首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apolipoprotein E (apoE) plays important roles in lipid homeostasis, anti-inflammation, and host defense. Since tissue apoE mRNA levels have been reported to decrease during inflammatory responses, we were surprised to find that plasma apoE levels were significantly elevated during septic infections in both humans and mice. This apparent paradox was also observed during lipopolysaccharide-induced acute inflammation in mice: plasma levels of apoE increased up to 4-fold despite sharply decreased apoE gene expression in the liver, macrophages, and extrahepatic tissues. We hypothesized that apoE levels were augmented by decreased plasma clearance. Our analysis revealed that apoE associated principally with HDL in mice and that apoE was cleared from the circulation principally via LDL receptors. The acute inflammatory response decreased LDL receptor expression in the liver and significantly reduced the rate of apoE clearance. In contrast, the same inflammatory stimuli increased LDL receptor expression in macrophages. Our results define a novel acute phase mechanism that increases circulating apoE levels as apoE production decreases. Diminished hepatic LDL receptor expression may thus cooperate with elevated LDL receptor expression in macrophages to facilitate the forward transport of apoE and its associated lipids to these key defense cells.  相似文献   

2.
3.
Obesity is associated with adipose tissue remodeling, characterized by adipocyte hypertrophy and macrophage infiltration. Previously, we have shown that very low density lipoprotein receptor (VLDLR) is virtually absent in preadipocytes but is strongly induced during adipogenesis and actively participates in adipocyte hypertrophy. In this study, we investigated the role of VLDLR in adipose tissue inflammation and adipocyte-macrophage interactions in wild type and VLDLR-deficient mice fed a high fat diet. The results show that VLDLR deficiency reduced high fat diet-induced inflammation and endoplasmic reticulum (ER) stress in adipose tissue in conjunction with reduced macrophage infiltration, especially those expressing pro-inflammatory markers. In adipocyte culture, VLDLR deficiency prevented adipocyte hypertrophy and strongly reduced VLDL-induced ER stress and inflammation. Likewise, cultures of primary peritoneal macrophages show that VLDLR deficiency reduced lipid accumulation and inflammation but did not alter chemotactic response of macrophages to adipocyte signals. Moreover, VLDLR deficiency tempered the synergistic inflammatory interactions between adipocytes and macrophages in a co-culture system. Collectively, these results show that VLDLR contributes to adipose tissue inflammation and mediates VLDL-induced lipid accumulation and induction of inflammation and ER stress in adipocytes and macrophages.  相似文献   

4.
5.
Progressive dysfunction and death of neurons in Alzheimer's dementia is enhanced in patients carrying one or more APOE4 alleles who also display increased presence of oxidative stress markers. Modulation of oxidative stress is a nontraditional and physiologically relevant immunomodulatory function of apolipoprotein E (apoE). Stimulated peritoneal macrophages from APOE-transgenic replacement (APOE-TR) mice expressing only human apoE3 or human apoE4 protein isoforms were utilized as mouse models to investigate the role of apoE protein isoforms and gender in the regulation of oxidative stress. Macrophages from male APOE4/4-TR mice produced significantly higher levels of nitric oxide than from male APOE3/3-TR mice, while macrophages from female APOE3/3-TR and female APOE4/4-TR mice produced the similar levels of nitric oxide. Primary cultures of microglial cells of APOE4 transgenic mice also produced significantly more nitric oxide than microglia from APOE3 transgenic mice. These data suggest a potentially novel mechanism for gender-dependent and apoE isoform-dependent immune responses that parallel the genetic susceptibility of APOE4 carriers for the development of Alzheimer's disease.  相似文献   

6.
Polymorphisms in the apolipoprotein E (apoE) gene are risk factors for chronic inflammatory diseases including atherosclerosis. The gene product apoE is synthesized in many cell types and has both lipid transport–dependent and lipid transport–independent functions. Previous studies have shown that apoE expression in myeloid cells protects against atherogenesis in hypercholesterolemic ApoE−/− mice. However, the mechanism of this protection is still unclear. Using human APOE gene replacement mice as models, this study showed that apoE2 and apoE4 expressed endogenously in myeloid cells enhanced the inflammatory response via mechanisms independent of plasma lipoprotein transport. The data revealed that apoE2-expressing myeloid cells contained higher intracellular cholesterol levels because of impaired efflux, causing increasing inflammasome activation and myelopoiesis. In contrast, intracellular cholesterol levels were not elevated in apoE4-expressing myeloid cells, and its proinflammatory property was found to be independent of inflammasome signaling and related to enhanced oxidative stress. When ApoE−/− mice were reconstituted with bone marrow from various human APOE gene replacement mice, effective reduction of atherosclerosis was observed with marrow cells obtained from APOE3 but not APOE2 and APOE4 gene replacement mice. Taken together, these results documented that apoE2 and apoE4 expression in myeloid cells promotes inflammation via distinct mechanisms and promotes atherosclerosis in a plasma lipoprotein transport–independent manner.  相似文献   

7.
Human apolipoprotein E is the major apolipoprotein expressed in the brain and exists as three isoforms, designated E2, E3, and E4. Although evidence suggests that apolipoprotein E plays an important role in modifying systemic and brain inflammatory responses, there is little data investigating apoE isoform-specific effects in vivo. In this study, we compared the inflammatory responses of targeted-replacement mice expressing the human APOE3 and APOE4 genes after intravenous administration of lipopolysaccharide. Animals expressing the E4 allele had significantly greater systemic and brain elevations of the pro-inflammatory cytokines TNFalpha and IL-6 as compared with their APOE3 counterparts, suggesting an isoform-specific effect of the immunomodulatory properties of apoE. Furthermore, intravenous administration of a small apoE-mimetic peptide derived from the receptor-binding region of the apoE holoprotein (apoE-(133-149)) similarly suppressed both systemic and brain inflammatory responses in mice after lipopolysaccharide administration. These results suggest that apoE plays an isoform-specific role in mediating the systemic and brain inflammatory responses. Moreover, because exogenous administration of this apoE mimetic peptide is effective at suppressing both systemic and brain inflammation, it may represent a novel therapeutic strategy for diseases characterized by systemic or central nervous system inflammation, such as septic shock, multiple sclerosis, and traumatic brain injury.  相似文献   

8.

Background

Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L – an established marker and mediator of cardiovascular disease – induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo.

Methodology/Principal Findings

WT or CD40L−/− mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L−/− mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L−/− mice. However, CD40L−/− mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L−/− mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels.

Conclusion

We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease.  相似文献   

9.
10.
Feng B  Jiao P  Nie Y  Kim T  Jun D  van Rooijen N  Yang Z  Xu H 《PloS one》2011,6(9):e24358

Background

Obesity-related adipose inflammation has been thought to be a causal factor for the development of insulin resistance and type 2 diabetes. Infiltrated macrophages in adipose tissue of obese animals and humans are an important source for inflammatory cytokines. Clodronate liposomes can ablate macrophages by inducing apoptosis. In this study, we aim to determine whether peritoneal injection of clodronate liposomes has any beneficial effect on systemic glucose homeostasis/insulin sensitivity and whether macrophage content in visceral adipose tissue will be reduced in diet-induced obese (DIO) mice.

Methodology/Principal Findings

Clodronate liposomes were used to deplete macrophages in lean and DIO mice. Macrophage content in visceral adipose tissue, metabolic parameters, glucose and insulin tolerance, adipose and liver histology, adipokine and cytokine production were examined. Hyperinsulinemic-euglycemic clamp study was also performed to assess systemic insulin sensitivity. Peritoneal injection of clodronate liposomes significantly reduced blood glucose and insulin levels in DIO mice. Systemic glucose tolerance and insulin sensitivity were mildly improved in both lean and DIO mice treated with clodronate liposomes by intraperitoneal (ip) injection. Hepatosteatosis was dramatically alleviated and suppression of hepatic glucose output was markedly increased in DIO mice treated with clodronate liposomes. Macrophage content in visceral adipose tissue of DIO mice was effectively decreased without affecting subcutaneous adipose tissue. Interestingly, levels of insulin sensitizing hormone adiponectin, including the high molecular weight form, were significantly elevated in circulation.

Conclusions/Significance

Intraperitoneal injection of clodronate liposomes reduces visceral adipose tissue macrophages, improves systemic glucose homeostasis and insulin sensitivity in DIO mice, which can be partially attributable to increased adiponectin levels.  相似文献   

11.
12.
Macrophage apoptosis in advanced atheromata, a key process in plaque necrosis, involves the combination of ER stress with other proapoptotic stimuli. We show here that oxidized phospholipids, oxidized LDL, saturated fatty acids (SFAs), and lipoprotein(a) trigger apoptosis in ER-stressed macrophages through a mechanism requiring both CD36 and Toll-like receptor 2 (TLR2). In vivo, macrophage apoptosis was induced in SFA-fed, ER-stressed wild-type but not Cd36?(/)? or Tlr2?(/)? mice. For atherosclerosis, we combined TLR2 deficiency with that of TLR4, which can also promote apoptosis in ER-stressed macrophages. Advanced lesions of fat-fed Ldlr?(/)? mice transplanted with Tlr4?(/)?Tlr2?(/)? bone marrow were markedly protected from macrophage apoptosis and plaque necrosis compared with WT →Ldlr?(/)? lesions. These findings provide insight into how atherogenic lipoproteins trigger macrophage apoptosis in the setting of ER stress and how TLR activation might promote macrophage apoptosis and plaque necrosis in advanced atherosclerosis.  相似文献   

13.
Chronic low-grade infection has been suggested to be associated with metabolic disorder such as diabetes. However, the molecular mechanism underlying this important association is largely unknown. The only clue established so far is that many subjects exhibit elevated levels of C-reactive protein as measured by highly sensitive assay. Here, we hypothesized that adipocyte-macrophage interaction plays a key role in amplifying such low grade infection to the level of influencing metabolic disorders. The presence of macrophages in abdominal adipose tissues was investigated by immunohistochemistry. To see whether molecules associated with acute phase protein, LPS signaling, and persistent recruitment of monocytes, are produced at higher amounts in adipocytes co-cultured with macrophages stimulated with low concentration of LPS (1 ng/ml), we measured serum amyloid A (SAA), LPS binding protein (LBP), soluble CD14 (sCD14), and RANTES levels in culture supernatant of co-cultures. Lastly, we investigated in vivo effect of low-grade LPS infusion on the production of these molecules using obese model mice. The macrophages were certainly identified in abdominal adipose tissues. Investigated molecules, especially LBP, SAA, and RANTES were produced at higher amounts in co-cultures stimulated with LPS compared with the cells without LPS. The ob/ob, and high-fat diet-induced obesity mice produced higher amounts of LBP, SAA, and RANTES one day after LPS infusion (1 ng/ml/g body weight) compared with ob/- and normal-fat fed control mice. Thus, adipocytes and infiltrated macrophages, and their interaction with low endotoxin stimulation appear to play an important role in amplifying and maintaining LPS-induced low-grade inflammation.  相似文献   

14.
Endothelial cell apoptosis can be initiated by withdrawing growth factors or serum, and is inhibited by HDL. Our results show that the total lipoprotein population from apolipoprotein E 4/4 (APOE4/4) sera is less anti-apoptotic than total lipoproteins from other APOE genotypes, as measured by caspase 3/7 activity. Moreover, APOE4/4 VLDL antagonizes the antiapoptotic activity of HDL by a mechanism requiring binding of apoE4 on VLDL particles to an LDL family receptor. This ability of APOE4/4 VLDL to inhibit the antiapoptotic effects of HDL presents a potential mechanism by which the expression of several diseases, including atherosclerosis, is enhanced by the APOE4 genotype.  相似文献   

15.
16.
Phagocytosis of apoptotic cells, also called efferocytosis, is an essential feature of immune responses and critical to resolution of inflammation. Impaired efferocytosis is associated with an unfavorable outcome from inflammatory diseases, including acute lung injury and pulmonary manifestations of cystic fibrosis. High mobility group protein-1 (HMGB1), a nuclear nonhistone DNA-binding protein, has recently been found to be secreted by immune cells upon stimulation with LPS and cytokines. Plasma and tissue levels of HMGB1 are elevated for prolonged periods in chronic and acute inflammatory conditions, including sepsis, rheumatoid arthritis, acute lung injury, burns, and hemorrhage. In this study, we found that HMGB1 inhibits phagocytosis of apoptotic neutrophils by macrophages in vivo and in vitro. Phosphatidylserine (PS) is directly involved in the inhibition of phagocytosis by HMGB1, as blockade of HMGB1 by PS eliminates the effects of HMGB1 on efferocytosis. Confocal and fluorescence resonance energy transfer demonstrate that HMGB1 interacts with PS on the neutrophil surface. However, HMGB1 does not inhibit PS-independent phagocytosis of viable neutrophils. Bronchoalveolar lavage fluid from Scnn(+) mice, a murine model of cystic fibrosis lung disease which contains elevated concentrations of HMGB1, inhibits neutrophil efferocytosis. Anti-HMGB1 Abs reverse the inhibitory effect of Scnn(+) bronchoalveolar lavage on efferocytosis, showing that this effect is due to HMGB1. These findings demonstrate that HMGB1 can modulate phagocytosis of apoptotic neutrophils and suggest an alternative mechanism by which HMGB1 is involved in enhancing inflammatory responses.  相似文献   

17.
TRPM2 Ca(2+)-permeable cation channel is widely expressed and activated by markers of cellular stress. Since inflammation and stress play a major role in insulin resistance, we examined the role of TRPM2 Ca(2+) channel in glucose metabolism. A 2-h hyperinsulinemic euglycemic clamp was performed in TRPM2-deficient (KO) and wild-type mice to assess insulin sensitivity. To examine the effects of diet-induced obesity, mice were fed a high-fat diet for 4-10 mo, and metabolic cage and clamp studies were conducted in conscious mice. TRPM2-KO mice were more insulin sensitive partly because of increased glucose metabolism in peripheral organs. After 4 mo of high-fat feeding, TRPM2-KO mice were resistant to diet-induced obesity, and this was associated with increased energy expenditure and elevated expressions of PGC-1α, PGC-1β, PPARα, ERRα, TFAM, and MCAD in white adipose tissue. Hyperinsulinemic euglycemic clamps showed that TRPM2-KO mice were more insulin sensitive, with increased Akt and GSK-3β phosphorylation in heart. Obesity-mediated inflammation in adipose tissue and liver was attenuated in TRPM2-KO mice. Overall, TRPM2 deletion protected mice from developing diet-induced obesity and insulin resistance. Our findings identify a novel role of TRPM2 Ca(2+) channel in the regulation of energy expenditure, inflammation, and insulin resistance.  相似文献   

18.
MicroRNA (miRNA) plays an important role in diverse cellular biological processes such as inflammatory response, differentiation and proliferation, and carcinogenesis. miR-146a has been suggested as a negative regulator of the inflammatory reaction. Although, it has been reported as expressed in inflamed adipose and periodontal tissues, however, miR-146a's inhibitory effects against inflammatory response in both the tissues, are not well understood. Therefore, in this study, the inhibitory effects of miR-146a on both adipose and periodontal inflammation, was investigated. In vitro study has revealed that miR-146a transfection into either adipocytes or gingival fibroblasts, has resulted in a reduced cytokine gene expression, observed on co-culturing the cells with macrophages in the presence of lipopolysaccharides (LPS), in comparison to the control miRNA transfected. Similarly, miR-146a transfection into macrophages resulted in a reduced expression of TNF-α gene and protein in response to LPS stimulation. In vivo study revealed that a continuous intravenous miR-146a administration into mice via tail vein, protected the mice from developing high-fat diet-induced obesity and the inflammatory cytokine gene expression was down-regulated in both adipose and periodontal tissues. miR-146a appeared to be induced by macrophage-derived inflammatory signals such as TNF-α by negative feed-back mechanism, and it suppressed inflammatory reaction in both adipose and periodontal tissues. Therefore, miR-146a could be suggested as a potential therapeutic molecule and as a common inflammatory regulator for both obesity-induced diabetes and related periodontal diseases.  相似文献   

19.
Withdrawing growth factors or serum from endothelial cells leads to the activation of effector caspases 3 and 7, resulting in apoptotic cell death. HDL protects against caspase induction through sphingosine-1-phosphate (S1P) receptors. This anti-caspase activity of HDL is antagonized by VLDL from apolipoprotein E4 (apoE4) (genotype, APOE4/4; apolipoprotein, apoE) targeted replacement (TR) mice, but not by VLDL from TR APOE3/3 mice, and requires the binding of apoE4-VLDL to an LDL receptor family member. In the absence of HDL, apoE4-VLDL and apoE3-VLDL from TR mice have limited antiapoptotic activity. In contrast, we show here that a high-fat/high-cholesterol/cholate diet (HFD) radically alters this biological activity of VLDL. On HFD, both apoE3-VLDL and apoE4-VLDL (HFD VLDL) inhibit caspase 3/7 activation initiated by serum withdrawal. This activity of HFD VLDL is independent of an LDL receptor family member but requires the activation of S1P(3) receptors, as shown by the ability of pharmacological block of S1P receptors by VPC 23019 and by small interfering RNA-mediated downregulation of S1P(3) receptors to inhibit HFD VLDL anticaspase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号