首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through their ability to regulate production of the key lipid messenger PtdIns(3,4,5)P(3), the class I phosphatidylinositol-3-OH kinases (PI(3)Ks) support many critical cell responses. They, in turn, can be regulated by cell-surface receptors through signals acting on either their adaptor subunits (for example, through phosphotyrosine or Gbetagammas) or their catalytic subunits (for example, through GTP-Ras). The relative significance of these controlling inputs is undefined in vivo. Here, we have studied the roles of Gbetagammas, the adaptor p101, Ras and the Ras binding domain (RBD) in the control of the class I PI(3)K, PI(3)Kgamma, in mouse neutrophils. Loss of p101 leads to major reductions in the accumulation of PtdIns(3,4,5)P(3), activation of protein kinase B (PKB) and in migration towards G-protein activating ligands in vitro, and to an aseptically inflamed peritoneum in vivo. Loss of sensitivity of PI(3)Kgamma to Ras unexpectedly caused similar reductions, but additionally caused a substantial loss in production of reactive oxygen species (ROS). We conclude that Gbetagammas, p101 and the Ras-RBD interaction all have important roles in the regulation of PI(3)Kgamma in vivo and that they can simultaneously, but differentially, control distinct PI(3)Kgamma effectors.  相似文献   

2.
Intracellular signals elicited by LDLs are likely to play a role in the pathogenesis associated with increased LDL blood levels. We have previously determined that LDL stimulation of human skin fibroblasts, used as a model system for adventitial fibroblasts, activates p38 mitogen-activated protein kinases (MAPKs), followed by IL-8 production and increased wound-healing capacity of the cells. The proximal events triggering these responses had not been characterized, however. Here we show that MAPK kinases MKK3 and MKK6, but not MKK4, are the upstream kinases responsible for the activation of the p38 MAPKs and stimulation of wound closure in response to LDLs. Phosphoinositide 3 kinases (PI3Ks) and Ras have been suggested to participate in lipoprotein-induced MAPK activation. However, specific PI3K inhibitors or expression of a dominant-negative form of Ras failed to blunt LDL-induced p38 MAPK activation. The classical LDL receptor does not participate in LDL signaling, but the contribution of other candidate lipoprotein receptors has not been investigated. Using cells derived from scavenger receptor class B type I (SR-BI) knockout mice or the BLT-1 SR-BI inhibitor, we now show that this receptor is required for LDLs to stimulate p38 MAPKs and to promote wound healing. Identification of MKK3/6 and SR-BI as cellular relays in LDL-mediated p38 activation further defines the signaling events that could participate in LDL-mediated pathophysiological responses.  相似文献   

3.
Rho and Arf family small GTPases are well-known regulators of cellular actin dynamics. We recently identified ARAP3, a member of the ARAP family of dual GTPase activating proteins (GAPs) for Arf and Rho family GTPases, in a screen for PtdIns(3,4,5)P(3) binding proteins. PtdIns(3,4,5)P(3) is the lipid product of class I phosphoinositide 3OH-kinases (PI3Ks) and is a signaling molecule used by growth factor receptors and integrins in the regulation of cell dynamics. We report here that as a Rho GAP, ARAP3 prefers RhoA as a substrate and that it can be activated in vitro by the direct binding of Rap proteins to a neighbouring Ras binding domain (RBD). This activation by Rap is GTP dependent and specific for Rap versus other Ras family members. We found no evidence for direct regulation of ARAP3's Rho GAP activity by PtdIns(3,4,5)P(3) in vitro, but PI3K activity was required for activation by Rap in a cellular context, suggesting that PtdIns(3,4,5)P(3)-dependent translocation of ARAP3 to the plasma membrane may be required for further activation by Rap. Our results indicate that ARAP3 is a Rap-effector that plays an important role in mediating PI3K-dependent crosstalk between Ras, Rho, and Arf family small GTPases.  相似文献   

4.
Class I phosphoinositide 3-kinases (PI3Ks) are implicated in many cellular responses controlled by receptor tyrosine kinases (RTKs), including actin cytoskeletal remodeling. Within this pathway, Rac is a key downstream target/effector of PI3K. However, how the signal is routed from PI3K to Rac is unclear. One possible candidate for this function is the Rac-activating complex Eps8-Abi1-Sos-1, which possesses Rac-specific guanine nucleotide exchange factor (GEF) activity. Here, we show that Abi1 (also known as E3b1) recruits PI3K, via p85, into a multimolecular signaling complex that includes Eps8 and Sos-1. The recruitment of p85 to the Eps8-Abi1-Sos-1 complex and phosphatidylinositol 3, 4, 5 phosphate (PIP3), the catalytic product of PI3K, concur to unmask its Rac-GEF activity in vitro. Moreover, they are indispensable for the activation of Rac and Rac-dependent actin remodeling in vivo. On growth factor stimulation, endogenous p85 and Abi1 consistently colocalize into membrane ruffles, and cells lacking p85 fail to support Abi1-dependent Rac activation. Our results define a mechanism whereby propagation of signals, originating from RTKs or Ras and leading to actin reorganization, is controlled by direct physical interaction between PI3K and a Rac-specific GEF complex.  相似文献   

5.
Phosphoinositide 3-kinases (PI3Ks) are represented by a family of eight distinct enzymes that can be divided into three classes based on their structure and function. The class I PI3Ks are heterodimeric enzymes that are regulated by recruitment to plasma membrane following receptor activation and which control numerous cellular functions, including growth, differentiation, migration, survival, and metabolism. New light has been shed on the biological role of individual members of the class I PI3Ks and their regulatory subunits through gene-targeting experiments. In addition, these experiments have brought the complexity of how PI3K activation is regulated into focus.  相似文献   

6.
Little is known about the physiological role and mechanism of activation of class II phosphoinositide 3-kinases (PI3Ks), although it has been shown that the PI3K-C2alpha isoform is activated by insulin. Using chimaeric receptor constructs which can be activated independently of endogenous receptors in transfected cells, we found that PI3K-C2alpha activity was stimulated to a greater extent by insulin receptors than IGF receptors in 3T3-L1 adipocytes. Activation of PI3K-C2alpha required an intact NPEY motif in the receptor juxtamembrane domain. We conclude that PI3K-C2alpha is a candidate for participation in insulin-specific intracellular signalling.  相似文献   

7.
The protein kinase Akt plays a central role in a number of key biological functions including protein synthesis, glucose homeostasis, and the regulation of cell survival or death. The mechanism by which tyrosine kinase growth factor receptors stimulate Akt has been recently defined. In contrast, the mechanism of activation of Akt by other cell surface receptors is much less understood. For G protein-coupled receptors (GPCRs), conflicting data suggest that these receptors stimulate Akt in a cell type-specific manner by a yet to be fully elucidated mechanism. Here, we took advantage of the availability of cells, where Akt activity could not be enhanced by agonists acting on this large family of cell surface receptors, such as NIH 3T3 cells, to investigate the pathway linking GPCRs to Akt. We present evidence that expression of phosphatidylinositol 3-kinase (PI3K) beta is necessary and sufficient to transmit signals from G proteins to Akt in these murine fibroblasts and that the activation of PI3Kbeta may represent the most likely mechanism whereby GPCRs stimulate Akt, as the vast majority of cells do not express PI3Kgamma, a known G protein-sensitive PI3K isoform. Furthermore, available evidence indicates that GPCRs activate Akt by a pathway distinct from that utilized by growth factor receptors, as it involves the tyrosine phosphorylation-independent activation of PI3Kbeta by G protein betagamma dimers.  相似文献   

8.
PI3K-Akt信号传导通路对糖代谢的调控作用   总被引:1,自引:0,他引:1  
磷脂酰肌醇3-激酶(PI3Ks)作为酪氨酸激酶和G蛋白偶联受体的主要下游分子,通过催化产生第二信使3,4,5-三磷酸磷脂酰肌醇(PIP3)并激活Akt、糖原合酶激酶-3(GSK-3)、Forkhead转录因子FoxO1、mTOR(mammalian target of rapamycin)等下游分子,将多种生长因子及细胞因子的信号传递到细胞内,从而对细胞增殖、分化、凋亡和葡萄糖转运等多种生物过程起重要的调节作用.PTEN(phosphatase and tensin homologue)是PI3K信号通路的重要负调节因子.本文将对PI3K-Akt信号通路在糖代谢中的作用予以简要综述.  相似文献   

9.
Class I phosphoinositide 3-kinases (PI(3)Ks) are activated through associated adaptor molecules in response to G protein-coupled and tyrosine kinase receptor signalling. They contain Ras-binding domains (RBDs) and can also be activated through direct association with active GTP-bound Ras. The ability of Ras to activate PI(3)K has been established in vitro and by overexpression analysis, but its relevance for normal PI(3)K function in vivo is unknown. The Drosophila class I PI(3)K, Dp110, is activated by nutrient-responsive insulin signalling and modulates growth, oogenesis and metabolism. To investigate the importance of Ras-mediated PI(3)K activation for normal PI(3)K function, we replaced Dp110 with Dp110(RBD), which is unable to bind to Ras but otherwise biochemically normal. We found that Ras-mediated Dp110 regulation is dispensable for viability. However, egg production, which requires large amounts of growth, is dramatically lowered in Dp110(RBD) flies. Furthermore, insulin cannot maximally activate PI(3)K signalling in Dp110(RBD) imaginal discs and Dp110(RBD) flies are small. Thus, Dp110 integrates inputs from its phosphotyrosine-binding adaptor and Ras to achieve maximal PI(3)K signalling in specific biological situations.  相似文献   

10.
Although the mechanisms involved in the activation of mitogen-activated protein kinases (MAPK) by receptor tyrosine kinases do not display an obvious role for phosphoinositide 3-kinases (PI3Ks), we have observed in the nontransformed cell line Vero stimulated with epidermal growth factor (EGF) that wortmannin and LY294002 nearly abolished MAPK activation. The effect was observed under strong stimulation and was independent of EGF concentration. In addition, three mutants of class Ia PI3Ks were found to inhibit MAPK activation to an extent similar to their effect on Akt/protein kinase B activation. To determine the importance of PI3K lipid kinase activity in MAPK activation, we have used the phosphatase PTEN and the pleckstrin homology domain of Tec kinase. Overexpression of these proteins, but not control mutants, was found to inhibit MAPK activation, suggesting that the lipid products of class Ia PI3K are necessary for MAPK signaling. We next investigated the location of PI3K in the MAPK cascade. Pharmacological inhibitors and dominant negative forms of PI3K were found to block the activation of Ras induced by EGF. Upstream from Ras, although association of Grb2 with its conventional effectors was independent of PI3K, we have observed that the recruitment of the tyrosine phosphatase SHP2 required PI3K. Because SHP2 was also essential for Ras activation, this suggested the existence of a PI3K/SHP2 pathway leading to the activation of Ras. In addition, we have observed that the docking protein Gab1, which is involved in PI3K activation during EGF stimulation, is also implicated in this pathway downstream of PI3K. Indeed, the association of Gab1 with SHP2 was blocked by PI3K inhibitors, and expression of Gab1 mutant deficient for binding to SHP2 was found to inhibit Ras stimulation without interfering with PI3K activation. These results show that, in addition to Shc and Grb2, a PI3K-dependent pathway involving Gab1 and SHP2 is essential for Ras activation under EGF stimulation.  相似文献   

11.
Activation of phosphoinositide 3-kinase gamma by Ras   总被引:4,自引:0,他引:4  
BACKGROUND: Type I phosphoinositide 3-kinases are responsible for the hormone-sensitive synthesis of the lipid messenger phosphatidylinositol(3,4,5)-trisphosphate. Type IA and IB subfamily members contain a Ras binding domain and are stimulated by activated Ras proteins both in vivo and in vitro. The mechanism of Ras activation of type I PI3Ks is unknown, in part because no robust in vitro assay of this event has been established and characterized. Other Ras effectors, such as Raf and phosphoinositide-phospholipase Cepsilon, have been shown to be translocated into the plasma membrane, leading to their activation.RESULTS: We show that posttranslationally lipid-modified, activated N-, H-, K-, and R-Ras proteins can potently and substantially activate PI3Kgamma when using a stripped neutrophil membrane fraction as a source of phospholipid substrate. We have found GTPgammaS-loaded Ras can significantly (6- to 8-fold) activate PI3Kgamma when using artificial phospholipid vesicles containing their substrate, and this effect is a result of both a decrease in apparent Km for phosphatidylinositol(4,5)-bisphosphate and an increase in the apparent Vmax. However, neither in vivo nor in the two in vitro assays of Ras activation of PI3Kgamma could we detect any evidence of a Ras-dependent translocation of PI3Kgamma to its source of phospholipid substrate.CONCLUSIONS: Our data suggest that Ras activate PI3Kgamma at the level of the membrane, by allosteric modulation and/or reorientation of the PI3Kgamma, implying that Ras can activate PI3Kgamma without its membrane translocation. This view is supported by structural work that has suggested binding of Ras to PI3Kgamma results in a change in the structure of the catalytic pocket.  相似文献   

12.
More than fifteen years after the first identification of a class II isoform of phosphoinositide 3-kinase (PI3K) in Drosophila melanoǵaster this subfamily remains the most enigmatic among all PI3Ks. What are the functions of these enzymes? What are their mechanisms of activation? Which downstream effectors are specifically regulated by these isoforms? Are class I and class II PI3Ks redundant or do they control different intracellular processes? And, more important, do class II PI3Ks have a role in human diseases? The recent increased interest on class II PI3Ks has started providing some answers to these questions but still a lot needs to be done to completely uncover the contribution of these enzymes to physiological processes and possibly to pathological conditions. Here we will summarise the recent findings on the alpha isoform of mammalian class II PI3Ks (PI3K-C2α ) and we will discuss the potential involvement of this enzyme in human diseases.  相似文献   

13.
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that can phosphorylate phosphaditylinositides leading to the cell type-specific regulation of intracellular protein kinases. PI3Ks are involved in a wide variety of cellular events including mitogenic signalling, regulation of growth and survival, vesicular trafficking, and control of the cytoskeleton. Some of these enzymes also act downstream of receptor tyrosine kinases or G-protein-coupled receptors. Using two strategies to inhibit PI3K signalling in embryos, we have analysed the role of PI3Ks during early Xenopus development. We find that a class 1A PI3K catalytic activity is required for the definition of trunk mesoderm during the blastula stages, but is less important for endoderm and prechordal plate mesoderm induction or for organiser formation. It is required in the FGF signalling pathway downstream of Ras and in parallel to the extracellular signal-regulated kinase (ERK) MAP kinases. In addition, our results show that ERKs and PI3Ks can synergise to convert ectoderm into mesoderm. These data provide the first evidence that class 1 PI3Ks are required for a specific set of patterning events in vertebrate embryos. Furthermore, they bring new insight into the FGF signalling cascade in Xenopus.  相似文献   

14.
磷脂酰肌醇3-激酶(PI3K)是一类脂质与蛋白激酶家族,其主要通过在磷脂酰肌醇的肌醇环三位进行磷酸化产生胞内重要的第二信使——磷脂酰肌醇-3,4,5-三磷酸(phosphatidyl inositol 3,4,5-trisphosphate,PIP3)而发挥作用.磷脂酰肌醇3-激酶γ/δ(PI3Kγ/δ)是I类PI3K家族中的成员,其主要表达于免疫相关细胞中,这2种PI3K亚型参与先天性与获得性免疫应答.因此,PI3Kγ/PI3Kδ被视为因免疫反应调控异常导致的炎症疾病的治疗药物靶点.目前,利用特异性抑制剂靶向干预PI3Kγ和/或PI3Kδ,成为炎症相关疾病治疗的新策略.本文简介了PI3Kγ与PI3Kδ在不同类型免疫细胞中的功能;并就采用小分子特异性抑制剂,靶向抑制PI3Kγ和/或PI3Kδ在各类炎症相关疾病中的治疗作用和效果进行综述.  相似文献   

15.
Type I phosphatidylinositol 4-phosphate 5-kinase (PI4P5K) catalyzes the phosphorylation of phosphatidylinositol 4 phosphate [PI(4)P] at carbon 5, producing phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2]. Phosphatidic acid (PA) activates PI4P5K in vitro and plays a central role in the activation of PIP5K pathways in vivo. This report demonstrates that actin fiber formation in murine fibroblasts involves PA activation of PIP5Ks and defines biochemical interactions between PA and the PIP5Ks. Inhibition of phospholipase D production of PA results in the loss of actin fibers. Overexpression of the beta isoform of the type I murine phosphatidylinositol 4-phosphate 5-kinase (mPIP5K-Ibeta) maintains actin fiber structure in the face of phospholipase D inhibition. PA activates mPIP5K-Ibeta by direct binding to mPIP5K-Ibeta through both electrostatic and hydrophobic interactions, with the fatty acid acyl chain length and degree of saturation acting as critical determinants of binding and activation. Furthermore, kinetic analysis suggests that phosphorylation of the PI(4)P substrate does not follow classical Michaelis-Menten kinetics. Instead, the kinetic data are consistent with a model in which mPIP5K-Ibeta initially binds to the lipid micelle and subsequently binds the PI(4)P substrate. In addition, the kinetics indicate substrate inhibition, suggesting that mPIP5K-Ibeta contains an inhibitory PI(4)P-binding site. These results suggest a model in which mPIP5K-Ibeta is surrounded by PI(4)P, but is unable to catalyze its conversion to PI(4,5)P2 unless PA is bound.  相似文献   

16.
Upon binding of platelet-derived growth factor (PDGF), the PDGF beta receptor (PDGFR) undergoes autophosphorylation on distinct tyrosine residues and binds several SH2-domain-containing signal relay enzymes, including phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein of Ras (RasGAP), and the tyrosine phosphatase SHP-2. In this study, we have investigated whether PDGF-dependent PI3K activation is affected by the other proteins that associate with the PDGFR. We constructed and characterized a series of PDGFR mutants which contain binding sites for PI3K as well as one additional protein, either RasGAP, SHP-2, or PLC gamma. While all of the receptors had wild-type levels of PDGF-stimulated tyrosine kinase activity and associated with comparable amounts of PI3K activity, their abilities to trigger accumulation of PI3K products in vivo differed dramatically. The wild-type receptor, as well as receptors that recruited PI3K or PI3K and SHP-2, were all capable of fully activating PI3K. In contrast, receptors that associated with PI3K and RasGAP or PI3K and PLC gamma displayed a greatly reduced ability to stimulate production of PI3K products. When this series of receptors was tested for their ability to activate Ras, we observed a strong positive correlation between Ras activation and PI3K activation. Further investigation of the relationship between Ras and PI3K indicated that Ras was upstream of PI3K. Thus, activation of PI3K requires not only binding of PI3K to the tyrosine-phosphorylated PDGFR but accumulation of GTP-bound Ras as well. Furthermore, PLC gamma and RasGAP negatively modulate PDGF-dependent PI3K activation. Finally, PDGF-stimulated signal relay can be regulated by altering the ratio of SH2-domain-containing enzymes that are recruited to the PDGFR.  相似文献   

17.
Although members of the class I phosphoinositide 3-kinases (PI3Ks) have been implicated in neutrophil inflammatory responses, the contribution of the individual PI3K isoforms in neutrophil activation has not been tractable with the non-selective inhibitors, LY294002 and wortmannin. We have developed a novel series of PI3K inhibitors that is selective for PI3K delta, an isoform expressed predominantly in hematopoietic cells. In addition to being selective between members of class I PI3Ks, representatives of these inhibitors such as IC980033 and IC87114 did not inhibit any protein kinases tested. Utilizing these inhibitors we report here a novel role for PI3K delta in neutrophil activation. Inhibition of PI3K delta with IC980033 and IC87114 blocked both fMLP- and TNF1 alpha-induced neutrophil superoxide generation and elastase exocytosis. The PI3K delta inhibitor IC87114 also blocked TNF1 alpha-stimulated elastase exocytosis from neutrophils in a mouse model of inflammation. To our knowledge, this is the first in vivo efficacy demonstration of a PI3K delta inhibitor in an animal model. Inhibition of PI3K delta, however, had no effect on in vitro neutrophil bactericidal activity and Fc gamma R-stimulated superoxide generation. Thus, PI3K delta plays an essential role in certain signaling pathways of neutrophil activation and appears to be an attractive target for the development of an anti-inflammatory therapeutic.  相似文献   

18.
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP(2) by phospholipase C (PLC) into the second messengers IP(3) and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP(2), has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP(2) by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.  相似文献   

19.
The RasGRPs are a family of Ras activators that possess diacylglycerol-binding C1 domains. In T cells, RasGRP1 links TCR signaling to Ras. B cells coexpress RasGRP1 and RasGRP3. Using Rasgrp1 and Rasgrp3 single and double null mutant mice, we analyzed the role of these proteins in signaling to Ras and Erk in B cells. RasGRP1 and RasGRP3 both contribute to BCR-induced Ras activation, although RasGRP3 alone is responsible for maintaining basal Ras-GTP levels in unstimulated cells. Surprisingly, RasGRP-mediated Ras activation is not essential for B cell development because this process occurs normally in double-mutant mice. However, RasGRP-deficient mice do exhibit humoral defects. Loss of RasGRP3 led to isotype-specific deficiencies in Ab induction in immunized young mice. As reported previously, older Rasgrp1-/- mice develop splenomegaly and antinuclear Abs as a result of a T cell defect. We find that such mice have elevated serum Ig levels of several isotypes. In contrast, Rasgrp3-/- mice exhibit hypogammaglobulinemia and show no signs of splenomegaly or autoimmunity. Double-mutant mice exhibit intermediate serum Ab titers, albeit higher than wild-type mice. Remarkably, double-mutant mice exhibit no signs of autoimmunity or splenomegaly. B cell proliferation induced by BCR ligation with or without IL-4 was found to be RasGRP1- and RasGRP3-dependent. However, the RasGRPs are not required for B cell proliferation per se, because LPS-induced proliferation is unaffected in double-mutant mice.  相似文献   

20.
Phosphoinositide 3-kinases (PI3Ks) are dual specificity lipid and protein kinases. While the lipid-dependent PI3K downstream signaling is well characterized, little is known about PI3K protein kinase signaling and structural determinants of lipid substrate specificity across the various PI3K classes. Here we show that sequences C-terminal to the PI3K ATP-binding site determine the lipid substrate specificity of the class IA PI3Kalpha (p85/p110alpha). Transfer of such activation loop sequences from class II PI3Ks, class III PI3Ks, and a related mammalian target of rapamycin (FRAP) into p110alpha turns the lipid substrate specificity of the resulting hybrid protein into that of the donor protein, while leaving the protein kinase activity unaffected. All resulting hybrids lacked the ability to produce phosphatidylinositol 3,4,5-trisphosphate in intact cells. Amino acid substitutions and structure modeling showed that two conserved positively charged (Lys and Arg) residues in the activation loop are crucial for the functionality of class I PI3Ks as phosphatidylinositol 4,5-bisphosphate kinases. By transient transfecion of 293 cells, we show that p110alpha hybrids, although unable to support lipid-dependent PI3K signaling, such as activation of protein kinase B/Akt and p70(S6k), retain the capability to associate with and phosphorylate insulin receptor substrate-1, with the same specificity and higher efficacy than wild type PI3Kalpha. Our data lay the basis for the understanding of the class I PI3K substrate selectivity and for the use of PI3Kalpha hybrids to dissect PI3Kalpha function as lipid and protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号