共查询到20条相似文献,搜索用时 15 毫秒
1.
Improved biodistribution and radioimmunoimaging with poly(ethylene glycol)-DOTA-conjugated anti-CEA diabody 总被引:4,自引:0,他引:4
Li L Yazaki PJ Anderson AL Crow D Colcher D Wu AM Williams LE Wong JY Raubitschek A Shively JE 《Bioconjugate chemistry》2006,17(1):68-76
Diabodies are single chain antibody fragments (scFvs) that spontaneously form bivalent dimers of molecular size 50-55000. Radiolabeled diabodies are almost ideal tumor targeting agents due to their high avidity (bivalent) binding to tumor antigens and small size (50-55000) that leads to improved tumor-to-blood ratio compared to intact antibodies (150000). However, due to their high retention and metabolism in the kidney, radioiodine is the current radiolabel of choice for diabodies since radioiodine is rapidly excreted from the kidney once metabolized. We have previously shown that 111In-DOTA-diabody gives higher tumor uptake in nude mouse xenografts than 125I-diabody, but has extremely high kidney retention since its 111In-labeled metabolites are retained by and only slowly excreted from the kidney. When a diabody is conjugated to a bifunctional PEG-3400 derivative followed by reaction with cysteinyl-DOTA, the resulting product has an apparent molecular size of 75000 and a Stokes radius of 35 angstroms on size exclusion chromatography, compared to a Stokes radius of 25 angstroms for intact diabody. When radiolabeled, the conjugate gives high yields of 111In-labeled product, retains high immunoreactivity, and gives improved biodistributions (30-40%ID/g, 12-48 h) compared to 111In-DOTA-diabody (12-13%ID/g, 6-12 h). We show that the improved biodistribution is due to an increase in Stokes radius caused by the linear PEG-3400 since conjugation of diabody with multiple (PEG)12 linkers followed by reaction with cysteinyl-DOTA does not reduce kidney accumulation. We also show that 111In-cysteinyl-DOTA-PEG3400-diabody gives excellent tumor images in the nude mouse xenograft model and that 125I-PEG3400-diabody gives equivalent images to 125I-minibody (molecular size, 80000), but improved tumor-to-liver ratios, suggesting that this imaging agent can be used to image liver metastases. 相似文献
2.
Bonora GM Drioli S Ballico M Faccini A Corradini R Cogoi S Xodo L 《Nucleosides, nucleotides & nucleic acids》2007,26(6-7):661-664
The conjugation of a bioactive, fluorescent PNA sequence to high-molecular weight poly(ethylene glycol) (PEG) is described and the properties of the PEG-PNA conjugate are evaluated. 相似文献
3.
Nojima Y Suzuki Y Iguchi K Shiga T Iwata A Fujimoto T Yoshida K Shimizu H Takeuchi T Sato A 《Bioconjugate chemistry》2008,19(11):2253-2259
Lactoferrin (LF) is an iron-binding glycoprotein that possesses multifunctional biological activities. Recent reports from clinical trials suggest that LF is potentially effective as a therapeutic protein against cancer and gangrene. However, pharmaceutical proteins such as LF are unstable in vivo. Therefore, to improve stability, we developed mono-PEGylated bovine LF (20k-PEG-bLf) with branched 20 kDa (2 x 10 kDa) poly(ethylene glycol) (PEG). We examined in vitro activities such as iron binding, IL-6 cell based assay, and resistance to a proteolytic enzyme in artificial gastric fluid. The 20k-PEG-bLf protein was fully active in iron binding and exhibited 69.6 +/- 2.9% (mean +/- S.E., n = 6) of the original anti-inflammatory activity. The proteolytic half-life increased 2-fold over that of unmodified LF. In vivo pharmacokinetic analyses were performed to examine absorption from the intestinal epithelium and serum clearance. Direct administration of 20k-PEG-bLf (30 mg/kg) into rat stomachs demonstrated that the amount of absorption from the intestinal tract increased approximately 10-fold relative to unmodified LF. Intravenous injection of the protein (1 mg/kg) revealed that 20k-PEG-bLf prolongs serum half-life by approximately 5.4-fold, and that the area under the curve (AUC) was increased approximately 9.2-fold compared to that of unmodified LF. PEGylation improved the physical and pharmacokinetic properties of bovine LF. This is the first report on the use of bioconjugation of LF for the development of a promising oral pharmaceutical agent. 相似文献
4.
This protocol describes the synthesis of oligo(poly(ethylene glycol) fumarate) (OPF; 1-35 kDa; a polymer useful for tissue engineering applications) by a one-pot reaction of poly(ethylene glycol) (PEG) and fumaryl chloride. The procedure involves three parts: dichloromethane and PEG are first dried; the reaction step follows, in which fumaryl chloride and triethylamine are added dropwise to a solution of PEG in dichloromethane; and finally, the product solution is filtered to remove by-product salt, and the OPF product is twice crystallized, washed and dried under vacuum. The reaction is affected by the molecular weight of PEG and reactant molar ratio. The OPF product is cross-linked by radical polymerization by either a thermally induced or ultraviolet-induced radical initiator, and the physical properties of the OPF oligomer and resulting cross-linked hydrogel are easily tailored by varying PEG molecular weight. OPF hydrogels are injectable, they polymerize in situ and they undergo biodegradation by hydrolysis of ester bonds. The expected time required to complete this protocol is 6 d. 相似文献
5.
Two conjugates of an anti-HIV oligonucleotide (ODN) with different high molecular weight monomethoxy polyethylene glycols (MPEGs) have been tested for their activity as substrate towards RNase H. The MPEG does not impede the formation of the regular hybrid duplex with the target RNA sequence as pointed out by the persistence of the RNase H activity; thus, these derivatives stimulate the hydrolysis of RNA by the enzyme at the same site and with the same extent of cleavage as the native sequence. 相似文献
6.
A family of leukemia inhibitory factor-binding peptides that can act as antagonists when conjugated to poly(ethylene glycol) 总被引:1,自引:0,他引:1
Fairlie WD Uboldi AD Hemmings GJ Smith BJ Martin HM Morgan PO Baca M 《Biochemistry》2003,42(45):13193-13201
A panel of six na?ve 14-residue random peptide libraries displayed polyvalently on M13 phage was pooled and sorted against human leukemia inhibitory factor (LIF). After four rounds of selection, a single large family of peptides with the consensus sequence XCXXXXG(A/S)(D/E)(W/F)WXCF was found to bind specifically to LIF. Peptides within this family did not bind related members of the interleukin-6 family of cytokines, nor to murine LIF that has 80% sequence identity with human LIF. A representative peptide from this family was synthesized and found to bind to LIF with an affinity of approximately 300 nM. The phage-displayed form of this peptide was able to compete with the LIF receptor alpha chain (LIFR) for binding to LIF; however, the free synthetic peptide was unable to inhibit LIF-LIFR binding or inhibit LIF bioactivity in vitro. Using a panel of human/murine chimeric LIF molecules, the peptide-binding site on LIF was mapped to a groove located between the B and the C helices of the LIF structure, which is distinct from the surfaces involved in binding to receptor. To mimic the effect of the phage particle and convert the free peptide into an antagonist of LIFR binding, a 40 kDa poly(ethylene glycol) (PEG) moiety was conjugated to the synthetic LIF-binding peptide. This PEG-peptide conjugate was found to be both an antagonist of LIF-LIFR binding and of LIF signaling in engineered Ba/F3 cells expressing LIFR and the gp130 coreceptor. 相似文献
7.
3,4-Dihydroxyphenylalanine (DOPA) residues are known for their ability to impart adhesive and curing properties to mussel adhesive proteins. In this paper, we report the preparation of linear and branched DOPA-modified poly(ethylene glycol)s (PEG-DOPAs) containing one to four DOPA endgroups. Gel permeation chromatography-multiple-angle laser light scattering analysis of methoxy-PEG-DOPA in the presence of oxidizing reagents (sodium periodate, horseradish peroxidase, and mushroom tyrosinase) revealed the formation of oligomers of methoxy-PEG-DOPA, presumably resulting from oxidative polymerization of DOPA endgroups. In the case of PEG-DOPAs containing two or more DOPA endgroups, oxidative polymerization resulted in polymer network formation and rapid gelation. The amount of time required for gelation of aqueous PEG-DOPA solutions was found to be as little as 1 min and was dependent on the polymer architecture as well as the type and concentration of oxidizing reagent used. Analysis of reaction mixtures by UV-vis spectroscopy allowed the identification of reaction intermediates and the elucidation of reaction pathways. On the basis of the observed reaction intermediates, oxidation of the catechol side chain of DOPA resulted in the formation of highly reactive DOPA-quinone, which further reacted to form cross-linked products via one of several pathways, depending on the presence or absence of N-terminal protecting groups on the PEG-DOPA. N-Boc protected PEG-DOPA cross-linked via phenol coupling and quinone methide tanning pathways, whereas PEG-DOPA containing a free amino group cross-linked via a pathway that resembled melanogenesis. Similar differences were observed for the rate of gel formation as well as the molecular weight between cross-links ((-)M(c)), calculated using equilibrium swelling and the Flory-Rehner equation. 相似文献
8.
Human insulin was modified by covalent attachment of short-chain (750 and 2000 Da) methoxypoly (ethylene glycol) (mPEG) to the amino groups of either residue PheB1 or LysB29, resulting in four distinct conjugates: mPEG(750)-PheB1-insulin, mPEG(2000)-PheB1-insulin, mPEG(750)-LysB29-insulin, and mPEG(2000)-LysB29-insulin. Characterization of the conjugates by MALDI-TOF mass spectrometry and N-terminal protein sequence analyses verified that only a single polymer chain (750 or 2000 Da) was attached to the selected residue of interest (PheB1 or LysB29). Equilibrium sedimentation experiments were performed using analytical ultracentrifugation to quantitatively determine the association state(s) of insulin derivatives. In the concentration range studied, all four of the conjugates and Zn-free insulin exist as stable dimers while Zn(2+)-insulin was exclusively hexameric and Lispro was monomeric. In addition, insulin (conjugate) self-association was evaluated by circular dichroism in the near-ultraviolet wavelength range (320-250 nm). This independent method qualitatively suggests that mPEG-insulin conjugates behave similarly to Zn-free insulin in the concentration range studied and complements results from ultracentrifugation studies. The physical stability/resistance to fibrillation of mPEG-insulin conjugates in aqueous solution were assessed. The data proves that mPEG(750 and 2000)-PheB1-insulin conjugates are substantially more stable than controls but the mPEG(750 and 2000)-LysB29-insulin conjugates were only slightly more stable than commercially available preparations. Circular dichroism studies done in the far ultraviolet region confirm insulin's tertiary structure in aqueous solution is essentially conserved after mPEG conjugation. In vivo pharmacodynamic assays reveal that there is no loss in biological activity after conjugation of mPEG(750) to either position on the insulin B-chain. However, attachment of mPEG(2000) decreased the bioactivity of the conjugates to about 85% of Lilly's HumulinR formulation. The characterization presented in this paper provides strong testimony to the fact that attachment of mPEG to specific amino acid residues of insulin's B-chain improves the conjugates' physical stability without appreciable perturbations to its tertiary structure, self-association behavior, or in vivo biological activity. 相似文献
9.
Cristina Delgado Martin Malmsten James M. Van Alstine 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1997,692(2):26
Covalently grafting proteins with varying numbers (n) of poly(ethylene glycol) molecules (PEGs) often enhances their biomedical and industrial usefulness. Partition between the phases in aqueous polymer two-phase systems can be used to rapidly characterize polymer-protein conjugates in a manner related to various enhancements. The logarithm of the partition coefficient (K) approximates linearity over the range 0<n<x. However, x varies with the nature of the conjugate (e.g., protein molecular mass) and such data analysis does not facilitate the comparison of varied conjugates. The known behavior of surface localized PEGs suggests a better correlation should exist between log K and the weight fraction of polymer in PEG-protein conjugates. Data from four independent studies involving three proteins (granulocyte-macrophage colony stimulation factor, bovine serum albumin and immunoglobulin G) has been found to support this hypothesis. Although somewhat simplistic, ‘weight fraction’ based analysis of partition data appears robust enough to accommodate laboratory to laboratory variation in protein, polymer and phase system type. It also facilitates comparisons between partition data involving disparate polymer-protein conjugates. 相似文献
10.
Hybrid polymer-peptide conjugates offer the potential for incorporating biological function into synthetic materials. The secondary structure of short helical peptides, however, frequently becomes less stable when expressed independent of longer protein sequences or covalently linked with a conformationally disordered synthetic polymer. Recently, new amphipathic peptide-poly(ethylene glycol) conjugates were introduced (Shu, J., et al. Biomacromolecules 2008, 9, 2011), which displayed enhanced peptide helicity upon polymer functionalization while retaining tertiary coiled-coil associations. We report here a molecular simulation study of peptide helix stabilization by conjugation with poly(ethylene glycol). The polymer oxygens are shown to favorably interact with the cationic lysine side chains, providing an alternate binding site that protects against disruption of the peptide hydrogen-bonds that stabilize the helical conformation. When the peptide lysine charges are neutralized or poly(ethylene glycol) is conjugated with polyalanine, the polymer exhibits a negligible effect on the secondary structure. We also observe the interactions of poly(ethylene glycol) with the amphipathic peptide lysines tends to segregate the polymer away from the nonpolar face of the helix, suggesting no disruption of the interactions that drive tertiary contacts between helicies. 相似文献
11.
Here we describe the fabrication and preservation of mammalian cell-containing hydrogel microarrays that have potential applications in drug screening and pathogen detection. Hydrogel microstructures containing murine fibroblasts were fabricated on silicon substrates and subjected to a "stage-down" freezing process. The percent viability of both immortal and primary embryonic murine fibroblast cells within the gels was determined at various stages in the freezing process, showing that cells entrapped in hydrogel microstructures remained viable throughout the process. When compared to immortalized adherent cultures subjected to the same freezing process, cells within hydrogel structures had higher cell viabilities at all stages during preservation. Finally, the necessity of using a cryoprotectant, dimethyl sulfoxide (DMSO), was investigated. Cells in hydrogels were cryopreserved with and without DMSO. The addition of DMSO altered cell viability after the freeze-thaw process, enhancing viability in an immortalized cell line and decreasing viability in a primary cell line. 相似文献
12.
Mechanism of poly(ethylene glycol) interaction with proteins 总被引:10,自引:0,他引:10
Poly(ethylene glycol) (PEG) is one of the most useful protein salting-out agents. In this study, it has been shown that the salting-out effectiveness of PEG can be explained by the large unfavorable free energy of its interaction with proteins. Preferential interaction measurements of beta-lactoglobulin with poly(ethylene glycols) with molecular weights between 200 and 1000 showed preferential hydration of the protein for those with Mr greater than or equal to 400, the degree of hydration increasing with the increase in poly(ethylene glycol) molecular weight. The preferential interaction parameter had a strong cosolvent concentration dependence, with poly(ethylene glycol) 1000 having the sharpest decrease with an increase in concentration. The preferential hydration extrapolated to zero cosolvent concentration increased almost linearly with increasing size of the additive, suggesting steric exclusion as the major factor responsible for the preferential hydration. The poly(ethylene glycol) concentration dependence of the preferential interactions could be explained in terms of the nonideality of poly(ethylene glycol) solutions. All the poly(ethylene glycols) studied, when used at levels of 10-30%, decreased the thermal stability of beta-lactoglobulin, suggesting that caution must be exercised in the use of this additive at extreme conditions such as high temperature. 相似文献
13.
Two types of 32 arm star polymers incorporating amphiphilic block copolymer arms have been synthesized and characterized. The first type, stPCL-PEG 32, is composed of a polyamidoamine (PAMAM) dendrimer as the core with radiating arms having poly(epsilon-caprolactone) (PCL) as an inner lipophilic block in the arm and poly(ethylene glycol) (PEG) as an outer hydrophilic block. The second type, stPLA-PEG 32, is similar but with poly(L-lactide) (PLA) as the inner lipophilic block. Characterization with SEC, (1)H NMR, FTIR, and DSC confirmed the structure of the polymers. Micelle formation by both star copolymers was studied by fluorescence spectroscopy. The stPCL-PEG 32 polymer exhibited unimolecular micelle behavior. It was capable of solubilizing hydrophobic molecules, such as pyrene, in aqueous solution, while not displaying a critical micelle concentration. In contrast, the association behavior of stPLA-PEG 32 in aqueous solution was characterized by an apparent critical micelle concentration of ca. 0.01 mg/mL. The hydrophobic anticancer drug etoposide can be encapsulated in the micelles formed from both polymers. Overall, the stPCL-PEG 32 polymer exhibited a higher etoposide loading capacity (up to 7.8 w/w % versus 4.3 w/w % for stPLA-PEG 32) as well as facile release kinetics and is more suitable as a potential drug delivery carrier. 相似文献
14.
The biodistribution has been examined in mice of a range of synthetic branched polypeptides which are based on a polylysine backbone but which differ in ionic charge, side-chain structure, and molecular size. Polycationic polypeptides, regardless of their size or primary structure at the branches, were cleared rapidly from the circulation, the liver being the major site of clearance. Polypeptides with glutamic acid in the side chain, which would be amphoteric under physiological conditions, showed a significantly prolonged blood survival, and this was seen with polypeptides in the range of molecular weights of 46,000 up to 213,000. Such polypeptides provide a useful system with which to investigate the effect of structural parameters on the pharmacokinetic properties of carrier molecules and would allow the selection of candidate carriers for a variety of uses. 相似文献
15.
Poly(ethylene) glycol (PEG) is an excellent material to modify surfaces to resist non-specific protein adsorption. Linear PEG has been extensively studied both theoretically and experimentally and it has been found that resistance of PEG-coated surfaces to protein adsorption depends mainly on the molecular weight of the polymer and the surface grafting density. End-functionalized star-shaped PEGs allow for interpolymer crosslinking to form a dense layer. An excellent example of such a system consists of a 6-arm PEG/PPG (4 : 1) star polymer functionalized with isocyanate using IPDI. The end functionalization may be further biofunctionalized to recognize specific biomolecules such as streptavidin, His-tagged proteins, amino-terminated oligonucleotides and cell receptors. This functionalization may be patterned into specific geometries using stamping techniques or randomly distributed by statistical reaction of the end group with the biofunctional molecule in solution. The surface preparation uses simple spin-, dip- or spray-coating and produces smooth layers with low background fluorescence. These properties, together with the advantageous chemical properties of PEG, render the surfaces ideal for immobilizing proteins on surfaces with detection limits down to the single molecule level. Proteins immobilized on such surfaces are able to maintain their folded, functional form and are able to completely refold if temporarily exposed to denaturing conditions. Immobilized enzyme molecules were able to perform their function with the same activity as the enzyme in solution. Future directions of using surfaces coated with such crosslinked star polymers in highly sensitive and robust biotechnology applications will be discussed. 相似文献
16.
Synthesis of temperature-responsive heterobifunctional block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) 总被引:1,自引:0,他引:1
Heterobifunctional block copolymers of poly(ethylene glycol) (PEG) and poly(N-isopropylacrylamide) (PNIPAM) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAM using a macromolecular trithiocarbonate PEG-based chain transfer agent. The polymerization showed all the expected features of living radical polymerization and allowed the synthesis of copolymers with different lengths of the PNIPAM block. The synthesized block copolymers contained a carboxylic acid group from L-lysine at the focal point and a trithiocarbonate group at the terminus of the PNIPAM block. The trithiocarbonate functionality was converted into a thiol group and used for conjugation of biotin to the end of the PNIPAM block. The copolymers exhibited temperature-dependent association behavior in aqueous solution with a phase transition of approximately 32 degrees C. The described heterobifunctional block copolymers show promise for surface modifications with the potential for stimulus-controlled surface presentation of ligands attached to the terminus of the PNIPAM block. 相似文献
17.
A versatile method to fabricate polymeric matrixes for microarray applications is demonstrated. Several different design strategies are presented where a variety of organic films, such as plastic polymers and self-assembled monolayers (SAMs) on planar silica and gold substrates, act as supports for the graft polymerization procedure. An ensemble of poly(ethylene glycol) methacrylate monomers are combined to obtain a matrix with desired properties: low nonspecific binding and easily accessible groups for postimmobilization of ligands. The free radical graft polymerization process occurs under irradiation with UV light in the 254-266 nm range, which offers the possibility to introduce patterns by means of a photomask. The arrays are created on inert and homogeneous coatings prepared either by graft polymerization of a methoxy-terminated PEG-methacrylate or self-assembly of a methoxy-terminated oligo(ethylene glycol) thiol. Carboxylic acid groups, introduced in the array spots either during graft polymerization or upon wet chemical conversion of hydroxyls, grant the capability to immobilize proteins and other molecules via free amine groups. Immobilization of fluorescent species as well as biotin followed by exposure to a fluorescently labeled antibody directed toward biotin display both excellent integrity of the spots and low nonspecific binding to the surrounding framework. Beside patterns of uniform height and size, an array of spots with varying thickness (a sort of gradient) is demonstrated. Such gradient samples enable us to address critical issues regarding the mechanism(s) behind spatially resolved free radical polymerization of methacrylates. It also offers a convenient route to optimize the matrix properties with respect to thickness, loading capacity, protein diffusion/penetration, and nonspecific binding. 相似文献
18.
《Biocatalysis and Biotransformation》2013,31(4):113-118
AbstractCandida antarctica lipase catalyzes a number of elementary reactions like alcoholysis, ammoniolysis and aminolysis in poly(ethylene glycol) (PEG) media. Reaction rates were comparable to or better than those observed in conventional organic reaction media and ionic liquids. It is envisaged that PEGs could have added benefits for performing biotransformations with highly polar substrates, which are sparingly soluble in common organic solvents. 相似文献
19.
Novel amphiphilic six-arm star diblock copolymers based on biocompatible and biodegradable poly(delta-valerolactone) (PVL) and methoxy poly(ethylene glycol) (MePEG) were synthesized by a two-step process. First, the hydrophobic star-shaped PVL with hydroxyl terminated functional groups was synthesized using a multifunctional alcohol, dipentaerythritol (DPE), as the initiator and fumaric acid as the catalyst. The amphiphilic six-arm star copolymer of poly(delta-valerolactone)-b-methoxy poly(ethylene glycol), (PVL-b-MePEG)(6), was then synthesized by coupling the hydroxyl terminated six-arm PVL homopolymer with alpha-methoxy-omega-chloroformate-poly(ethylene glycol) (MePEG-COCl). (1)H NMR and GPC analyses confirmed the successful synthesis of star-shaped copolymers with predicted compositions and narrow molecular weight distributions. DSC analysis revealed that the glass transition temperatures of the star PVL homopolymers with M(n) between 5000 and 49 000 are not dependent on their molecular weights, whereas the melting temperatures of both the PVL homopolymers and the amphiphilic (PVL-b-MePEG)(6) copolymers increase with an increase in the PVL molecular weight. Micelles were prepared from the (PVL-b-MePEG)(6) copolymers via the dialysis method and found to have effective mean diameters ranging from 10 to 45 nm, depending on the copolymer composition. In addition, the (PVL-b-MePEG)(6) copolymers having lower PVL content were found to form micelles with a narrow monomodal size distribution, whereas the copolymers having higher PVL content tended to form aggregates with a bimodal size distribution. The noncytotoxicity of the copolymers was also confirmed in CHO-K1 fibroblast cells using a cell viability assay, indicating that the (PVL-b-MePEG)(6) copolymers are suitable for biomedical applications such as drug delivery. 相似文献
20.
Poly(ethylene glycol) (PEG) is a versatile biocompatible polymer. Improvement of its limited functionality (two chain termini) may significantly expand its current applications. In this communication, a simple and yet highly efficient strategy for the synthesis of linear multifunctional PEGs with "click" chemistry is reported. A short acetylene-terminated PEG was linked by 2,2-bis(azidomethyl)propane-1,3-diol using Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition in water at room temperature. High-molecular-weight PEGs with pendant hydroxyl groups were obtained and characterized by 1H NMR and size-exclusion chromatography. A prototype bone-targeting polymeric drug delivery system was also successfully synthesized based on this new method. It demonstrates strong biomineral-binding ability and the ease of incorporating therapeutic agents into the delivery system. This simple "click" reaction approach provides a useful tool for the development of novel functional polymers and their conjugates for biomedical applications. 相似文献