首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new 9.9 kb catabolic transposon, Tn-Dha1, containing the gene responsible for tetrachloroethene (PCE) reductive dechlorination activity, was isolated from Desulfitobacterium hafniense strain TCE1. Two fully identical copies of the insertion sequence ISDha1, a new member of the IS256 family, surround the gene cluster pceABCT, a truncated gene for another transposase and a short open reading frame with homology to a member of the twin-arginine transport system (tatA). Evidence was obtained by Southern blot for an alternative form of the transposon element as a circular molecule containing only one copy of ISDha1. This latter structure most probably represents a dead-end product of the transposition of Tn-Dha1. Strong indications for the transposition activity of ISDha1 were given by polymerase chain reaction (PCR) amplification and sequencing of the intervening sequence located between both inverted repeats (IR) of ISDha1 (IR junction). A stable genomic ISDha1 tandem was excluded by quantitative real-time PCR. Promoter mapping of the pceA gene, encoding the reductive dehalogenase, revealed the presence of a strong promoter partially encoded in the right inverted repeat of ISDha1. A sequence comparison with pce gene clusters from Desulfitobacterium sp. strains PCE-S and Y51 and from Dehalobacter restrictus, all of which show 100% identity for the pceAB genes, indicated that both Desulfitobacterium strains seem to possess the same transposon structure, whereas only the pceABCT gene cluster is conserved in D. restrictus.  相似文献   

2.
The membrane-bound tetrachloroethene reductive dehalogenase (PCE-RDase) (PceA; EC 1.97.1.8), the terminal component of the respiratory chain of Dehalobacter restrictus, was purified 25-fold to apparent electrophoretic homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band with an apparent molecular mass of 60 +/- 1 kDa, whereas the native molecular mass was 71 +/- 8 kDa according to size exclusion chromatography in the presence of the detergent octyl-beta-D-glucopyranoside. The monomeric enzyme contained (per mol of the 60-kDa subunit) 1.0 +/- 0.1 mol of cobalamin, 0.6 +/- 0.02 mol of cobalt, 7.1 +/- 0.6 mol of iron, and 5.8 +/- 0.5 mol of acid-labile sulfur. Purified PceA catalyzed the reductive dechlorination of tetrachloroethene and trichloroethene to cis-1,2-dichloroethene with a specific activity of 250 +/- 12 nkat/mg of protein. In addition, several chloroethanes and tetrachloromethane caused methyl viologen oxidation in the presence of PceA. The K(m) values for tetrachloroethene, trichloroethene, and methyl viologen were 20.4 +/- 3.2, 23.7 +/- 5.2, and 47 +/- 10 micro M, respectively. The PceA exhibited the highest activity at pH 8.1 and was oxygen sensitive, with a half-life of activity of 280 min upon exposure to air. Based on the almost identical N-terminal amino acid sequences of PceA of Dehalobacter restrictus, Desulfitobacterium hafniense strain TCE1 (formerly Desulfitobacterium frappieri strain TCE1), and Desulfitobacterium hafniense strain PCE-S (formerly Desulfitobacterium frappieri strain PCE-S), the pceA genes of the first two organisms were cloned and sequenced. Together with the pceA genes of Desulfitobacterium hafniense strains PCE-S and Y51, the pceA genes of Desulfitobacterium hafniense strain TCE1 and Dehalobacter restrictus form a coherent group of reductive dehalogenases with almost 100% sequence identity. Also, the pceB genes, which may code for a membrane anchor protein of PceA, and the intergenic regions of Dehalobacter restrictus and the three desulfitobacteria had identical sequences. Whereas the cprB (chlorophenol reductive dehalogenase) genes of chlorophenol-dehalorespiring bacteria are always located upstream of cprA, all pceB genes known so far are located downstream of pceA. The possible consequences of this feature for the annotation of putative reductive dehalogenase genes are discussed, as are the sequence around the iron-sulfur cluster binding motifs and the type of iron-sulfur clusters of the reductive dehalogenases of Dehalobacter restrictus and Desulfitobacterium dehalogenans identified by electron paramagnetic resonance spectroscopy.  相似文献   

3.
Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 microm and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35 degrees C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H(2), formate, L-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except formate and H(2)) are oxidized to acetate and CO(2). When L-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher (up to 1.4 micromol of chloride released. min(-1). mg of protein(-1)). Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumarate or nitrate.  相似文献   

4.
Desulfitobacterium spp. are ubiquitous organisms with a broad metabolic versatility, and some isolates have the ability to use tetrachloroethene (PCE) as terminal electron acceptor. In order to identify proteins involved in this organohalide respiration process, a comparative proteomic analysis was performed. Soluble and membrane-associated proteins obtained from cells of Desulfitobacterium hafniense strain TCE1 that were growing on different combinations of the electron donors lactate and hydrogen and the electron acceptors PCE and fumarate were analyzed. Among proteins increasingly expressed in the presence of PCE compared to fumarate as electron acceptor, a total of 57 proteins were identified by mass spectrometry analysis, revealing proteins involved in stress response and associated regulation pathways, such as PspA, GroEL, and CodY, and also proteins potentially participating in carbon and energy metabolism, such as proteins of the Wood-Ljungdahl pathway and electron transfer flavoproteins. These proteomic results suggest that D. hafniense strain TCE1 adapts its physiology to face the relative unfavorable growth conditions during an apparent opportunistic organohalide respiration.  相似文献   

5.
A strict anaerobic bacterium, Desulfitobacterium sp. strain Y51, is capable of very efficiently dechlorinating tetrachloroethene (PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-DCE) at concentrations as high as 960 microM and as low as 0.06 microM. Dechlorination was highly susceptible to air oxidation and to potential alternative electron acceptors, such as nitrite, nitrate or sulfite. The PCE reductive dehalogenase (encoded by the pceA gene and abbreviated as PceA dehalogenase) of strain Y51 was purified and characterized. The purified enzyme catalyzed the reductive dechlorination of PCE to cis-DCE at a specific activity of 113.6 nmol min(-1) mg protein(-1). The apparent K(m) values for PCE and TCE were 105.7 and 535.3 microM, respectively. In addition to PCE and TCE, the enzyme exhibited dechlorination activity for various chlorinated ethanes such as hexachloroethane, pentachloroethane, 1,1,1,2-tetrachloroethane and 1,1,2,2-tetrachloroethane. An 8.4-kb DNA fragment cloned from the Y51 genome revealed eight open reading frames, including the pceAB genes. Immunoblot analysis revealed that PceA dehalogenase is localized in the periplasm of Y51 cells. Production of PceA dehalogenase was induced upon addition of TCE. Significant growth inhibition of strain Y51 was observed in the presence of cis-DCE, More interestingly, the pce gene cluster was deleted with high frequency when the cells were grown with cis-DCE.  相似文献   

6.
7.
Trichloroethylene (TCE) was removed from soils by using a wheat rhizosphere established by coating seeds with a recombinant, TCE-degrading Pseudomonas fluorescens strain that expresses the tomA+ (toluene o-monooxygenase) genes from Burkholderia cepacia PR123(TOM23C). A transposon integration vector was used to insert tomA+ into the chromosome of P. fluorescens 2-79, producing a stable strain that expressed constitutively the monooxygenase at a level of 1.1 nmol/min · mg of protein (initial TCE concentration, 10 μM, assuming that all of the TCE was in the liquid) for more than 280 cell generations (36 days). We also constructed a salicylate-inducible P. fluorescens strain that degraded TCE at an initial rate of 2.6 nmol/min · mg of protein in the presence of 10 μM TCE [cf. B. cepacia G4 PR123(TOM23C), which degraded TCE at an initial rate of 2.5 nmol/min · mg of protein]. A constitutive strain, P. fluorescens 2-79TOM, grew (maximum specific growth rate, 0.78 h−1) and colonized wheat (3 × 106 CFU/cm of root) as well as wild-type P. fluorescens 2-79 (maximum specific growth rate, 0.77 h−1; level of colonization, 4 × 106 CFU/cm of root). Rhizoremediation of TCE was demonstrated by using microcosms containing the constitutive monooxygenase-expressing microorganism, soil, and wheat. These closed microcosms degraded an average of 63% of the initial TCE in 4 days (20.6 nmol of TCE/day · plant), compared to the 9% of the initial TCE removed by negative controls consisting of microcosms containing wild-type P. fluorescens 2-79-inoculated wheat, uninoculated wheat, or sterile soil.  相似文献   

8.
The detailed genetic analysis of mycoplasmas has long been hampered by the lack of appropriate tools for genetic manipulation. In this study, the transposon vector, mini-Tn4001tetM, was constructed containing the tnp gene, encoding a transposase gene in Staphylococcus aureus, two copies of the IS256 inverted repeat sequence (inner and outer) and the tetM gene, from the Enterococcus faecalis Tn916 transposon, conferring resistance to tetracycline. This vector was electro-transformed into Mycoplasma gallisepticum (MG). The recombinant cells were screened by tetracycline selection. The results indicated that the transposon vector could replicate in MG strain R by successive passages, indicating that MG is a potential vector for expressing protective antigens of other pathogens.  相似文献   

9.
Dissimilatory arsenate-reducing bacteria have been implicated in the mobilization of arsenic from arsenic-enriched sediments. An As(V)-reducing bacterium, designated strain GBFH, was isolated from arsenic-contaminated sediments of Lake Coeur d'Alene, Idaho. Strain GBFH couples the oxidation of formate to the reduction of As(V) when formate is supplied as the sole carbon source and electron donor. Additionally, strain GBFH is capable of reducing As(V), Fe(III), Se(VI), Mn(IV) and a variety of oxidized sulfur species. 16S ribosomal DNA sequence comparisons reveal that strain GBFH is closely related to Desulfitobacterium hafniense DCB-2(T) and Desulfitobacterium frappieri PCP-1(T). Comparative physiology demonstrates that D. hafniense and D. frappieri, known for reductively dechlorinating chlorophenols, are also capable of toxic metal or metalloid respiration. DNA-DNA hybridization and comparative physiological studies suggest that D. hafniense, D. frappieri, and strain GBFH should be united into one species. The isolation of an Fe(III)- and As(V)-reducing bacterium from Lake Coeur d'Alene suggests a mechanism for arsenic mobilization in these contaminated sediments while the discovery of metal or metalloid respiration in the genus Desulfitobacterium has implications for environments cocontaminated with arsenious and chlorophenolic compounds.  相似文献   

10.
Clostridium bifermentans strain DPH-1 reportedly dechlorinates tetrachloroethene (PCE) to cis-1,2-dichloroethene. Cultivation-based approaches resolved the DPH-1 culture into two populations: a nondechlorinating Clostridium sp. and PCE-dechlorinating Desulfitobacterium hafniense strain JH1. Strain JH1 carries pceA, encoding a PCE reductive dehalogenase, and shares other characteristics with Desulfitobacterium hafniense strain Y51.  相似文献   

11.
The Desulfitobacterium genus   总被引:1,自引:0,他引:1  
Desulfitobacterium spp. are strictly anaerobic bacteria that were first isolated from environments contaminated by halogenated organic compounds. They are very versatile microorganisms that can use a wide variety of electron acceptors, such as nitrate, sulfite, metals, humic acids, and man-made or naturally occurring halogenated organic compounds. Most of the Desulfitobacterium strains can dehalogenate halogenated organic compounds by mechanisms of reductive dehalogenation, although the substrate spectrum of halogenated organic compounds varies substantially from one strain to another, even with strains belonging to the same species. A number of reductive dehalogenases and their corresponding gene loci have been isolated from these strains. Some of these loci are flanked by transposition sequences, suggesting that they can be transmitted by horizontal transfer via a catabolic transposon. Desulfitobacterium spp. can use H2 as electron donor below the threshold concentration that would allow sulfate reduction and methanogenesis. Furthermore, there is some evidence that syntrophic relationships occur between Desulfitobacterium spp. and sulfate-reducing bacteria, from which the Desulfitobacterium cells acquire their electrons by interspecies hydrogen transfer, and it is believed that this relationship also occurs in a methanogenic consortium. Because of their versatility, desulfitobacteria can be excellent candidates for the development of anaerobic bioremediation processes. The release of the complete genome of Desulfitobacterium hafniense strain Y51 and information from the partial genome sequence of D. hafniense strain DCB-2 will certainly help in predicting how desulfitobacteria interact with their environments and other microorganisms, and the mechanisms of actions related to reductive dehalogenation.  相似文献   

12.
通过PCR的方法从六六六降解菌Sphingomonas sp.BHC-A扩增出完整的脱氯化氢酶基因linA.将其克隆到含有mini-Tn5的自杀性质粒pUT4K上,构建成质粒pUT/mini-Tn5-linA.通过三亲杂交,在辅助质粒RK600的帮助下,将pUT/mini-Tn5-linA转移到一株高效降解多菌灵菌株Rhodococcus sp.DJL-6中.利用mini-Tn5的转座作用将linA基因整合到DJL-6的染色体DNA上,得到工程菌株DJL-6A.该工程菌具有同时降解多菌灵和六六六的功能,且对于初始浓度为0.05 μg/mL和5 μg/mL的六六六的降解活性与亲本菌株BHC-A相当.在不加任何选择压力的条件下工程菌株进行连续传代,结果证明linA基因可以持续稳定的存在于宿主的染色体DNA上.  相似文献   

13.
14.
15.
The rhodanese protein domain is common throughout all kingdoms of life and is characterized by an active site cysteine residue that is able to bind sulfane sulfur and catalyse sulfur transfer. No unique function has been attributed to rhodanese-domain-containing proteins, most probably because of their diversity at both the level of sequence and protein domain architecture. In this study, we investigated the biochemical properties of an unusual rhodanese protein, PhsE, from Desulfitobacterium?hafniense strain TCE1 which we have previously shown to be massively expressed under anaerobic respiration with tetrachloroethene. The peculiarity of the PhsE protein is its domain architecture which is constituted of two rhodanese domains each with an active site cysteine. The N-terminal rhodanese domain is preceded by a lipoprotein signal peptide anchoring PhsE on the outside of the cytoplasmic membrane. In?vitro sulfur-transferase activity of recombinant PhsE variants was measured for both domains contrasting with other tandem-domain rhodaneses in which usually only the C-terminal domain has been found to be active. The genetic context of phsE shows that it is part of a six-gene operon displaying homology with gene clusters encoding respiratory molybdoenzymes of the PhsA/PsrA family, possibly involved in the reduction of sulfur compounds. Our data suggest, however, that the presence of sulfide in the medium is responsible for the high expression of PhsE in Desulfitobacterium, where it could play a role in the sulfur homeostasis of the cell.  相似文献   

16.
Xenorhabdus nematophilus is an insect pathogen that lives in a symbiotic association with a specific entomopathogenic nematode. During prolonged culturing, variant cells arise that are deficient in numerous properties. To understand the genetic mechanism underlying variant cell formation, a transposon mutagenesis approach was taken. Three phenotypically similar variant strains of X. nematophilus, each of which contained a single transposon insertion, were isolated. The insertions occurred at different locations in the chromosome. The variant strain, ANV2, was further characterized. It was deficient in several properties, including the ability to produce antibiotics and the stationary-phase-induced outer membrane protein, OpnB. Unlike wild-type cells, ANV2 produced lecithinase. The emergence of ANV2 from the nematode host was delayed relative to the emergence of the parental strain. The transposon in ANV2 had inserted in a gene designated var1, which encodes a novel protein composed of 121 amino acid residues. Complementation analysis confirmed that the pleiotropic phenotype of the ANV2 strain was produced by inactivation of var1. Other variant strains were not complemented by var1. These results indicate that inactivation of a single gene was sufficient to promote variant cell formation in X. nematophilus and that disruption of genetic loci other than var1 can result in the same pleiotropic phenotype.  相似文献   

17.
18.
This study demonstrates the ability of Desulfitobacterium spp. to utilize aliphatic sulfonates as terminal electron acceptors (TEA) for growth. Isethionate (2-hydroxyethanesulfonate) reduction by Desulfitobacterium hafniense resulted in acetate as well as sulfide accumulation in accordance with the expectation that the carbon portion of isethionate was oxidized to acetate and the sulfur was reduced to sulfide. The presence of a polypeptide, approximately 97 kDa, was evident in isethionate-grown cells of Desulfitobacterium hafniense, Desulfitobacterium sp. strain PCE 1, and the two sulfate-reducing bacteria (SRB)-Desulfovibrio desulfuricans IC1 (T. J. Lie, J. R. Leadbetter, and E. R. Leadbetter, Geomicrobiol. J. 15:135-149, 1998) and Desulfomicrobium norvegicum; this polypeptide was not detected when these bacteria were grown on TEA other than isethionate, suggesting involvement in its metabolism. The sulfate analogs molybdate and tungstate, effective in inhibiting sulfate reduction by SRB, were examined for their effects on sulfonate reduction. Molybdate effectively inhibited sulfonate reduction by strain IC1 and selectively inhibited isethionate (but not cysteate) reduction by Desulfitobacterium dehalogenans and Desulfitobacterium sp. strain PCE 1. Desulfitobacterium hafniense, however, grew with both isethionate and cysteate in the presence of molybdate. In contrast, tungstate only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium spp. Similarly, another inhibitor of sulfate reduction, 1,8-dihydroxyanthraquinone, effectively inhibited sulfate reduction by SRB but only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium hafniense.  相似文献   

19.
Tetrachloroethene (PCE) and trichloroethene (TCE) are prevalent groundwater contaminants that can be completely reductively dehalogenated by some "Dehalococcoides" organisms. A Dehalococcoides-organism-containing microbial consortium (referred to as ANAS) with the ability to degrade TCE to ethene, an innocuous end product, was previously enriched from contaminated soil. A whole-genome photolithographic microarray was developed based on the genome of "Dehalococcoides ethenogenes" 195. This microarray contains probes designed to hybridize to >99% of the predicted protein-coding sequences in the strain 195 genome. DNA from ANAS was hybridized to the microarray to characterize the genomic content of the ANAS enrichment. The microarray results revealed that the genes associated with central metabolism, including an apparently incomplete carbon fixation pathway, cobalamin-salvaging system, nitrogen fixation pathway, and five hydrogenase complexes, are present in both strain 195 and ANAS. Although the gene encoding the TCE reductase, tceA, was detected, 13 of the 19 reductive dehalogenase genes present in strain 195 were not detected in ANAS. Additionally, 88% of the genes in predicted integrated genetic elements in strain 195 were not detected in ANAS, consistent with these elements being genetically mobile. Sections of the tryptophan operon and an operon encoding an ABC transporter in strain 195 were also not detected in ANAS. These insights into the diversity of Dehalococcoides genomes will improve our understanding of the physiology and evolution of these bacteria, which is essential in developing effective strategies for the bioremediation of PCE and TCE in the environment.  相似文献   

20.
Many superfund sites are currently co-contaminated with organic pollutants such as trichloroethene (TCE) and heavy metals. A promising strategy to address these mixed-waste situations is the use of TCE-degrading rhizobacteria that will survive and thrive in soil heavily polluted with heavy metals. In this work, a gene coding for the metal-binding peptide, EC20, was introduced into rhizobacteria engineered for TCE degradation, resulting in strains with both metal accumulation and TCE degradation capabilities. EC20 was displayed onto the cell surface of Pseudomonas strain Pb2-1 and Rhizobium strain 10320D using an ice-nucleation protein (INP) anchor. Expression of EC20 was confirmed by Western blot analysis and cells with EC20 expression showed sixfold higher cadmium accumulation than non-engineered strains in the presence of 16 microM CdCl(2). As expected, the TCE degradation rate was reduced in the presence of cadmium for cells without EC20 expression. However, expression of EC20 (higher cadmium accumulation) completely restored the level of TCE degradation. These results demonstrated that EC20 expression enhanced not only cadmium accumulation but also reduced the toxic effect of cadmium on TCE degradation. We expect that similar improvements will be observed when these engineered rhizobacteria are inoculated onto plant roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号