首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is studied in the Fmr1 knockout (KO) mouse, which models both the anatomical and behavioral changes observed in FXS patients. In vitro studies have shown many alterations in synaptic plasticity and increased density of immature dendritic spines in the hippocampus, a region involved in learning and memory. In this study, magnetic resonance imaging (MRI) and 1H magnetic resonance spectroscopy (MRS) were used to determine in vivo longitudinal changes in volume and metabolites in the hippocampus during the critical period of early myelination and synaptogenesis at post‐natal days (PND) 18, 21, and 30 in Fmr1 KO mice compared with wild‐type (WT) controls. MRI demonstrated an increase in volume of the hippocampus in the Fmr1 KO mouse compared with controls. MRS revealed significant developmental changes in the ratios of hippocampal metabolites N‐acetylaspartate (NAA), myo‐inositol (Ins), and taurine to total creatine (tCr) in Fmr1 KO mice compared with WT controls. Ins was decreased at PND 30, and taurine was increased at all ages studied in Fmr1 KO mice compared with controls. An imbalance of brain metabolites in the hippocampus of Fmr1 KO mice during the critical developmental period of synaptogenesis and early myelination could have long‐lasting effects that adversely affect brain development and contribute to ongoing alterations in brain function.  相似文献   

2.
The Myh11‐CreERT2 mouse line (Cre+) has gained increasing application because of its high lineage specificity relative to other Cre drivers targeting smooth muscle cells (SMCs). This Cre allele, however, was initially inserted into the Y chromosome (X/YCre+), which excluded its application in female mice. Our group established a Cre+ colony from male ancestors. Surprisingly, genotype screening identified female carriers that stably transmitted the Cre allele to the following generations. Crossbreeding experiments revealed a pattern of X‐linked inheritance for the transgene (k > 1000), indicating that these female carries acquired the Cre allele through a mechanism of Y to X chromosome translocation. Further characterization demonstrated that in hemizygous X/XCre+ mice Cre activity was restricted to a subset arterial SMCs, with Cre expression in arteries decreased by 50% compared to X/YCre+ mice. This mosaicism, however, diminished in homozygous XCre+/XCre+ mice. In a model of aortic aneurysm induced by a SMC‐specific Tgfbr1 deletion, the homozygous XCre+/XCre+ Cre driver unmasked the aortic phenotype that is otherwise subclinical when driven by the hemizygous X/XCre+ Cre line. In conclusion, the Cre allele carried by this female mouse line is located on the X chromosome and subjected to X‐inactivation. The homozygous XCre+/XCre+ mice produce uniform Cre activity in arterial SMCs.  相似文献   

3.

Background  

Several imprinted genes have been implicated in the process of placentation. The distal region of mouse chromosome 7 (Chr 7) contains at least ten imprinted genes, several of which are expressed from the maternal homologue in the placenta. The corresponding paternal alleles of these genes are silenced in cis by an incompletely understood mechanism involving the formation of a repressive nuclear compartment mediated by the long non-coding RNA Kcnq1ot1 initiated from imprinting centre 2 (IC2). However, it is unknown whether some maternally expressed genes are silenced on the paternal homologue via a Kcnq1ot1-independent mechanism. We have previously reported that maternal inheritance of a large truncation of Chr7 encompassing the entire IC2-regulated domain (DelTel7 allele) leads to embryonic lethality at mid-gestation accompanied by severe placental abnormalities. Kcnq1ot1 expression can be abolished on the paternal chromosome by deleting IC2 (IC2KO allele). When the IC2KO mutation is paternally inherited, epigenetic silencing is lost in the region and the DelTel7 lethality is rescued in compound heterozygotes, leading to viable DelTel7/IC2KO mice.  相似文献   

4.
5.
The response to ATP of peritoneal macrophages from wild-type (WT) and P2X7-invalidated (KO) mice was tested. Low concentrations (1–100 μM) of ATP transiently increased the intracellular concentration of calcium ([Ca2+]i) in cells from both mice. The inhibition of the polyphosphoinositide-specific phospholipase C with U73122 inhibited this response especially in WT mice suggesting that the responses coupled to P2Y receptors were potentiated by the expression of P2X7 receptors. One millimolar ATP provoked a sustained increase in the [Ca2+]i only in WT mice. The response to 10 μM ATP was potentiated and prolonged by ivermectin in both mice. One millimolar ATP increased the influx of extracellular calcium, decreased the intracellular concentration of potassium ([K+]i) and stimulated the secretion of interleukin-1β (IL-1β) only in cells from WT mice. Ten micromolar ATP in combination with 3 μM ivermectin reproduced these responses both in WT and KO mice. The secretion of IL-1β was also increased by nigericin in WT mice and the secretory effect of a combination of ivermectin with ATP in KO mice was suppressed in a medium containing a high concentration of potassium. In WT mice, 150 μM BzATP stimulated the uptake of YOPRO-1. Incubation of macrophages from WT and KO mice with 10 μM ATP resulted in a small increase of YOPRO-1 uptake, which was potentiated by addition of 3 μM ivermectin. The uptake of this dye was unaffected by pannexin-1 blockers. In conclusion, prolonged stimulation of P2X4 receptors by a combination of low concentrations of ATP plus ivermectin produced a sustained activation of the non-selective cation channel coupled to this receptor. The ensuing variations of the [K+]i triggered the secretion of IL-1β. Pore formation was also triggered by activation of P2X4 receptors. Higher concentrations of ATP elicited similar responses after binding to P2X7 receptors. The expression of the P2X7 receptors was also coupled to a better response to P2Y receptors.  相似文献   

6.
To determine the contribution by tenascin X (Tnx) gene expression to corneal stromal angiogenesis, the effects were determined of its loss on this response in TNX knockout (KO) mice. In parallel, the effects of such a loss were evaluated on vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGFβ1) gene and protein expression in fibroblasts and macrophages in cell culture. Histological, immunohistochemical and quantitative RT‐PCR changes determined if Tnx gene ablation on angiogenic gene expression, inflammatory cell infiltration and neovascularization induced by central corneal stromal cauterization. The role was determined of Tnx function in controlling VEGF‐A or TGFβ1 gene expression by comparing their expression levels in ocular fibroblasts and macrophages obtained from wild‐type (WT) and body‐wide Tnx KO mice. Tnx was up‐regulated in cauterized cornea. In Tnx KO, macrophage invasion was attenuated, VEGF‐A and its cognate receptor mRNA expression along with neovascularization were lessened in Tnx KOs relative to the changes occurring in their WT counterpart. Loss of Tnx instead up‐regulated in vivo mRNA expression of anti‐angiogenic VEGF‐B but not VEGF‐A. On the other hand, TGFβ1 mRNA expression declined in Tnx KO cultured ocular fibroblasts. Loss of Tnx gene expression caused VEGF‐A expression to decline in macrophages. Tnx gene expression contributes to promoting TGFβ1 mRNA expression in ocular fibroblasts and VEGF‐A in macrophages, macrophage invasion, up‐regulation of VEGF‐A expression and neovascularization in an injured corneal stroma. On the other hand, it suppresses anti‐angiogenic VEGF‐B mRNA expression in vivo.  相似文献   

7.
Proton pump inhibitors (PPIs) are widely used against gastroesophageal reflux disease. Recent epidemiological studies suggest that PPI users have an increased risk of fractures, but a causal relationship has been questioned. We have therefore investigated the skeletal phenotype in H+/K+ATPase beta‐subunit knockout (KO) female mice. Skeletal parameters were determined in 6‐ and 20‐month‐old KO mice and in wild‐type controls (WT). Whole body bone mineral density (BMD) and bone mineral content (BMC) were measured by dual energy X‐ray absorptiometry (DXA). Femurs were examined with µCT analyses and break force were examined by a three‐point bending test. Plasma levels of gastrin, RANKL, OPG, osteocalcin, leptin, and PTH were analyzed. KO mice had lower whole body BMC at 6 months (0.53 vs. 0.59 g, P = 0.035) and at 20 months (0.49 vs. 0.74 g, P < 0.01) compared to WT as well as lower BMD at 6 months (0.068 vs. 0.072 g/cm2, P = 0.026) and 20 months (0.067 vs. 0.077 g/cm2, P < 0.01). Mechanical strength was lower in KO mice at the age of 20 months (6.7 vs. 17.9 N, P < 0.01). Cortical thickness at 20 months and trabecular bone volume% at 6 months were significantly reduced in KO mice. Plasma OPG/RANKL ratio and PTH was increased in KO mice compared to controls. H+/K+ATPase beta subunit KO mice had decreased BMC and BMD, reduced cortical thickness and inferior mechanical bone strength. Whereas the mechanism is uncertain, these findings suggest a causal relationship between long‐term PPI use and an increased risk of fractures. J. Cell. Biochem. 113: 141–147, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
A novel human X-linked gene shows placenta-specific expression and has been named PLAC1. The gene maps 65 kb telomeric to HPRT at Xq26 and has been completely sequenced at the cDNA and genomic levels. The mouse orthologue Plac1 maps to the syntenically equivalent region of the mouse X chromosome. In situ hybridization studies with the antisense mRNA during mouse embryogenesis detect Plac1 expression from 7.5 dpc (days postcoitum) to 14.5 dpc in ectoplacental cone, giant cells, and labyrinthine trophoblasts. The putative human and murine PLAC1 proteins are 60% identical and 77% homologous. Both include a signal peptide and a peptide sequence also found in an interaction domain of the ZP3 (zona pellucida 3) protein. These results make PLAC1 a marker for placental development, with a possible role in the establishment of the mother–fetus interface.  相似文献   

9.
β‐Arrestins are scaffolding proteins implicated as negative regulators of TLR4 signaling in macrophages and fibroblasts. Unexpectedly, we found that β‐arrestin‐1 (β‐arr‐1) and ‐2 knockout (KO) mice are protected from TLR4‐mediated endotoxic shock and lethality. To identify the potential mechanisms involved, we examined the plasma levels of inflammatory cytokines/chemokines in the wild‐type (WT) and β‐arr‐1 and ‐2 KO mice after lipopolysaccharide (LPS, a TLR4 ligand) injection. Consistent with lethality, LPS‐induced inflammatory cytokine levels in the plasma were markedly decreased in both β‐arr‐1 and ‐2 KO, compared to WT mice. To further explore the cellular mechanisms, we obtained splenocytes (separated into CD11b+ and CD11b? populations) from WT, β‐arr‐1, and ‐2 KO mice and examined the effect of LPS on cytokine production. Similar to the in vivo observations, LPS‐induced inflammatory cytokines were significantly blocked in both splenocyte populations from the β‐arr‐2 KO compared to the WT mice. This effect in the β‐arr‐1 KO mice, however, was restricted to the CD11b? splenocytes. Our studies further indicate that regulation of cytokine production by β‐arrestins is likely independent of MAPK and IκBα‐NFκB pathways. Our results, however, suggest that LPS‐induced chromatin modification is dependent on β‐arrestin levels and may be the underlying mechanistic basis for regulation of cytokine levels by β‐arrestins in vivo. Taken together, these results indicate that β‐arr‐1 and ‐2 mediate LPS‐induced cytokine secretion in a cell‐type specific manner and that both β‐arrestins have overlapping but non‐redundant roles in regulating inflammatory cytokine production and endotoxic shock in mice. J. Cell. Physiol. 225: 406–416, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Glutathione peroxidase-1 (GPX-1) is an enzyme that protects the lens against H2O2-mediated oxidative damage. The purpose of the present study was to determine the effects of GPX-1 knockout (KO) on lens transport and intracellular homeostasis. To investigate these lenses we used (1) whole lens impedance studies to measure membrane conductance, resting voltage and fiber cell gap junction coupling conductance; (2) osmotic swelling of fiber cell membrane vesicles to determine water permeability; and (3) injection of Fura2 and Na+-binding benzofuran isophthalate (SBFI) into fiber cells to measure [Ca2+] i and [Na+] i , respectively, in intact lenses. These approaches were used to compare wild-type (WT) and GPX-1 KO lenses from mice around 2 months of age. There were no significant differences in clarity, size, resting voltage, membrane conductance or fiber cell membrane water permeability between WT and GPX-1 KO lenses. However, in GPX-1 KO lenses, coupling conductance was 72% of normal in the outer shell of differentiating fibers and 45% of normal in the inner core of mature fibers. Quantitative Western blots showed that GPX-1 KO lenses had about 50% as much labeled Cx46 and Cx50 protein as WT, whereas they had equivalent labeled AQP0 protein as WT. Both Ca2+ and Na+ accumulated significantly in the core of GPX-1 KO lenses. In summary, the major effect on lens transport of GPX-1 KO was a reduction in gap junction coupling conductance. This reduction affected the lens normal circulation by causing [Na+] i and [Ca2+] i to increase, which could increase cataract susceptibility in GPX-1 KO lenses.  相似文献   

11.
Transient receptor potential ankyrin 1 (TRPA1), a membrane protein ion channel, is known to mediate itch and pain in skin. The function of TRPA1, however, in psoriasiform dermatitis (PsD) is uncertain. Herein, we found that expression of TRPA1 is highly up‐regulated in human psoriatic lesional skin. To study the role of TRPA1 in PsD, we assessed Psoriasis Severity Index (PSI) scores, transepidermal water loss (TEWL), skin thickness and pathology, and examined dermal inflammatory infiltrates, Th17‐related genes and itch‐related genes in c57BL/6 as wild‐type (WT) and TRPA1 gene knockout (KO) mice following daily application of topical IMQ cream for 5 days. Compared with WT mice, clinical scores, skin thickness change and TEWL scores were similar on day 3, but were significantly decreased on day 5 in IMQ‐treated TRPA1 KO mice (vs WT mice), suggesting reduced inflammation and skin barrier defects. Additionally, the relative area of epidermal Munro's microabscesses and mRNA levels of neutrophil inducible chemokines (S100A8, S100A9 and CXCL1) were decreased in the treated skin of TRPA1 KO mice, suggesting that neutrophil recruitment was impaired in the KO mice. Furthermore, mast cells, CD31+ blood vascular cells, CD45+ leukocytes and CD3+ T cells were all reduced in the treated skin of TRPA1 KO mice. Lastly, mRNA expression levels of IL‐1β, IL‐6, IL‐23, IL‐17A, IL‐17F and IL‐22 were decreased in TRPA1 KO mice. In summary, these results suggest a key role for TRPA1 in psoriasiform inflammation and raising its potential as a target for therapeutic intervention.  相似文献   

12.
Human oviductal cells produce complement‐3 (C3) and its derivative, iC3b. These molecules are important in immune responses. Our recent study suggested that iC3b also possessed embryotrophic activity and it stimulates the blastulation and hatching rates of in vitro cultured mouse embryos. The objective is to study the impact of C3 deficiency on early pregnancy in vivo using homozygous C3‐deficient (C3KO) and wild‐type (C3WT) mice. C3 protein was undetectable in the reproductive tissues of C3KO mice. Deficiency in C3 is associated with significantly longer estrous cycle (P = 0.037). No significant difference was found in the ovulation rate, total cell count in blastocysts and implantation rate between the wild‐type and the C3KO mice, though C3KO mice tended to have lower values in the latter two parameters. On day 15 of pregnancy, C3KO mice had fewer conceptus (P < 0.001) and higher resorption rate (P < 0.001) than that of C3WT mice. The fetal and placental weights (P < 0.001) were lower in the C3KO mice. The placenta of C3KO mice had smaller spongiotrophoblast (P = 0.001) and labyrinth (P = 0.037). Deficiency in C3 is associated with mild impairment in early pregnancy including longer estrous cycle and higher resorption rates after implantation. The impairment may be related to compromised placental development leading to under‐developed fetuses. Mol. Reprod. Dev. 76: 647–655, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Zfp462 is a newly identified vertebrate‐specific zinc finger protein that contains nearly 2500 amino acids and 23 putative C2H2‐type zinc finger domains. So far, the functions of Zfp462 remain unclear. In our study, we showed that Zfp462 is expressed predominantly in the developing brain, especially in the cerebral cortex and hippocampus regions from embryonic day 7.5 to early postnatal stage. By using a piggyBac transposon‐generated Zfp462 knockout (KO) mouse model, we found that Zfp462 KO mice exhibited prenatal lethality with normal neural tube patterning, whereas heterozygous (Het) Zfp462 KO (Zfp462+/?) mice showed developmental delay with low body weight and brain weight. Behavioral studies showed that Zfp462+/? mice presented anxiety‐like behaviors with excessive self‐grooming and hair loss, which were similar to the pathological grooming behaviors in Hoxb8 KO mice. Further analysis of grooming microstructure showed the impairment of grooming patterning in Zfp462+/? mice. In addition, the mRNA levels of Pbx1 (pre‐B‐cell leukemia homeobox 1, an interacting protein of Zfp462) and Hoxb8 decreased in the brains of Zfp462+/? mice, which may be the cause of anxiety‐like behaviors. Finally, imipramine, a widely used and effective anti‐anxiety medicine, rescued anxiety‐like behaviors and excessive self‐grooming in Zfp462+/? mice. In conclusion, Zfp462 deficiency causes anxiety‐like behaviors with excessive self‐grooming in mice. This provides a novel genetic mouse model for anxiety disorders and a useful tool to determine potential therapeutic targets for anxiety disorders and screen anti‐anxiety drugs.  相似文献   

14.
In the Cre–loxp system, expression level and activity of Cre recombinase in a Cre deleter line are critical because these determine not only the cell specificity of gene knockout (KO), but also the efficiency of Cre‐mediated excision in a specific cell lineage. Although the spatiotemporal expression pattern of a Cre transgene is usually defined upon the generation of the mouse line, the Cre excision efficiency in a specific targeted cell lineage is rarely evaluated and often assumed to be 100%. Incomplete excision can lead to highly variable phenotypes owing to mosaicism (i.e., coexistence of cells with the flox or the recombined flox allele) and this problem has long been overlooked. Here, we report that Stra8‐codon‐improved Cre recombinase (iCre), a transgenic allele expressing iCre under the control of the male germ cell‐specific Stra8 promoter, could efficiently delete one Mov10l1 flox allele in spermatogenic cells, whereas the excision was incomplete when two Mov10l1 flox alleles were present. The incomplete Cre‐mediated excision led to a testicular phenotype that was much less severe than that in the true conditional KO (inactivation, 100%) mice. Our findings suggest that it is essential to determine the efficiency of Cre excision when Cre–loxp system is used for deleting genes in a specific cell lineage and the Cre; genelox/Δ genotype should be used to evaluate phenotypes instead of Cre; genelox/lox owing to the fact that the latter usually bears incomplete deletion of the flox allele(s). genesis 51:481–490. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Mutations in PINK1 and Parkin result in early-onset autosomal recessive Parkinson’s disease (PD). PINK1/Parkin pathway maintain mitochondrial function by mediating the clearance of damaged mitochondria. However, the role of PINK1/Parkin in maintaining the balance of mtDNA heteroplasmy is still unknown. Here, we isolated mitochondrial DNA (mtDNA) from cortex, striatum and substantia nigra of wildtype (WT), PINK1 knockout (PINK1 KO) and Parkin knockout (Parkin KO) mice to analyze mtDNA heteroplasmy induced by PINK1/Parkin deficiency or aging. Our results showed that the Single Nucleotide Variants (SNVs) of late-onset somatic variants mainly increased with aging. Conversely, the early-onset somatic variants exhibited significant increase in the cortex and substantia nigra of PINK1 KO mice than WT mice of the same age. Increased average variant allele frequency was observed in aged PINK1 KO mice and in substantial nigra of aged Parkin KO mice than in WT mice. Cumulative variant allele frequency in the substantia nigra of PINK1 KO mice was significantly higher than that in WT mice, further supporting the pivotal role of PINK1 in mtDNA maintenance.This study presented a new evidence for PINK1 and Parkin in participating in mitochondrial quality control and provided clues for further revealing the role of PINK1 and Parkin in the pathogenesis of PD.  相似文献   

16.
17.
Malignant hyperthermia susceptibility (MHS) is primarily conferred by mutations within ryanodine receptor type 1 (RYR1). Here we address how the MHS mutation T4826I within the S4-S5 linker influences excitation-contraction coupling and resting myoplasmic Ca2+ concentration ([Ca2+]rest) in flexor digitorum brevis (FDB) and vastus lateralis prepared from heterozygous (Het) and homozygous (Hom) T4826I-RYR1 knock-in mice (Yuen, B. T., Boncompagni, S., Feng, W., Yang, T., Lopez, J. R., Matthaei, K. I., Goth, S. R., Protasi, F., Franzini-Armstrong, C., Allen, P. D., and Pessah, I. N. (2011) FASEB J. doi:22131268). FDB responses to electrical stimuli and acute halothane (0.1%, v/v) exposure showed a rank order of Hom ≫ Het ≫ WT. Release of Ca2+ from the sarcoplasmic reticulum and Ca2+ entry contributed to halothane-triggered increases in [Ca2+]rest in Hom FDBs and elicited pronounced Ca2+ oscillations in ∼30% of FDBs tested. Genotype contributed significantly elevated [Ca2+]rest (Hom > Het > WT) measured in vivo using ion-selective microelectrodes. Het and Hom oxygen consumption rates measured in intact myotubes using the Seahorse Bioscience (Billerica, MA) flux analyzer and mitochondrial content measured with MitoTracker were lower than WT, whereas total cellular calpain activity was higher than WT. Muscle membranes did not differ in RYR1 expression nor in Ser2844 phosphorylation among the genotypes. Single channel analysis showed highly divergent gating behavior with Hom and WT favoring open and closed states, respectively, whereas Het exhibited heterogeneous gating behaviors. [3H]Ryanodine binding analysis revealed a gene dose influence on binding density and regulation by Ca2+, Mg2+, and temperature. Pronounced abnormalities inherent in T4826I-RYR1 channels confer MHS and promote basal disturbances of excitation-contraction coupling, [Ca2+]rest, and oxygen consumption rates. Considering that both Het and Hom T4826I-RYR1 mice are viable, the remarkable isolated single channel dysfunction mediated through this mutation in S4-S5 cytoplasmic linker must be highly regulated in vivo.  相似文献   

18.
Vitamin D deficiency has been implicated in the pathogenesis of several pregnancy complications attributed to impaired or abnormal placental function, but there are few clues indicating the mechanistic role of vitamin D in their pathogenesis. To further understand the role of vitamin D receptor (VDR)-mediated activity in placental function, we used heterozygous Vdr ablated C57Bl6 mice to assess fetal growth, morphological parameters and global gene expression in Vdr null placentae. Twelve Vdr +/- dams were mated at 10–12 weeks of age with Vdr +/- males. At day 18.5 of the 19.5 day gestation in our colony, females were euthanised and placental and fetal samples were collected, weighed and subsequently genotyped as either Vdr +/+, Vdr +/- or Vdr -/-. Morphological assessment of placentae using immunohistochemistry was performed and RNA was extracted and subject to microarray analysis. This revealed 25 genes that were significantly differentially expressed between Vdr +/+ and Vdr -/- placentae. The greatest difference was a 6.47-fold change in expression of Cyp24a1 which was significantly lower in the Vdr -/- placentae (P<0.01). Other differentially expressed genes in Vdr -/- placentae included those involved in RNA modification (Snord123), autophagy (Atg4b), cytoskeletal modification (Shroom4), cell signalling (Plscr1, Pex5) and mammalian target of rapamycin (mTOR) signalling (Deptor and Prr5). Interrogation of the upstream sequence of differentially expressed genes identified that many contain putative vitamin D receptor elements (VDREs). Despite the gene expression differences, this did not contribute to any differences in overall placental morphology, nor was function affected as there was no difference in fetal growth as determined by fetal weight near term. Given our dams still expressed a functional VDR gene, our results suggest that cross-talk between the maternal decidua and the placenta, as well as maternal vitamin D status, may be more important in determining pregnancy outcome than conceptus expression of VDR.  相似文献   

19.
20.
Impaired spatial learning is a prominent deficit in fragile X syndrome (FXS). Previous studies using the Fmr1 knockout (KO) mouse model of FXS have not consistently reported a deficit in spatial learning. Fmr1 KO mice bred onto an albino C57BL/6J‐Tyrc‐Brd background showed significant deficits in several primary measures of performance during place navigation and probe trials in the Morris water maze. Fmr1 KO mice were also impaired during a serial reversal version of the water maze task. We examined fear conditioning as an additional cognitive screen. Knockout mice exhibited contextual memory deficits when trained with unsignaled shocks; however, deficits were not found in a separate group of KO mice trained with signaled shocks. No potentially confounding genotypic differences in locomotor activity were observed. A decreased anxiety‐like profile was apparent in the open field, as others have noted, and also in the platform test. Also as previously reported, startle reactivity to loud auditory stimuli was decreased, prepulse inhibition and social interaction increased in KO mice. Female Fmr1 KO mice were tested along with male KO mice in all assays, except for social interaction. The female and male KO exhibited very similar impairments indicating that sex does not generally drive the behavioral symptoms of the disorder. Our results suggest that procedural factors, such as the use of albino mice, may help to reliably detect spatial learning and memory impairments in both sexes of Fmr1 KO mice, making it more useful for understanding FXS and a platform for evaluating potential therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号