首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The essential cytoskeletal protein FtsZ assembles into a ring-like structure at the nascent division site and serves as a scaffold for the assembly of the prokaryotic division machinery. We previously characterized EzrA as an inhibitor of FtsZ assembly in Bacillus subtilis. EzrA interacts directly with FtsZ to prevent aberrant FtsZ assembly and cytokinesis at cell poles. EzrA also concentrates at the cytokinetic ring in an FtsZ-dependent manner, although its precise role at this position is not known. Here, we identified a conserved patch of amino acids in the EzrA C terminus that is essential for localization to the FtsZ ring. Mutations in this patch (designated the “QNR patch”) abolish EzrA localization to midcell but do not significantly affect EzrA's ability to inhibit FtsZ assembly at cell poles. ezrA QNR patch mutant cells exhibit stabilized FtsZ assembly at midcell and are significantly longer than wild-type cells, despite lacking extra FtsZ rings. These results indicate that EzrA has two distinct activities in vivo: (i) preventing aberrant FtsZ ring formation at cell poles through inhibition of de novo FtsZ assembly and (ii) maintaining proper FtsZ assembly dynamics within the medial FtsZ ring, thereby rendering it sensitive to the factors responsible for coordinating cell growth and cell division.  相似文献   

3.
In rod-shaped bacteria, septal peptidoglycan synthesis involves the late recruitment of the ftsI gene product (PBP3 in Escherichia coli) to the FtsZ ring. We show that in Caulobacter crescentus, PBP3 accumulates at the new pole at the beginning of the cell cycle. Fluorescence recovery after photobleaching experiments reveal that polar PBP3 molecules are, constantly and independently of FtsZ, replaced by those present in the cellular pool, implying that polar PBP3 is not a remnant of the previous division. By the time cell constriction is initiated, all PBP3 polar accumulation has disappeared in favour of an FtsZ-dependent localization near midcell, consistent with PBP3 function in cell division. Kymograph analysis of time-lapse experiments shows that the recruitment of PBP3 to the FtsZ ring is progressive and initiated very early on, shortly after FtsZ ring formation and well before cell constriction starts. Accumulation of PBP3 near midcell is also highly dynamic with a rapid exchange of PBP3 molecules between midcell and cellular pools. Localization of PBP3 at both midcell and pole appears multifactorial, primarily requiring the catalytic site of PBP3. Collectively, our results suggest a role for PBP3 in pole morphogenesis and provide new insights into the process of peptidoglycan assembly during division.  相似文献   

4.
In rod-shaped bacteria, a surprisingly large number of proteins are localized to the cell poles. Polar positioning of proteins is crucial to many fundamental cellular processes. Formation of the pole occurs at the time of a prior cell division event and involves coordination of the cell division machinery with septal placement of newly-synthesized peptidoglycan. Development of polar peptidoglycan and outer membrane depends on the formation of the cytokinetic FtsZ ring at midcell. By contrast, positioning of at least two polar proteins depends on signals independent of both the assembly of the FtsZ ring and the synthesis of septal and polar peptidoglycan. We propose a model for distinct but interrelated developmental pathways for polar cell envelope synthesis and positional information recognized by polar proteins.  相似文献   

5.
In Bacillus subtilis, FtsZ ring formation and cell division is favoured at the midcell because the inhibitor proteins MinC and MinD are indirectly restricted to the cell poles by the protein DivIVA. Here we identify MinJ, a topological determinant of medial FtsZ positioning that acts as an intermediary between DivIVA and MinD. Due to unrestricted MinD activity, cells mutated for minJ exhibited pleiotropic defects in homologous recombination, swarming motility and cell division. MinJ restricted MinD activity by localizing MinD to the cell poles through direct protein-protein interaction. MinJ itself localized to cell poles in a manner that was dependent on DivIVA. MinJ is conserved in other low G+C Gram-positive bacteria and may be an important component of cell division site selection in these organisms.  相似文献   

6.
Thanbichler M  Shapiro L 《Cell》2006,126(1):147-162
Correct positioning of the division plane is a prerequisite for the generation of daughter cells with a normal chromosome complement. Here, we present a mechanism that coordinates assembly and placement of the FtsZ cytokinetic ring with bipolar localization of the newly duplicated chromosomal origins in Caulobacter. After replication of the polarly located origin region, one copy moves rapidly to the opposite end of the cell in an MreB-dependent manner. A previously uncharacterized essential protein, MipZ, forms a complex with the partitioning protein ParB near the origin of replication and localizes with the duplicated origin regions to the cell poles. MipZ directly interferes with FtsZ polymerization, thereby restricting FtsZ ring formation to midcell, the region of lowest MipZ concentration. The cellular localization of MipZ thus serves the dual function of positioning the FtsZ ring and delaying formation of the cell division apparatus until chromosome segregation has initiated.  相似文献   

7.
The earliest event in bacterial cell division is the formation of a Z ring, composed of the tubulin-like FtsZ protein, at the division site at midcell. This ring then recruits several other division proteins and together they drive the formation of a division septum between two replicated chromosomes. Here we show that, in addition to forming a cytokinetic ring, FtsZ localizes in a helical-like pattern in vegetatively growing cells of Bacillus subtilis. FtsZ moves rapidly within this helix-like structure. Examination of FtsZ localization in individual live cells undergoing a single cell cycle suggests a new assembly mechanism for Z ring formation that involves a cell cycle-mediated multistep remodelling of FtsZ polymers. Our observations suggest that initially FtsZ localizes in a helical pattern, with movement of FtsZ within this structure occurring along the entire length of the cell. Next, movement of FtsZ in a helical-like pattern is restricted to a central region of the cell. Finally the FtsZ ring forms precisely at midcell. We further show that another division protein, FtsA, shown to interact with FtsZ prior to Z ring formation in B. subtilis, also localizes to similar helical patterns in vegetatively growing cells.  相似文献   

8.
Bacterial cell division commences with the assembly of the tubulin-like protein, FtsZ, at midcell to form a ring. Division site selection in rod-shaped bacteria is mediated by MinC and MinD, which form a division inhibitor. Bacillus subtilis DivIVA protein ensures that MinCD specifically inhibits division close to the cell poles, while allowing division at midcell. We have examined the localization of MinC protein and show that it is targeted to midcell and retained at the mature cell poles. This localization is reminiscent of the pattern previously described for MinD. Localization of MinC requires both early (FtsZ) and late (PbpB) division proteins, and it is completely dependent on MinD. The effects of a divIVA mutation on localization of MinC now suggest that the main role of DivIVA is to retain MinCD at the cell poles after division, rather than recruitment to nascent division sites. By overexpressing minC or minD, we show that both proteins are required to block division, but that only MinD needs to be in excess of wild-type levels. The results suggest a mechanism whereby MinD is required both to pilot MinC to the cell poles and to constitute a functional division inhibitor.  相似文献   

9.
FtsZ, a bacterial homolog of tubulin, forms a structural element called the FtsZ ring (Z ring) at the predivisional midcell site and sets up a scaffold for the assembly of other cell division proteins. The genetic aspects of FtsZ-catalyzed cell division and its assembly dynamics in Mycobacterium tuberculosis are unknown. Here, with an M. tuberculosis strain containing FtsZ(TB) tagged with green fluorescent protein as the sole source of FtsZ, we examined FtsZ structures under various growth conditions. We found that midcell Z rings are present in approximately 11% of actively growing cells, suggesting that the low frequency of Z rings is reflective of their slow growth rate. Next, we showed that SRI-3072, a reported FtsZ(TB) inhibitor, disrupted Z-ring assembly and inhibited cell division and growth of M. tuberculosis. We also showed that M. tuberculosis cells grown in macrophages are filamentous and that only a small fraction had midcell Z rings. The majority of filamentous cells contained nonring, spiral-like FtsZ structures along their entire length. The levels of FtsZ in bacteria grown in macrophages or in broth were comparable, suggesting that Z-ring formation at midcell sites was compromised during intracellular growth. Our results suggest that the intraphagosomal milieu alters the expression of M. tuberculosis genes affecting Z-ring formation and thereby cell division.  相似文献   

10.
The precise spatial and temporal control of bacterial cell division is achieved through the balanced actions of factors that inhibit assembly of the tubulin-like protein FtsZ at aberrant subcellular locations or promote its assembly at the future sites of division. In Bacillus subtilis, the membrane anchored cell division protein EzrA, interacts directly with FtsZ to prevent aberrant FtsZ assembly at cell poles and contributes to the inherently dynamic nature of the cytokinetic ring. Recent work suggests EzrA also serves as a scaffolding protein to coordinate lateral growth with cell wall biosynthesis through interactions with a host of proteins, a finding consistent with EzrA''s four extensive coiled-coil domains. In a previous study we identified a conserved patch of residues near EzrA''s C-terminus (the QNR motif) that are critical for maintenance of a dynamic cytokinetic ring, but dispensable for EzrA-mediated inhibition of FtsZ assembly at cell poles. In an extension of this work, here we report that EzrA''s two C-terminal coiled-coils function in concert with the QNR motif to mediate interactions with FtsZ and maintain the dynamic nature of the cytokinetic ring. In contrast, EzrA''s two N-terminal coiled-coils are dispensable for interaction between EzrA and FtsZ in vitro and in vivo, but required for EzrA mediated inhibition of FtsZ assembly at cell poles. Finally, chimeric analysis indicates that EzrA''s transmembrane anchor plays a generic role: concentrating EzrA at the plasma membrane where presumably it can most effectively modulate FtsZ assembly.  相似文献   

11.
In Escherichia coli, the Min system, consisting of three proteins, MinC, MinD, and MinE, negatively regulates FtsZ assembly at the cell poles, helping to ensure that the Z ring will assemble only at midcell. Of the three Min proteins, MinC is sufficient to inhibit Z-ring assembly. By binding to MinD, which is mostly localized at the membrane near the cell poles, MinC is sequestered away from the cell midpoint, increasing the probability of Z-ring assembly there. Previously, it has been shown that the two halves of MinC have two distinct functions. The N-terminal half is sufficient for inhibition of FtsZ assembly, whereas the C-terminal half of the protein is required for binding to MinD as well as to a component of the division septum. In this study, we discovered that overproduction of the C-terminal half of MinC (MinC(122-231)) could also inhibit cell division and that this inhibition was at the level of Z-ring disassembly and dependent on MinD. We also found that fusing green fluorescent protein to either the N-terminal end of MinC(122-231), the C terminus of full-length MinC, or the C terminus of MinC(122-231) perturbed MinC function, which may explain why cell division inhibition by MinC(122-231) was not detected previously. These results suggest that the C-terminal half of MinC has an additional function in the regulation of Z-ring assembly.  相似文献   

12.
The earliest event in bacterial cell division is the assembly of a tubulin-like protein, FtsZ, at mid-cell to form a ring. In rod-shaped bacteria, the Min system plays an important role in division site placement by inhibiting FtsZ ring formation specifically at the polar regions of the cell. The Min system comprises MinD and MinC, which form an inhibitor complex and, in Bacillus subtilis, DivIVA, which ensures that division is inhibited only in the polar regions. All three proteins localize to the division site at mid-cell and to cell poles. Their recruitment to the division site is dependent on localization of both 'early' and 'late' division proteins. We have examined the temporal and spatial localization of DivIVA relative to that of FtsZ during the first and second cell division after germination and outgrowth of B. subtilis spores. We show that, although the FtsZ ring assembles at mid-cell about halfway through the cell cycle, DivIVA assembles at this site immediately before cell division and persists there during Z-ring constriction and completion of division. We also show that both DivIVA and MinD localize to the cell poles immediately upon spore germination, well before a Z ring forms at mid-cell. Furthermore, these proteins were found to be present in mature, dormant spores. These results suggest that targeting of Min proteins to division sites does not depend directly on the assembly of the division apparatus, as suggested previously, and that potential polar division sites are blocked at the earliest possible stage in the cell cycle in germinated spores as a mechanism to ensure that equal-sized daughter cells are produced upon cell division.  相似文献   

13.
Precise temporal and spatial control of cell division is essential for progeny survival. The current general view is that precise positioning of the division site at midcell in rod-shaped bacteria is a result of the combined action of the Min system and nucleoid (chromosome) occlusion. Both systems prevent assembly of the cytokinetic Z ring at inappropriate places in the cell, restricting Z rings to the correct site at midcell. Here we show that in the bacterium Bacillus subtilis Z rings are positioned precisely at midcell in the complete absence of both these systems, revealing the existence of a mechanism independent of Min and nucleoid occlusion that identifies midcell in this organism. We further show that Z ring assembly at midcell is delayed in the absence of Min and Noc proteins, while at the same time FtsZ accumulates at other potential division sites. This suggests that a major role for Min and Noc is to ensure efficient utilization of the midcell division site by preventing Z ring assembly at potential division sites, including the cell poles. Our data lead us to propose a model in which spatial regulation of division in B. subtilis involves identification of the division site at midcell that requires Min and nucleoid occlusion to ensure efficient Z ring assembly there and only there, at the right time in the cell cycle.  相似文献   

14.
15.
The cytoskeletal GTPase FtsZ assembles at midcell, recruits the division machinery and directs envelope invagination for bacterial cytokinesis. ZapA, a conserved FtsZ‐binding protein, promotes Z‐ring stability and efficient division through a mechanism that is not fully understood. Here, we investigated the function of ZapA in Caulobacter crescentus. We found that ZapA is encoded in an operon with a small coiled‐coil protein we named ZauP. ZapA and ZauP co‐localized at the division site and were each required for efficient division. ZapA interacted directly with both FtsZ and ZauP. Neither ZapA nor ZauP influenced FtsZ dynamics or bundling, in vitro, however. Z‐rings were diffuse in cells lacking zapA or zauP and, conversely, FtsZ was enriched at midcell in cells overproducing ZapA and ZauP. Additionally, FtsZ persisted at the poles longer when ZapA and ZauP were overproduced, and frequently colocalized with MipZ, a negative regulator of FtsZ polymerization. We propose that ZapA and ZauP promote efficient cytokinesis by stabilizing the midcell Z‐ring through a bundling‐independent mechanism. The zauPzapA operon is present in diverse Gram‐negative bacteria, indicating a common mechanism for Z‐ring assembly.  相似文献   

16.
In Escherichia coli, spatiotemporal control of cell division occurs at the level of the assembly/disassembly process of the essential cytoskeletal protein FtsZ. A number of regulators interact with FtsZ and modulate the dynamics of the assembled FtsZ ring at the midcell division site. In this article, we report the identification of an FtsZ stabilizer, ZapC (Z-associated protein C), in a protein localization screen conducted with E. coli. ZapC colocalizes with FtsZ at midcell and interacts directly with FtsZ, as determined by a protein-protein interaction assay in yeast. Cells lacking or overexpressing ZapC are slightly elongated and have aberrant FtsZ ring morphologies indicative of a role for ZapC in FtsZ regulation. We also demonstrate the ability of purified ZapC to promote lateral bundling of FtsZ in a sedimentation reaction visualized by transmission electron microscopy. While ZapC lacks sequence similarity with other nonessential FtsZ regulators, ZapA and ZapB, all three Zap proteins appear to play an important role in FtsZ regulation during rapid growth. Taken together, our results suggest a key role for lateral bundling of the midcell FtsZ polymers in maintaining FtsZ ring stability during division.  相似文献   

17.
FtsZ ring formation at the chloroplast division site in plants   总被引:15,自引:0,他引:15  
Among the events that accompanied the evolution of chloroplasts from their endosymbiotic ancestors was the host cell recruitment of the prokaryotic cell division protein FtsZ to function in chloroplast division. FtsZ, a structural homologue of tubulin, mediates cell division in bacteria by assembling into a ring at the midcell division site. In higher plants, two nuclear-encoded forms of FtsZ, FtsZ1 and FtsZ2, play essential and functionally distinct roles in chloroplast division, but whether this involves ring formation at the division site has not been determined previously. Using immunofluorescence microscopy and expression of green fluorescent protein fusion proteins in Arabidopsis thaliana, we demonstrate here that FtsZ1 and FtsZ2 localize to coaligned rings at the chloroplast midpoint. Antibodies specific for recognition of FtsZ1 or FtsZ2 proteins in Arabidopsis also recognize related polypeptides and detect midplastid rings in pea and tobacco, suggesting that midplastid ring formation by FtsZ1 and FtsZ2 is universal among flowering plants. Perturbation in the level of either protein in transgenic plants is accompanied by plastid division defects and assembly of FtsZ1 and FtsZ2 into filaments and filament networks not observed in wild-type, suggesting that previously described FtsZ-containing cytoskeletal-like networks in chloroplasts may be artifacts of FtsZ overexpression.  相似文献   

18.
The tubulin homolog FtsZ forms a polymeric membrane-associated ring structure (Z ring) at midcell that establishes the site of division and provides an essential framework for the localization of a multiprotein molecular machine that promotes division in Escherichia coli. A number of regulatory proteins interact with FtsZ and modulate FtsZ assembly/disassembly processes, ensuring the spatiotemporal integrity of cytokinesis. The Z-associated proteins (ZapA, ZapB, and ZapC) belong to a group of FtsZ-regulatory proteins that exhibit functionally redundant roles in stabilizing FtsZ-ring assembly by binding and bundling polymeric FtsZ at midcell. In this study, we report the identification of ZapD (YacF) as a member of the E. coli midcell division machinery. Genetics and cell biological evidence indicate that ZapD requires FtsZ but not other downstream division proteins for localizing to midcell, where it promotes FtsZ-ring assembly via molecular mechanisms that overlap with ZapA. Biochemical evidence indicates that ZapD directly interacts with FtsZ and promotes bundling of FtsZ protofilaments. Similarly to ZapA, ZapB, and ZapC, ZapD is dispensable for division and therefore belongs to the growing group of FtsZ-associated proteins in E. coli that aid in the overall fitness of the division process.  相似文献   

19.
Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z‐ring at the division site. Here, we show that lack of the ParA‐like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome‐free minicells and filamentous cells. Lack of PomZ also caused reduced formation of Z‐rings and incorrect positioning of the few Z‐rings formed. PomZ localization is cell cycle regulated, and PomZ accumulates at the division site at midcell after chromosome segregation but prior to FtsZ as well as in the absence of FtsZ. FtsZ displayed cooperative GTP hydrolysis in vitro but did not form detectable filaments in vitro. PomZ interacted with FtsZ in M. xanthus cell extracts. These data show that PomZ is important for Z‐ring formation and is a spatial regulator of Z‐ring formation and cell division. The cell cycle‐dependent localization of PomZ at midcell provides a mechanism for coupling cell cycle progression and Z‐ring formation. Moreover, the data suggest that PomZ is part of a system that recruits FtsZ to midcell, thereby, restricting Z‐ring formation to this position.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号