首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ma J  Cao X 《Cellular signalling》2006,18(8):1117-1126
Regulated import of STAT proteins into the nucleus through the nuclear pores is a vital event. We previously identified Arg214/215 in the coiled-coil domain and Arg414/417 in the DNA binding domain involved in the ligand-induced nuclear translocation of Stat3. In this study, we investigated the mechanism for Stat3 nuclear transport. We report here that among five ubiquitously expressed human importin alphas, importin alpha5 and alpha7, but not importin alpha1, alpha3, and alpha4, bind to Stat3 upon cytokine stimulation. Similar results were observed for Stat1, but not for Stat5a and 5b, which were unable to interact with any of the importin alphas. The C-terminus of importin alpha5 is necessary but not sufficient for Stat3 binding. Truncation mutant of Stat3 (aa1-320) that contains Arg214/215 exhibits specific binding to importin alpha5, and an exclusive nuclear localization. Point mutations of Arg214/215 in this mutant destroy importin alpha5 binding and its nuclear localization. In contrast, the truncation mutant (aa320-770) including Arg414/417 fails to interact with importin alpha5 and is localized in the cytoplasm. However, both sequence elements are necessary for the full-length Stat3's interaction with importin alpha5. These results suggest that Arg214/215 is likely the binding site for importin alpha5, whereas Arg414/417 may not be involved in the direct binding, but necessary for maintaining the proper conformation of Stat3 dimer for importin binding. A model for Stat3 nuclear translocation is proposed based on these data.  相似文献   

4.
Stat3 is activated by cytokines and growth factors via specific tyrosine phosphorylation, dimerization, and nuclear translocation. However, the mechanism involved in its nuclear translocation is unclear. In this study, by systematic deletion and site-directed mutagenesis we identified Arg-214/215 in the alpha-helix 2 region of the coiled-coil domain of Stat3 as a novel sequence element essential for its nuclear translocation, stimulated by epidermal growth factor as well as by interleukin-6. Furthermore, we identified Arg-414/417 in the DNA binding domain as also required for the nuclear localization of Stat3. This sequence element corresponds to Lys-410/413 of Stat1, a reported sequence for Stat1 nuclear translocation. On the other hand, Leu-411 of Stat3, corresponding to Leu-407 of Stat1, a necessary residue for Stat1 nuclear transport, is not essential for Stat3 nuclear import. The mutant of Arg-214/215 or Arg-414/417 was shown to be tyrosyl-phosphorylated normally but failed to enter the nucleus in response to epidermal growth factor or interleukin-6. The defect, however, can be rescued by the wild-type Stat3 but cannot be compensated by these two mutants. Mutations on Arg-414/417, but not Arg-214/215, destroy the DNA binding activity of Stat3. Our data for the first time identified a sequence element located in the coiled-coil domain that is involved in the ligand-induced nuclear translocation of Stat3. This novel sequence together with a conserved sequence element in the DNA binding domain coordinates to mediate the nuclear translocation of Stat3.  相似文献   

5.
In response to cytokine stimuli, Stats are phosphorylated and translocated to the nucleus to activate target genes. Then, most are dephosphorylated and returned to the cytoplasm. Using Ba/F3 cells, we found that the nuclear export of Stat5B by cytokine depletion was inhibited by leptomycin B (LMB), a specific inhibitor of nuclear export receptor chromosome region maintenance 1. Interestingly, LMB treatment in the absence of cytokine led to the accumulation of Stat5B in the nucleus, suggesting that Stat5B shuttles between the nucleus and the cytoplasm as a monomer without cytokine stimulation. This notion is supported by the observation that LMB-induced accumulation of Stat5B in the nucleus was also observed with Stat5B having a mutated tyrosine 699, which is essential for dimer formation. Using a series of mutant Stat5Bs, we identified a part of the coiled coil domain to be a critical region for monomer nuclear import and a more N-terminal region to be critical for the cytokine stimulation dependent import of Stat5B. Taken together, we propose a model in which Stat5B shuttles between the nucleus and cytoplasm by two different mechanisms, one being a factor-independent constitutive shuttling by monomeric form, and the other, a factor stimulation-dependent one regulated by tyrosine phosphorylation and subsequent dimerization.  相似文献   

6.
7.
The cytoplasmic polyadenylation element binding protein CPEB1 (CPEB) regulates germ cell development, synaptic plasticity, and cellular senescence. A microarray analysis of mRNAs regulated by CPEB unexpectedly showed that several encoded proteins are involved in insulin signaling. An investigation of Cpeb1 knockout mice revealed that the expression of two particular negative regulators of insulin action, PTEN and Stat3, were aberrantly increased. Insulin signaling to Akt was attenuated in livers of CPEB-deficient mice, suggesting that they might be defective in regulating glucose homeostasis. Indeed, when the Cpeb1 knockout mice were fed a high-fat diet, their livers became insulin-resistant. Analysis of HepG2 cells, a human liver cell line, depleted of CPEB demonstrated that this protein directly regulates the translation of PTEN and Stat3 mRNAs. Our results show that CPEB regulated translation is a key process involved in insulin signaling.  相似文献   

8.
Interferon stimulation of cells leads to the tyrosine phosphorylation of latent Stat1 and subsequent transient accumulation in the nucleus that requires canonical transport factors. However, the mechanisms that control the predominantly cytoplasmic localization in unstimulated cells have not been resolved. We uncovered that constitutive energy- and transport factor-independent nucleocytoplasmic shuttling is a property of unphosphorylated Stat1, Stat3, and Stat5. The NH(2)- and COOH-terminal Stat domains are generally dispensable, whereas alkylation of a single cysteine residue blocked cytokine-independent nuclear translocation and thus implicated the linker domain into the cycling of Stat1. It is revealed that constitutive nucleocytoplasmic shuttling of Stat1 is mediated by direct interactions with the FG repeat regions of nucleoporin 153 and nucleoporin 214 of the nuclear pore. Concurrent active nuclear export by CRM1 created a nucleocytoplasmic Stat1 concentration gradient that is significantly reduced by the blocking of energy-requiring translocation mechanisms or the specific inactivation of CRM1. Thus, we propose that two independent translocation pathways cooperate to determine the steady-state distribution of Stat1.  相似文献   

9.
10.
The non-beta-oxidisable tetradecylthioacetic acid (TTA) is incorporated into cellular membranes when C3H/10T1/2 cells are cultured in TTA-containing medium. We here demonstrate that this alteration in cellular membranes affect the nuclear translocation of proteins involved in signal transduction. Analysis of cellular fatty acid composition shows that TTA and TTA:1n-8 constitute approximately 40 mol% of total fatty acids in cellular/nuclear membranes. Activation of c-fos expression is significantly inhibited in TTA-treated cells but the enzymatic activation of mitogen activated protein kinase (ERK) is not affected. Immunofluorescence and confocal microscopy studies demonstrate that in mitogene-stimulated TTA-treated cells, the translocation of phosphorylated ERK1/2, protein kinase C alpha (PKC alpha), and PKC beta(1) from the cytoplasm into the nucleus is considerably decreased and delayed. Concomitant with a decreased nuclear import, ERK1/2 dephosphorylation is decreased in TTA-treated cells. There is no TTA-induced inhibition of nuclear import of proteins with a classical nuclear localization signal (NLS), as seen by in vitro nuclear import experiments of BSA fused to the NLS from SV40 large T, or in vivo studies of hnRNP A1 nuclear import. The expression levels of Importin alpha, Importin beta, Importin 7, and NTF2 are not altered in the TTA-treated cells. Taken together, our data indicate that TTA treatment causes changes in cellular fatty acid composition that negatively affect NLS-independent mechanisms of protein translocation through the nuclear pore complex.  相似文献   

11.
12.
BACKGROUND: At M phase, cyclin B1 is phosphorylated in the cytoplasmic retention sequence (CRS), which is required for nuclear export. During interphase, cyclin B1 shuttles between the nucleus and the cytoplasm because constitutive nuclear import is counteracted by rapid nuclear export. In M phase, cyclin B moves rapidly into the nucleus coincident with its phosphorylation, an overall movement that might be caused simply by a decrease in its nuclear export. However, the questions of whether CRS phosphorylation is required for cyclin B1 translocation in mitosis and whether a reduction in nuclear export is sufficient to explain its rapid relocalisation have not been addressed. RESULTS: We have used two forms of green fluorescent protein to analyse simultaneously the translocation of wild-type cyclin B1 and a phosphorylation mutant of cyclin B1 in mitosis, and correlated this with an in vitro nuclear import assay. We show that cyclin B1 rapidly translocates into the nucleus approximately 10 minutes before breakdown of the nuclear envelope, and that this movement requires the CRS phosphorylation sites. A cyclin B1 mutant that cannot be phosphorylated enters the nucleus after the wild-type protein. Phosphorylation of the CRS creates a nuclear import signal that enhances cyclin B1 import in vitro and in vivo, in a manner distinct from the previously described import of cyclin B1 mediated by importin beta. CONCLUSIONS: We show that phosphorylation of human cyclin B1 is required for its rapid translocation to the nucleus towards the end of prophase. Phosphorylation enhances cyclin B1 nuclear import by creating a nuclear import signal. The phosphorylation of the CRS is therefore a critical step in the control of mitosis.  相似文献   

13.
14.
15.
16.
The RNA binding protein CPEB (cytoplasmic polyadenylation element binding) regulates cytoplasmic polyadenylation and translation in germ cells and the brain. In neurons, CPEB is detected at postsynaptic sites, as well as in the cell body. The related CPEB3 protein also regulates translation in neurons, albeit probably not through polyadenylation; it, as well as CPEB4, is present in dendrites and the cell body. Here, we show that treatment of neurons with ionotropic glutamate receptor agonists causes CPEB4 to accumulate in the nucleus. All CPEB proteins are nucleus-cytoplasm shuttling proteins that are retained in the nucleus in response to calcium-mediated signaling and alpha-calcium/calmodulin-dependent kinase protein II (CaMKII) activity. CPEB2, -3, and -4 have conserved nuclear export signals that are not present in CPEB. CPEB4 is necessary for cell survival and becomes nuclear in response to focal ischemia in vivo and when cultured neurons are deprived of oxygen and glucose. Further analysis indicates that nuclear accumulation of CPEB4 is controlled by the depletion of calcium from the ER, specifically, through the inositol-1,4,5-triphosphate (IP3) receptor, indicating a communication between these organelles in redistributing proteins between subcellular compartments.  相似文献   

17.
18.
Although the microtubule (MT) cytoskeleton has been shown to facilitate nuclear import of specific cancer-regulatory proteins including p53, retinoblastoma protein, and parathyroid hormone-related protein (PTHrP), the MT association sequences (MTASs) responsible and the nature of the interplay between MT-dependent and conventional importin (IMP)-dependent nuclear translocation are unknown. Here we used site-directed mutagenesis, live cell imaging, and direct IMP and MT binding assays to map the MTAS of PTHrP for the first time, finding that it is within a short modular region (residues 82-108) that overlaps with the IMPβ1-recognized nuclear localization signal (residues 66-108) of PTHrP. Importantly, fluorescence recovery after photobleaching experiments indicated that disruption of the MT network or mutation of the MTAS of PTHrP decreases the rate of nuclear import by 2-fold. Moreover, MTAS functions depend on mutual exclusivity of binding of PTHrP to MTs and IMPβ1 such that, following MT-dependent trafficking toward the nucleus, perinuclear PTHrP can be displaced from MTs by IMPβ1 prior to import into the nucleus. This is the first molecular definition of an MTAS that facilitates protein nuclear import as well as the first delineation of the mechanism whereby cargo is transferred directly from the cytoskeleton to the cellular nuclear import apparatus. The results have broad significance with respect to fundamental processes regulating cell physiology/transformation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号