首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant species differ in their ecological amplitude, with some species occurring in very different habitats under strongly differentiated environmental conditions. We were interested in to what extent the occurrence of Linum catharticum in dry calcareous grasslands (Bromion) and wet litter meadows (Molinion), two habitats on opposing ends concerning, for example, moisture level, is reflected on the genetic and epigenetic level. Using AFLP (amplified fragment length polymorphisms) and MSAP (methylation sensitive amplification polymorphisms) analyses, we studied the genetic and epigenetic variation of L. catharticum from calcareous grasslands and litter meadows. From each habitat, we included five study sites with 16 individuals per sampling location. We observed lower genetic than epigenetic diversity, but considerable differentiation among habitats, which was stronger on the genetic than the epigenetic level. Additionally, we observed a strong correlation of genetic and epigenetic distance, irrespective of geographic distance. The dataset included a large portion of fragments exclusively found in individuals from one or the other habitat. Some epigenetic fragments even occurred in different methylation states depending on the habitat. We conclude that environmental effects act on both the genetic and epigenetic level, producing the clear differentiation among plant individuals from calcareous grasslands and litter meadows. These results may also point into the direction of ecotype formation in this species.  相似文献   

2.
Environmentally induced phenotypic plasticity is thought to play an important role in the adaption of plant populations to heterogeneous habitat conditions, and yet the importance of epigenetic variation as a mechanism of adaptive plasticity in natural plant populations still merits further research. In this study, we investigated populations of Vitex negundo var. heterophylla (Chinese chastetree) from adjacent habitat types at seven sampling sites. Using several functional traits, we detected a significant differentiation between habitat types. With amplified fragment length polymorphisms (AFLP) and methylation‐sensitive AFLP (MSAP), we found relatively high levels of genetic and epigenetic diversity but very low genetic and epigenetic differences between habitats within sites. Bayesian clustering showed a remarkable habitat‐related differentiation and more genetic loci associated with the habitat type than epigenetic, suggesting that the adaptation to the habitat is genetically based. However, we did not find any significant correlation between genetic or epigenetic variation and habitat using simple and partial Mantel tests. Moreover, we found no correlation between genetic and ecologically relevant phenotypic variation and a significant correlation between epigenetic and phenotypic variation. Although we did not find any direct relationship between epigenetic variation and habitat environment, our findings suggest that epigenetic variation may complement genetic variation as a source of functional phenotypic diversity associated with adaptation to the heterogeneous habitat in natural plant populations.  相似文献   

3.
Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome‐wide methylation profiling using methylation‐sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome‐wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors.  相似文献   

4.
The mechanisms underlying heritable phenotypic divergence associated with adaptation in response to environmental stresses may involve both genetic and epigenetic variations. Several prior studies have revealed even higher levels of epigenetic variation than genetic variation. However, few population‐level studies have explored the effects of epigenetic variation on species with high levels of genetic diversity distributed across different habitats. Using AFLP and methylation‐sensitive AFLP markers, we tested the hypothesis that epigenetic variation may contribute to differences in plants occupying different habitats when genetic variation alone cannot fully explain adaptation. As a cosmopolitan invasive species, Phragmites australis (common reed) together with high genetic diversity and remarkable adaptability has been suggested as a model for responses to global change and indicators of environmental fluctuations. We found high levels of genetic and epigenetic diversity and significant genetic/epigenetic structure within each of 12 studied populations sampled from four natural habitats of P. australis. Possible adaptive epigenetic variation was suggested by significant correlations between DNA methylation‐based epigenetic differentiation and adaptive genetic divergence in populations across the habitats. Meanwhile, various AMOVAs indicated that some epigenetic differences may respond to various local habitats. A partial Mantel test was used to tease out the correlations between genetic/epigenetic variation and habitat after controlling for the correlation between genetic and epigenetic variations. We found that epigenetic diversity was affected mostly by soil nutrient availability, suggesting that at least some epigenetic differentiation occurred independently of genetic variation. We also found stronger correlations between epigenetic variation and phenotypic traits than between genetic variation and such traits. Overall, our findings indicate that genetically based differentiation correlates with heterogeneous habitats, while epigenetic variation plays an important role in ecological differentiation in natural populations of P. australis. In addition, our results suggest that when assessing global change responses of plant species, intraspecific variation needs to be considered.  相似文献   

5.
Why invasive species can rapidly adapt to novel environments is a puzzling question known as the genetic paradox of invasive species. This paradox is explainable in terms of transposable elements (TEs) activity, which are theorized to be powerful mutational forces to create genetic variation. Mikania micrantha, a noxious invasive weed, in this sense provides an excellent opportunity to test the explanation. The genetic and epigenetic variation of 21 invasive populations of M. micrantha in southern China have been examined by using transposon display (TD) and transposon methylation display (TMD) techniques to survey 12 TE superfamilies. Our results showed that M. micrantha populations maintained an almost equally high level of TE‐based genetic and epigenetic variation and they have been differentiated into subpopulations genetically and epigenetically. A similar positive spatial genetic and epigenetic structure pattern was observed within 300 m. Six and seven TE superfamilies presented significant genetic and epigenetic isolation by distance (IBD) pattern. In total, 59 genetic and 86 epigenetic adaptive TE loci were identified. Of them, 51 genetic and 44 epigenetic loci were found to correlate with 25 environmental variables (including precipitation, temperature, vegetation coverage, and soil metals). Twenty‐five transposon‐inserted genes were sequenced and homology‐based annotated, which are found to be involved in a variety of molecular and cellular functions. Our research consolidates the importance of TE‐associated genetic and epigenetic variation in the rapid adaptation and invasion of M. micrantha.  相似文献   

6.
Epigenetic modifications, such as DNA methylation variation, can generate heritable phenotypic variation independent of the underlying genetic code. However, epigenetic variation in natural plant populations is poorly documented and little understood. Here, we test whether northward range expansion of obligate apomicts of the common dandelion (Taraxacum officinale) is associated with DNA methylation variation. We characterized and compared patterns of genetic and DNA methylation variation in greenhouse‐reared offspring of T. officinale that were collected along a latitudinal transect of northward range expansion in Europe. Genetic AFLP and epigenetic MS‐AFLP markers revealed high levels of local diversity and modest but significant heritable differentiation between sampling locations and between the southern, central and northern regions of the transect. Patterns of genetic and epigenetic variation were significantly correlated, reflecting the genetic control over epigenetic variation and/or the accumulation of lineage‐specific spontaneous epimutations, which may be selectively neutral. In addition, we identified a small component of DNA methylation differentiation along the transect that is independent of genetic variation. This epigenetic differentiation might reflect environment‐specific induction or, in case the DNA methylation variation affects relevant traits and fitness, selection of heritable DNA methylation variants. Such generated epigenetic variants might contribute to the adaptive capacity of individual asexual lineages under changing environments. Our results highlight the potential of heritable DNA methylation variation to contribute to population differentiation along ecological gradients. Further studies are needed using higher resolution methods to understand the functional significance of such natural occurring epigenetic differentiation.  相似文献   

7.
Invasive species frequently differentiate phenotypically in novel environments within a few generations, often even with limited genetic variation. For the invasive plants Solidago canadensis and S. gigantea, we tested whether such differentiation might have occurred through heritable epigenetic changes in cytosine methylation. In a 2‐year common‐garden experiment, we grew plants from seeds collected along a latitudinal gradient in their non‐native Central European range to test for trait differentiation and whether differentiation disappeared when seeds were treated with the demethylation agent zebularine. Microsatellite markers revealed no population structure along the latitudinal gradient in S. canadensis, but three genetic clusters in S. gigantea. Solidago canadensis showed latitudinal clines in flowering phenology and growth. In S. gigantea, the number of clonal offspring decreased with latitude. Although zebularine had a significant effect on early growth, probably through effects on cytosine methylation, latitudinal clines remained (or even got stronger) in plants raised from seeds treated with zebularine. Thus, our experiment provides no evidence that epigenetic mechanisms by selective cytosine methylation contribute to the observed phenotypic differentiation in invasive goldenrods in Central Europe.  相似文献   

8.
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.  相似文献   

9.
10.
猕猴桃倍性混合居群基因组遗传和表观遗传变异   总被引:1,自引:0,他引:1  
颜菱  刘义飞  黄宏文 《植物学报》2012,47(5):454-461
植物倍性混合居群的形成和维系常伴随着明显的基因组遗传及表观遗传变异。利用AFLP和MSAP两种分子标记探讨了中华猕猴桃复合体(Actinidia chinensis)倍性混合居群的遗传变异和结构及其基因组甲基化变异方式。结果表明, 该倍性混合居群具有较高的遗传和表观遗传多样性, 但两者之间没有明显的相关性。种群的遗传多样性与海拔呈显著的负相关(P<0.05), 但表观遗传多样性与海拔不具显著相关性。AMOVA分析显示, 主要的遗传和表观遗传分化出现在倍性小种内部(97.65% vs 99.84%, P<0.05); 同时, AFLP邻接聚类分析显示二者存在一定程度的倍性相关性, MSAP分析则未显示有明显的倍性相关性。进一步研究发现, 中华猕猴桃居群的总甲基化程度为24.86%, 且多倍体具有更多的甲基化位点变异。该研究结果为深入探讨猕猴桃倍性混合居群的形成和维系机制奠定了基础。  相似文献   

11.
Zhang X  Shiu SH  Shiu S  Cal A  Borevitz JO 《PLoS genetics》2008,4(3):e1000032
Whole genome tiling arrays provide a high resolution platform for profiling of genetic, epigenetic, and gene expression polymorphisms. In this study we surveyed natural genomic variation in cytosine methylation among Arabidopsis thaliana wild accessions Columbia (Col) and Vancouver (Van) by comparing hybridization intensity difference between genomic DNA digested with either methylation-sensitive (HpaII) or -insensitive (MspI) restriction enzyme. Single Feature Polymorphisms (SFPs) were assayed on a full set of 1,683,620 unique features of Arabidopsis Tiling Array 1.0F (Affymetrix), while constitutive and polymorphic CG methylation were assayed on a subset of 54,519 features, which contain a 5'CCGG3' restriction site. 138,552 SFPs (1% FDR) were identified across enzyme treatments, which preferentially accumulated in pericentromeric regions. Our study also demonstrates that at least 8% of all analyzed CCGG sites were constitutively methylated across the two strains, while about 10% of all analyzed CCGG sites were differentially methylated between the two strains. Within euchromatin arms, both constitutive and polymorphic CG methylation accumulated in central regions of genes but under-represented toward the 5' and 3' ends of the coding sequences. Nevertheless, polymorphic methylation occurred much more frequently in gene ends than constitutive methylation. Inheritance of methylation polymorphisms in reciprocal F1 hybrids was predominantly additive, with F1 plants generally showing levels of methylation intermediate between the parents. By comparing gene expression profiles, using matched tissue samples, we found that magnitude of methylation polymorphism immediately upstream or downstream of the gene was inversely correlated with the degree of expression variation for that gene. In contrast, methylation polymorphism within genic region showed weak positive correlation with expression variation. Our results demonstrated extensive genetic and epigenetic polymorphisms between Arabidopsis accessions and suggested a possible relationship between natural CG methylation variation and gene expression variation.  相似文献   

12.
13.
It has long been known that adaptive evolution can occur through genetic mutations in DNA sequence, but it is unclear whether adaptive evolution can occur through analogous epigenetic mechanisms, such as through DNA methylation. If epigenetic variation contributes directly to evolution, species under threat of disease, invasive competition, climate change or other stresses would have greater stores of variation from which to draw. We looked for evidence of natural selection acting on variably methylated DNA sites using population genomic analysis across three climatologically distinct populations of valley oaks. We found patterns of genetic and epigenetic differentiations that indicate local adaptation is operating on large portions of the oak genome. While CHG methyl polymorphisms are not playing a significant role and would make poor targets for natural selection, our findings suggest that CpG methyl polymorphisms as a whole are involved in local adaptation, either directly or through linkage to regions under selection.  相似文献   

14.
15.
Epigenetics is likely an important factor in morphological and physiological acclimation, phenotypic plasticity, and potentially ecological dynamics such as invasiveness. We propose that Phragmites australis is an ideal model species for studies of epigenetics as a factor in plant invasions and ecology due to natural clonal replication (controlling for genetic variation) and the co-occurrence of subspecies with distinct life history strategies such as differences in invasiveness. In earlier work, genotypes and constituent clonal ramets were identified using microsatellite markers. In this pilot study, we screened the same ramets for epigenetic variation with Methylation-Sensitive AFLPs (MS-AFLPs), a modified type of AFLP dependent on differentially methylation-sensitive restriction enzymes. We found a significant difference in epigenetic signatures between introduced and native subspecies, and found that introduced P. australis demonstrated more epigenetic variation than their native counterparts. In both subspecies we observed moderate variation between genotypes relative to the higher degree of epigenetic variation found within genotypes (among ramets), suggesting that epigenotype may be more closely aligned with microhabitat than within-subspecies genotype. Finally, we observed potential epigenetic variation by site. This is the first study to investigate natural variation in DNA methylation patterns of P. australis and establishes the baseline in our understanding of the ecological relevance of epigenetics in this species.  相似文献   

16.
Epigenetic mechanisms can affect ecologically important traits, even in the absence of genetic variation. Environmental factors can influence gene regulation through chemical modifications, such as DNA methylation, resulting in acclimation that can be transferred to subsequent cell generations both mitotically and meiotically. Clonal plants such as Populus tremuloides (aspen) show considerable promise as model species for the long-term in situ study of ecological epigenetics. The common replication of identical genotypes across heterogeneous environments permits within- and between-genotype comparisons while controlling for genetic makeup. With a long lifespan and limited natural selection resulting from sexual recombination, it is conceivable that epigenetic acclimation plays an important role in the long-term ecological success of aspen. This case study is the first in a series investigating the role of epigenetics in aspen ecology. We have established long-term permanent plots of aspen, identified (genotyped) clones and established the baseline epigenetic structure. Here we report the in situ epigenetic structure of two aspen stands. We find considerable epigenetic variation and significant differences within and among genotypes and sites, suggesting both genotype and environment influence the epigenotype.  相似文献   

17.
DNA甲基化是生物体内最为重要的表观遗传修饰形式之一,在生态学上的应用越来越广泛。在收集、整理生态表观遗传学相关文献的基础上,介绍了甲基化敏感扩增多态性技术(MSAP)的原理、优势与局限性及其在生态学上的应用和展望。MSAP因其应用广泛、操作简便等优点成为研究DNA甲基化水平的有力工具,特别是在探究生物体如何快速适应生境变化以及外来入侵生物如何突破遗传瓶颈等问题上。MSAP技术能够很好地揭示生物种群内部或种群之间的表观遗传差异,是对遗传多样性、遗传变异研究的有力补充。  相似文献   

18.
Epigenetic modifications are considered to have an important role in evolution. DNA methylation is one of the best studied epigenetic mechanisms and methylation variability is crucial for promoting phenotypic diversification of organisms in response to environmental variation. A critical first step in the assessment of the potential role of epigenetic variation in evolution is the identification of DNA methylation polymorphisms and their relationship with genetic variations in natural populations. However, empirical data is scant in animals, and particularly so in wild mammals. Bats are considered as bioindicators because of their sensitivity to environmental perturbations and they may present an opportunity to explore epigenetic variance in wild mammalian populations. Our study is the first to explore these questions in the female great roundleaf bat (Hipposideros armiger) populations using the methylation-sensitive amplified polymorphism (MSAP) technique. We obtained 868 MSAP sites using 18 primer combinations and found (1) a low genomic methylation level (21.3?% on average), but extensive DNA methylation polymorphism (90.2?%) at 5'-CCGG-3' sites; (2) epigenetic variation that is structured into distinct between- (29.8?%) and within- (71.2?%) population components, as does genetic variation; and (3) a significant correlation between epigenetic and genetic variations (P?相似文献   

19.
Variation of DNA methylation is thought to play an important role for rapid adjustments of plant populations to dynamic environmental conditions, thus compensating for the relatively slow response time of genetic adaptations. However, genetic and epigenetic variation of wild plant populations has not yet been directly compared in fast changing environments. Here, we surveyed populations of Viola elatior from two adjacent habitat types along a successional gradient characterized by strong differences in light availability. Using amplified fragment length polymorphisms (AFLP) and methylation‐sensitive amplification polymorphisms (MSAP) analyses, we found relatively low levels of genetic (Hgen = 0.19) and epigenetic (Hepi = 0.23) diversity and high genetic (?ST = 0.72) and epigenetic (?ST = 0.51) population differentiation. Diversity and differentiation were significantly correlated, suggesting that epigenetic variation partly depends on the same driving forces as genetic variation. Correlation‐based genome scans detected comparable levels of genetic (17.0%) and epigenetic (14.2%) outlier markers associated with site specific light availability. However, as revealed by separate differentiation‐based genome scans for AFLP, only few genetic markers seemed to be actually under positive selection (0–4.5%). Moreover, principal coordinates analyses and Mantel tests showed that overall epigenetic variation was more closely related to habitat conditions, indicating that environmentally induced methylation changes may lead to convergence of populations experiencing similar habitat conditions and thus may play a major role for the transient and/or heritable adjustment to changing environments. Additionally, using a new MSAP‐scoring approach, we found that mainly the unmethylated (?ST = 0.60) and CG‐methylated states (?ST = 0.46) of epiloci contributed to population differentiation and putative habitat‐related adaptation, whereas CHG‐hemimethylated states (?ST = 0.21) only played a marginal role.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号