbamoylation of guanidinodeoxy-scyllo-inositol to form bluensidine, followed by a phosphorylation to form bluensidine-P. The novel carbamoyl-P:guanidinodeoxy-scyllo-inositol O-carbamoyltransferase and ATP:bluensidine phosphotransferase activities were not detected in streptomycin producers or in S. glebosus during its early rapid growth phase. Free bluensidine appears to be a normal intermediate in bluensomycin biosynthesis, in contrast to the case of streptomycin biosynthesis; in the latter, although exogenous streptidine can enter the pathway via streptidine-P, free streptidine is not an intermediate in the endogenous biosynthetic pathway. Comparison of the streptomycin and bluensomycin biosynthetic pathways provides a unique opportunity to evaluate those proposed mechanisms for the evolutionary acquisition of new biosynthetic capabilities that involve gene duplication and subsequent mutational changes in one member of the pair. In this model, there are at least five pairs of enzymes catalyzing analogous reactions that can be analyzed for homology at both the protein and DNA levels, including two putative pairs of inositol kinases detected in this study.  相似文献   

12.
Rebeiz  C.A.  Ioannides  I.M.  Kolossov  V.  Kopetz  K.J. 《Photosynthetica》1999,36(1-2):117-128
A unified multibranched chlorophyll (Chl) biosynthetic pathway is proposed. The proposed pathway takes into account the following considerations: (a) that the earliest putative precursor of monovinyl Chl b that has been detected in higher plants is monovinyl protochlorophyllide b, (b) that in most cases, Chl b biosynthesis has its roots in the Chl a biosynthetic pathway, (c) that the Chl a biosynthetic pathway exhibits extensive biosynthetic heterogeneity, (d) that Chl biosynthesis may proceed differently at different stages of greening and in different greening groups of plants. Integration of the Chl a and b biosynthetic pathways into a unified multibranched pathway offers the functional flexibility to account for the structural and biosynthetic complexity of photosynthetic membranes. In this context, it is proposed that the unified, multibranched Chl a/b biosynthetic pathway represents the template of a Chl-protein biosynthesis center where photosystem (PS) 1, PS2, and light-harvesting Chl-protein complexes are assembled into functional photosynthetic units. The individual biosynthetic routes or groups of two to three adjacent biosynthetic routes may constitute Chl-protein biosynthesis subcenters, where specific Chl-protein complexes are assembled. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

13.
Although the cytosolic isoprenoid biosynthetic pathway, mavolonate pathway, in plants has been known for many years, a new plastidial 1-deoxyxylulose-5-phosphate (DXP) pathway was identified in the past few years and its related intermediates, enzymes, and genes have been characterized quite recently. With a deep insight into the biosynthetic pathway of isoprenoids, investigations into the metabolic engineering of isoprenoid biosynthesis have started to prosper. In the present article, recent advances in the discoveries and regulatory roles of new genes and enzymes in the plastidial isoprenoid biosynthesis pathway are reviewed and examples of the metabolic engineering of cytosolic and plastidial isoprenoids biosynthesis are discussed.  相似文献   

14.
Using model compounds of the melanic component of neuromelanin (NM) prepared by tyrosinase oxidation at various ratios of dopamine (DA) and cysteine (Cys) under physiological conditions, we examined a biosynthetic pathway to NM and its aging process by following the time course of oxidation to NM and the subsequent structural modification of NM under various heating conditions. Chemical degradation methods were applied to the synthetic NM. 4‐Amino‐3‐hydroxyphenylethylamine (4‐AHPEA) and thiazole‐2,4,5‐tricarboxylic acid (TTCA) were used as markers of benzothiazine and benzothiazole units, respectively. By following the time course of the biosynthetic pathway of synthetic NM, we found that neurotoxic molecules are trapped in NM. An aging simulation of synthetic NM showed that benzothiazine units in NM are gradually converted to benzothiazole during the aging process. Thus, natural NM was found to be similar to aged (heated) NM prepared from a 2:1 molar ratio of DA and Cys.  相似文献   

15.
16.
Spirochetes of the genus Leptospira have previously been shown to use an unusual pathway to synthesize isoleucine. For reasons of convenience, we assume that only one unusual pathway is found in the genus, and we refer to it as the pyruvate pathway. We determined the distribution of this pyruvate pathway in representatives of the seven Leptospira DNA hybridization groups. Our method included labeling the representative strains with radioactive carbon dioxide and other radioactive precursors, fractionating the cells, and determining the specific activities (counts detected per nanomole) of the amino acids found in the protein fractions. On the basis of isoleucine biosynthesis, we found that the genus can be classified as follows: class I primarily, if not exclusively, uses the well-known threonine pathway; class II uses mostly the pyruvate pathway, with a minor amount of isoleucine being synthesized via the threonine pathway; and class III uses the pyruvate pathway exclusively. No relationship appears to exist between the degree of DNA hybridization and the classes of isoleucine biosynthesis. Although the precise intermediates on the pyruvate pathway are unknown, the origin of the carbon skeleton of isoleucine synthesized by this pathway is consistent with a borrowing of the leucine biosynthetic enzymes. However, we found that the pyruvate pathway is not controlled by leucine and that the two isoleucine pathways are independently regulated. Finding major and highly evolved multiple biosynthetic pathways of a specific amino acid within one genus is unique, and, conceivably, represents phylogenetic diversity within Leptospira.  相似文献   

17.
Methanopterin is a folate analog involved in the C1 metabolism of methanogenic archaea, sulfate-reducing archaea, and methylotrophic bacteria. Although a pathway for methanopterin biosynthesis has been described in methanogens, little is known about the enzymes and genes involved in the biosynthetic pathway. The enzyme beta-ribofuranosylaminobenzene 5'-phosphate synthase (beta-RFAP synthase) catalyzes the first unique step to be identified in the pathway of methanopterin biosynthesis, namely, the condensation of p-aminobenzoic acid with phosphoribosylpyrophosphate to form beta-RFAP, CO2, and inorganic pyrophosphate. The enzyme catalyzing this reaction has not been purified to homogeneity, and the gene encoding beta-RFAP synthase has not yet been identified. In the present work, we report on the purification to homogeneity of beta-RFAP synthase. The enzyme was purified from the methane-producing archaeon Methanosarcina thermophila, and the N-terminal sequence of the protein was used to identify corresponding genes from several archaea, including the methanogen Methanococcus jannaschii and the sulfate-reducing archaeon Archaeoglobus fulgidus. The putative beta-RFAP synthase gene from A. fulgidus was expressed in Escherichia coli, and the enzymatic activity of the recombinant gene product was verified. A BLAST search using the deduced amino acid sequence of the beta-RFAP synthase gene identified homologs in additional archaea and in a gene cluster required for C1 metabolism by the bacterium Methylobacterium extorquens. The identification of a gene encoding a potential beta-RFAP synthase in M. extorquens is the first report of a putative methanopterin biosynthetic gene found in the Bacteria and provides evidence that the pathways of methanopterin biosynthesis in Bacteria and Archaea are similar.  相似文献   

18.
Although the cytosolic isoprenoid biosynthetic pathway, mavolonate pathway, in plants has been known for many years, a new plastidial 1-deoxyxylulose-5-phosphate (DXP) pathway was identified in the past few years and its related intermediates, enzymes, and genes have been characterized quite recently.With a deep insight into the biosynthetic pathway of isoprenoids, investigations into the metabolic engineering of isoprenoid biosynthesis have started to prosper. In the present article, recent advances in the discoveries and regulatory roles of new genes and enzymes in the plastidial isoprenoid biosynthesis path way are reviewed and examples of the metabolic engineering of cytosolic and plastidial isoprenoids biosnthesis are discussed.  相似文献   

19.
Abscisic acid (ABA) is a plant hormone which plays an important role in seed development and dormancy and in plant response to environmental stresses. An ABA-deficient mutant of Nicotiana plumbaginifolia, aba2, was isolated by transposon tagging using the maize Activator transposon. The aba2 mutant exhibits precocious seed germination and a severe wilty phenotype. The mutant is impaired in the first step of the ABA biosynthesis pathway, the zeaxanthin epoxidation reaction. ABA2 cDNA is able to complement N.plumbaginifolia aba2 and Arabidopsis thaliana aba mutations indicating that these mutants are homologous. ABA2 cDNA encodes a chloroplast-imported protein of 72.5 kDa, sharing similarities with different mono-oxigenases and oxidases of bacterial origin and having an ADP-binding fold and an FAD-binding domain. ABA2 protein, produced in Escherichia coli, exhibits in vitro zeaxanthin epoxidase activity. This is the first report of the isolation of a gene of the ABA biosynthetic pathway. The molecular identification of ABA2 opens the possibility to study the regulation of ABA biosynthesis and its cellular location.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号