首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Wolbachia are obligate, maternally inherited, intracellular bacteria that infect numerous insects and other invertebrates. Wolbachia infections have evolved multiple mechanisms to manipulate host reproduction and facilitate invasion of naive host populations. One such mechanism is cytoplasmic incompatibility (CI) that occurs in many insect species, including Aedes albopictus (Asian tiger mosquito). The multiple Wolbachia infections that occur naturally in A. albopictus make this mosquito a useful system in which to study CI. Here, experiments employ mosquito strains that have been introgressed to provide genetically similar strains that harbor differing Wolbachia infection types. Cytoplasmic incompatibility levels, host longevity, egg hatch rates, and fecundity are examined. Crossing results demonstrate a pattern of additive unidirectional cytoplasmic incompatibility. Furthermore, relative to uninfected females, infected females are at a reproductive advantage due to both cytoplasmic incompatibility and a fitness increase associated with Wolbachia infection. In contrast, no fitness difference was observed in comparisons of single- and superinfected females. We discuss the observed results in regard to the evolution of the Wolbachia/A. albopictus symbiosis and the observed pattern of Wolbachia infection in natural populations.  相似文献   

2.
The success of obligate endosymbiotic Wolbachia infections in insects is due in part to cytoplasmic incompatibility (CI), whereby Wolbachia bacteria manipulate host reproduction to promote their invasion and persistence within insect populations. The observed diversity of CI types raises the question of what the evolutionary pathways are by which a new CI type can evolve from an ancestral type. Prior evolutionary models assume that Wolbachia exists within a host individual as a clonal infection. While endosymbiotic theory predicts a general trend toward clonality, Wolbachia provides an exception in which there is selection to maintain diversity. Here, evolutionary trajectories are discussed that assume that a novel Wolbachia variant will co-exist with the original infection type within a host individual as a superinfection. Relative to prior models, this assumption relaxes requirements and allows additional pathways for the evolution of novel CI types. In addition to describing changes in the Wolbachia infection frequency associated with the hypothesized evolutionary events, the predicted impact of novel CI variants on the host population is also described. This impact, resulting from discordant evolutionary interests of symbiont and host, is discussed as a possible cause of Wolbachia loss from the host population or host population extinction. The latter is also discussed as the basis for an applied strategy for the suppression of insect pest populations. Model predictions are discussed relative to a recently published Wolbachia genome sequence and prior characterization of CI in naturally and artificially infected insects.  相似文献   

3.
Wolbachia are intracellular microorganisms that form maternally-inherited infections within numerous arthropod species. These bacteria have drawn much attention, due in part to the reproductive alterations that they induce in their hosts including cytoplasmic incompatibility (CI), feminization and parthenogenesis. Although Wolbachia's presence within insect reproductive tissues has been well described, relatively few studies have examined the extent to which Wolbachia infects other tissues. We have examined Wolbachia tissue tropism in a number of representative insect hosts by western blot, dot blot hybridization and diagnostic PCR. Results from these studies indicate that Wolbachia are much more widely distributed in host tissues than previously appreciated. Furthermore, the distribution of Wolbachia in somatic tissues varied between different Wolbachia/host associations. Some associations showed Wolbachia disseminated throughout most tissues while others appeared to be much more restricted, being predominantly limited to the reproductive tissues. We discuss the relevance of these infection patterns to the evolution of Wolbachia/host symbioses and to potential applied uses of Wolbachia.  相似文献   

4.
Wolbachia bacteria are obligate intracellular alpha-Proteobacteria of arthropods and nematodes. Although widespread among isopod crustaceans, they have seldom been found in non-isopod crustacean species. Here, we report Wolbachia infection in fourteen new crustacean species. Our results extend the range of Wolbachia infections in terrestrial isopods and amphipods (class Malacostraca). We report the occurrence of two different Wolbachia strains in two host species (a terrestrial isopod and an amphipod). Moreover, the discovery of Wolbachia in the goose barnacle Lepas anatifera (subclass Thecostraca) establishes Wolbachia infection in class Maxillopoda. The new bacterial strains are closely related to B-supergroup Wolbachia strains previously reported from crustacean hosts. Our results suggest that Wolbachia infection may be much more widespread in crustaceans than previously thought. The presence of related Wolbachia strains in highly divergent crustacean hosts suggests that Wolbachia endosymbionts can naturally adapt to a wide range of crustacean hosts. Given the ability of isopod Wolbachia strains to induce feminization of genetic males or cytoplasmic incompatibility, we speculate that manipulation of crustacean-borne Wolbachia bacteria might represent potential tools for controlling crustacean species of commercial interest and crustacean or insect disease vectors.  相似文献   

5.
For more than 20 years, sex allocation in hymenopteran societies has been a major topic in insect sociobiology. A recurring idea was that relatedness asymmetrics arising from their haplodiploid sex determination system would lead to various parent-offspring conflicts over optimal reproduction. A possible weakness of existing theory is that only interests of nuclear genes are properly accounted for. Yet, a diversity of maternally transmitted elements manipulate the reproduction of their host in many solitary arthropod groups. The bacterium Wolbachia is a striking example of such a selfish cytoplasmic element, with effects ranging from reproductive incompatibility between host strains, induction of parthenogenesis and feminization of males. This paper reports on a first PCR-based Wolbachia screening in ants. Out of 50 Indo-Australian species, 50% screened positive for an A-group strain. One of these species also harboured a B-group strain in a double infection. Various factors that might explain the unusually high incidence of Wolbachia in ants are discussed. In general, Wolbachia may represent a widespread and previously unrecognized party active in the conflicts of interest within social insect colonies.  相似文献   

6.
We investigated the interactions between the endosymbionts Wolbachia pipientis strain wMel and Spiroplasma sp. strain NSRO coinfecting the host insect Drosophila melanogaster. By making use of antibiotic therapy, temperature stress, and hemolymph microinjection, we established the following strains in the same host genetic background: the SW strain, infected with both Spiroplasma and Wolbachia; the S strain, infected with Spiroplasma only; and the W strain, infected with Wolbachia only. The infection dynamics of the symbionts in these strains were monitored by quantitative PCR during host development. The infection densities of Spiroplasma exhibited no significant differences between the SW and S strains throughout the developmental course. In contrast, the infection densities of Wolbachia were significantly lower in the SW strain than in the W strain at the pupal and young adult stages. These results indicated that the interactions between the coinfecting symbionts were asymmetrical, i.e., Spiroplasma organisms negatively affected the population of Wolbachia organisms, while Wolbachia organisms did not influence the population of Spiroplasma organisms. In the host body, the symbionts exhibited their own tissue tropisms: among the tissues examined, Spiroplasma was the most abundant in the ovaries, while Wolbachia showed the highest density in Malpighian tubules. Strikingly, basically no Wolbachia organisms were detected in hemolymph, the principal location of Spiroplasma. These results suggest that different host tissues act as distinct microhabitats for the symbionts and that the lytic process in host metamorphosis might be involved in the asymmetrical interactions between the coinfecting symbionts.  相似文献   

7.
Wolbachia are endosymbionts that are found in many insect species and can spread rapidly when introduced into a naive host population. Most Wolbachia spread when their infection frequency exceeds a threshold normally calculated using purely population genetic models. However, spread may also depend on the population dynamics of the insect host. We develop models to explore interactions between host population dynamics and Wolbachia infection frequency for an age-structured insect population regulated by larval density dependence. We first derive a new expression for the threshold frequency that extends existing theory to incorporate important details of the insect's life history. In the presence of immigration and emigration, the threshold also depends on the form of density-dependent regulation. We show how the type of immigration (constant or pulsed) and the temporal dynamics of the host population can strongly affect the spread of Wolbachia. The results help understand the natural dynamics of Wolbachia infections and aid the design of programs to introduce Wolbachia to control insects that are disease vectors or pests.  相似文献   

8.
Wolbachia是一类在节肢动物中广泛感染的胞内共生菌。为了了解其在我国蚜虫中的感染情况, 本研究通过扩增wsp基因片段对采集自我国多个地区的3种小麦蚜虫(荻草谷网蚜Sitobion miscanthi、 麦二叉蚜Schizaphis graminum和禾谷缢管蚜Rhopalosiphum padi)和1种大豆蚜虫(大豆蚜Aphis glycines)样品进行了内共生菌Wolbachia的感染检测。结果显示: 3种小麦蚜虫中均未检测出Wolabchia。大豆蚜也仅在采集自北京和杭州的种群中发现了Wolbachia的感染, 感染率分别为95.8%和22.9%, 并且所检测的个体均为单株系感染。wsp基因序列的比对分析显示, 大豆蚜感染的Wolbachia株系与多个亲缘关系较远的昆虫物种中所感染的Wolbachia株系间具有高度一致的基因序列。wsp基因序列构建的系统发育关系和序列一致性均表明大豆蚜感染的Wolbachia株系属于B大组CauB组。本研究为今后探讨Wolbachia在我国蚜虫中的寄主范围和株系多样性提供了数据支持。  相似文献   

9.
10.
Wolbachia are intracellular bacteria that occur in an estimated 20% of arthropod species. They are of broad interest because they profoundly affect the reproductive fitness of diverse host taxa. Here we document the apparent ubiquity and diversity of Wolbachia in the insect orders Anoplura (sucking lice) and Mallophaga (chewing lice), by detecting single or multiple infections in each of 25 tested populations of lice, representing 19 species from 15 genera spanning eight taxonomic families. Phylogenetic analyses indicate a high diversity of Wolbachia in lice, as evidenced by the identification of 39 unique strains. Some of these strains are apparently unique to lice, whereas others are similar to strains that infect other insect taxa. Wolbachia are transmitted from infected females to their offspring via egg cytoplasm, such that similar species of lice are predicted to have similar strains of Wolbachia. This predicted pattern is not supported in the current study and may reflect multiple events of recent horizontal transmission between host species. At present, there is no known mechanism that would allow for this latter mode of transmission to and within species of lice.  相似文献   

11.
Wolbachia bacteria are intracellular parasites, vertically transmitted from mothers to offspring through the cytoplasm of the eggs. They manipulate the reproduction of their hosts to increase in frequency in host populations. In terrestrial isopods for example, Wolbachia are responsible for the full feminization of putative males, therefore increasing the proportion of females, the sex by which they are transmitted. Vertical transmission, however, is not the only means for Wolbachia propagation. Infectious (i.e., horizontal) transmission between different host species or taxa is required to explain the fact that the phylogeny of Wolbachia does not parallel that of their hosts. The aim of this study was to investigate, by experimental transinfections, whether Wolbachia strains could be successfully transferred to a different, previously uninfected isopod host. While Wolbachia survived in all the studied recipient species, vertical transmission was efficient only in cases where donor and recipient species were closely related. Even in this case, Wolbachia strains did not always keep their ability to entirely feminize their host, a deficiency that can be link to a low bacterial density in the host tissues. In addition, Wolbachia infection was associated with a decrease in host fertility, except when the bacterial strain came from the same host population as the recipient animals. This suggest that Wolbachia could be adapted to local host populations. It therefore seems that isopod Wolbachia are highly adapted to their host and can hardly infect another species of hosts. The successful infection of a given Wolbachia strain into a new isopod host species therefore probably requires a strong selection on bacterial variants.  相似文献   

12.
Infection density is among the most important factors for understanding the biological effects of Wolbachia and other endosymbionts on their hosts. To gain insight into the mechanisms of infection density regulation, we investigated the adzuki bean beetles Callosobruchus chinensis and their Wolbachia endosymbionts. Double-infected, single-infected and uninfected host strains with controlled nuclear genetic backgrounds were generated by introgression, and infection densities in these strains were evaluated by a quantitative polymerase chain reaction technique. Our study revealed previously unknown aspects of Wolbachia density regulation: (i) the identification of intra-specific host genotypes that affect Wolbachia density differently and (ii) the suppression of Wolbachia density by co-infecting Wolbachia strains. These findings shed new light on symbiont-symbiont and host-symbiont interactions in the Wolbachia-insect endosymbiosis and strongly suggest that Wolbachia density is determined through a complex interaction between host genotype, symbiont genotype and other factors.  相似文献   

13.
Wolbachia pipientis is an endosymbiotic bacterium present in diverse insect species. Although it is well studied for its dramatic effects on host reproductive biology, little is known about its effects on other aspects of host biology, despite its presence in a wide array of host tissues. This study examined the effects of three Wolbachia strains on two different Drosophila species, using a laboratory performance assay for insect locomotion in response to olfactory cues. The results demonstrate that Wolbachia infection can have significant effects on host responsiveness that vary with respect to the Wolbachia strain-host species combination. The wRi strain, native to Drosophila simulans, increases the basal activity level of the host insect as well as its responsiveness to food cues. In contrast, the wMel strain and the virulent wMelPop strain, native to Drosophila melanogaster, cause slight decreases in responsiveness to food cues but do not alter basal activity levels in the host. Surprisingly, the virulent wMelPop strain has very little impact on host responsiveness in D. simulans. This novel strain-host relationship was artificially created previously by transinfection. These findings have implications for understanding the evolution and spread of Wolbachia infections in wild populations and for Wolbachia-based vector-borne disease control strategies currently being developed.  相似文献   

14.
Wolbachia is a genus of alpha-proteobacteria found in obligate intracellular association with a wide variety of arthropods, including an estimated 10-20% of all insect species [1]. Wolbachia represents one of a number of recently identified 'reproductive parasites' [2] which manipulate the reproduction of their hosts in ways that enhance their own transmission [3] [4] [5] [6] [7] [8] [9]. The influence of Wolbachia infection on the dynamics of host populations has focused considerable interest on its possible role in speciation through reproductive isolation [3] [10] [11] and as an agent of biological control [2] [12] [13]. Although Wolbachia normally undergoes vertical transmission through the maternal line of its host population [14], there is compelling evidence from molecular phylogenies that extensive horizontal (intertaxon) transmission must have occurred [1] [9] [15] [16] [17]. Some of the best candidate vectors for the horizontal transmission of Wolbachia are insect parasitoids [15], which comprise around 25% of all insect species and attack arthropods from an enormous range of taxa [18]. In this study, we used both fluorescence microscopy and PCR amplification with Wolbachia-specific primers to show that Wolbachia can be transmitted to a parasitic wasp (Leptopilina boulardi) from its infected host (Drosophila simulans) and subsequently undergo diminishing vertical transmission in this novel host species. These results are, to our knowledge, the first to reveal a natural horizontal transfer route for Wolbachia between phylogenetically distant insect species.  相似文献   

15.
Wolbachia are maternally inherited endocellular bacteria known to alter insect host reproduction to facilitate their own transmission. Multiple Wolbachia infections are more common in tropical than temperate insects but few studies have investigated their dynamics in field populations. The beetle, Chelymorpha alternans, found throughout the Isthmus of Panama, is infected with two strains of Wolbachia, wCalt1 (99.2% of beetles) and wCalt2 (53%). Populations infected solely by the wCalt1 strain were limited to western Pacific Panama, whereas populations outside this region were either polymorphic for single (wCalt1) and double infections (wCalt1 + wCalt2) or consisted entirely of double infections. The wCalt2 strain was not found as a single infection in the wild. Both strains caused cytoplasmic incompatibility (CI). The wCalt1 strain caused weak CI (approximately 20%) and the double infection induced moderate CI (approximately 70-90%) in crosses with uninfected beetles. The wCalt1 strain rescued about 75% of eggs fertilized by sperm from wCalt2 males. Based on the relationships of beetle mtDNA and infection status, maternal transmission, and repeated population sampling we determined that the double infection invaded C. alternans populations about 100,000 years ago and that the wCalt2 strain appears to be declining in some populations, possibly due to environmental factors. This may be the first study to demonstrate an association between widespread strain loss and environmental factors in the field.  相似文献   

16.
The density and regulation of microbial populations are important factors in the success of symbiotic associations. High bacterial density may improve transmission to the next generation, but excessive replication could turn out to be costly to the host and result in higher virulence. Moreover, differences in virulence may also depend on the diversity of symbionts. Using the maternally transmitted symbiont Wolbachia, we investigated how bacterial density and diversity are regulated and influence virulence in host insects subject to multiple infection. The model we used was the wasp Asobara tabida that naturally harbors three different Wolbachia strains, of which two are facultative and induce cytoplasmic incompatibility, whereas the third is necessary for the host to achieve oogenesis. Using insect lines infected with different subsets of Wolbachia strains, we show that: (i) some traits of A. tabida are negatively affected by Wolbachia; (ii) the physiological cost increases with the number of co-infecting strains, which also corresponds to an increase in the total bacterial density; and (iii) the densities of the two facultative Wolbachia strains are independent of one another, whereas the obligatory strain is less abundant when it is alone, suggesting that there is some positive interaction with the other strains.  相似文献   

17.
Hughes GL  Pike AD  Xue P  Rasgon JL 《PloS one》2012,7(4):e36277
The common bacterial endosymbiont Wolbachia manipulates its host's reproduction to promote its own maternal transmission, and can interfere with pathogen development in many insects making it an attractive agent for the control of arthropod-borne disease. However, many important species, including Anopheles mosquitoes, are uninfected. Wolbachia can be artificially transferred between insects in the laboratory but this can be a laborious and sometimes fruitless process. We used a simple ex vivo culturing technique to assess the suitability of Wolbachia-host germline associations. Wolbachia infects the dissected germline tissue of multiple insect species when the host tissue and bacteria are cultured together. Ovary and testis infection occurs in a density-dependent manner. Wolbachia strains are more capable of invading the germline of their native or closely related rather than divergent hosts. The ability of Wolbachia to associate with the germline of novel hosts is crucial for the development of stably-transinfected insect lines. Rapid assessment of the suitability of a strain-host combination prior to transinfection may dictate use of a particular Wolbachia strain. Furthermore, the cultured germline tissues of two major Anopheline vectors of Plasmodium parasites are susceptible to Wolbachia infection. This finding further enhances the prospect of using Wolbachia for the biological control of malaria.  相似文献   

18.
Intracellular bacteria of the genus Wolbachia are widespread endosymbionts across diverse insect taxa. Despite this prevalence, our understanding of how Wolbachia persists within populations is not well understood. Cytoplasmic incompatibility (CI) appears to be an important phenotype maintaining Wolbachia in many insects, but it is believed to be too weak to maintain Wolbachia in Drosophila melanogaster, suggesting that Wolbachia must also have other effects on this species. Here we estimate the net selective effect of Wolbachia on its host in a laboratory-adapted population of D. melanogaster, to determine the mechanisms leading to its persistence in the laboratory environment. We found i) no significant effects of Wolbachia infection on female egg-to-adult survival or adult fitness, ii) no reduced juvenile survival in males, iii) substantial levels of CI, and iv) a vertical transmission rate of Wolbachia higher than 99%. The fitness of cured females was, however, severely reduced (a decline of 37%) due to CI in offspring. Taken together these findings indicate that Wolbachia is maintained in our laboratory environment due to a combination of a nearly perfect transmission rate and substantial CI. Our results show that there would be strong selection against females losing their infection and producing progeny free from Wolbachia.  相似文献   

19.
Wolbachia are wide-spread, endogenous α-Proteobacteria of arthropods and filarial nematodes. 15-75% of all insect species are infected with these endosymbionts that alter their host's reproduction to facilitate their spread. In recent years, many insect species infected with multiple Wolbachia strains have been identified. As the endosymbionts are not cultivable outside living cells, strain typing relies on molecular methods. A Multi Locus Sequence Typing (MLST) system was established for standardizing Wolbachia strain identification. However, MLST requires hosts to harbour individual and not multiple strains of supergroups without recombination. This study revisits the applicability of the current MLST protocols and introduces Allele Intersection Analysis (AIA) as a novel approach. AIA utilizes natural variations in infection patterns and allows correct strain assignment of MLST alleles in multiply infected host species without the need of artificial strain segregation. AIA identifies pairs of multiply infected individuals that share Wolbachia and differ in only one strain. In such pairs, the shared MLST sequences can be used to assign alleles to distinct strains. Furthermore, AIA is a powerful tool to detect recombination events. The underlying principle of AIA may easily be adopted for MLST approaches in other uncultivable bacterial genera that occur as multiple strain infections and the concept may find application in metagenomic high-throughput parallel sequencing projects.  相似文献   

20.
BACKGROUND: Wolbachia and Cardinium are endosymbiotic bacteria infecting many arthropods and manipulating host reproduction. Although these bacteria are maternally transmitted, incongruencies between phylogenies of host and parasite suggest an additional role for occasional horizontal transmission. Consistent with this view is the strong evidence for recombination in Wolbachia, although it is less clear to what extent recombination drives diversification within single host species and genera. Furthermore, little is known concerning the population structures of other insect endosymbionts which co-infect with Wolbachia, such as Cardinium. Here, we explore Wolbachia and Cardinium strain diversity within nine spider mite species (Tetranychidae) from 38 populations, and quantify the contribution of recombination compared to point mutation in generating Wolbachia diversity. RESULTS: We found a high level of genetic diversity for Wolbachia, with 36 unique strains detected (64 investigated mite individuals). Sequence data from four Wolbachia genes suggest that new alleles are 7.5 to 11 times more likely to be generated by recombination than point mutation. Consistent with previous reports on more diverse host samples, our data did not reveal evidence for co-evolution of Wolbachia with its host. Cardinium was less frequently found in the mites, but also showed a high level of diversity, with eight unique strains detected in 15 individuals on the basis of only two genes. A lack of congruence among host and Cardinium phylogenies was observed. CONCLUSIONS: We found a high rate of recombination for Wolbachia strains obtained from host species of the spider mite family Tetranychidae, comparable to rates found for horizontally transmitted bacteria. This suggests frequent horizontal transmission of Wolbachia and/or frequent horizontal transfer of single genes. Our findings strengthens earlier reports of recombination for Wolbachia, and shows that high recombination rates are also present on strains from a restrictive host range. Cardinium was found co-infecting several spider mite species, and phylogenetic comparisons suggest also horizontal transmission of Cardinium among hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号