共查询到20条相似文献,搜索用时 0 毫秒
1.
Tanaka N Chakravarty AK Maughan B Shuman S 《The Journal of biological chemistry》2011,286(50):43134-43143
RtcB enzymes are a newly discovered family of RNA ligases, implicated in tRNA splicing and other RNA repair reactions, that seal broken RNAs with 2',3'-cyclic phosphate and 5'-OH ends. Parsimony and energetics would suggest a one-step mechanism for RtcB sealing via attack by the O5' nucleophile on the cyclic phosphate, with expulsion of the ribose O2' and generation of a 3',5'-phosphodiester at the splice junction. Yet we find that RtcB violates Occam's razor, insofar as (i) it is adept at ligating 3'-monophosphate and 5'-OH ends; (ii) it has an intrinsic 2',3'-cyclic phosphodiesterase activity. The 2',3'-cyclic phosphodiesterase and ligase reactions both require manganese and are abolished by mutation of the RtcB active site. Thus, RtcB executes a unique two-step pathway of strand joining whereby the 2',3'-cyclic phosphodiester end is hydrolyzed to a 3'-monophosphate, which is then linked to the 5'-OH end to form the splice junction. The energy for the 3'-phosphate ligase activity is provided by GTP, which reacts with RtcB in the presence of manganese to form a covalent RtcB-guanylate adduct. This adduct is sensitive to acid and hydroxylamine but resistant to alkali, consistent with a phosphoramidate bond. 相似文献
2.
The RNA ligase RtcB is conserved in all domains of life and is essential for tRNA maturation in archaea and metazoa. Here we show that bacterial and archaeal RtcB catalyze the GTP-dependent ligation of RNA with 3'-phosphate and 5'-hydroxyl termini. Reactions with analogues of RNA and GTP suggest a mechanism in which RtcB heals the 3'-phosphate terminus by forming a 2',3'-cyclic phosphate before joining it to the 5'-hydroxyl group of a second RNA strand. Thus, RtcB can ligate RNA cleaved by RNA endonucleases, which generate 2',3'-cyclic phosphate and then 3'-phosphate termini on one strand, and a 5'-hydroxyl terminus on another strand. 相似文献
3.
The enzymatic conversion of 3'-phosphate terminated RNA chains to 2',3'-cyclic phosphate derivatives 总被引:1,自引:0,他引:1
The enzyme, RNA cyclase, has been purified from cell-free extracts of HeLa cells approximately 6000-fold. The enzyme catalyzes the conversion of 3'-phosphate ends of RNA chains to the 2',3'-cyclic phosphate derivative in the presence of ATP or adenosine 5'-(gamma-thio)triphosphate (ATP gamma S) and Mg2+. The formation of 1 mol of 2',3'-cyclic phosphate ends is associated with the disappearance of 1 mol of 3'-phosphate termini and the hydrolysis of 1 mol of ATP gamma S to AMP and thiopyrophosphate. No other nucleotides could substitute for ATP or ATP gamma S in the reaction. The reaction catalyzed by RNA cyclase was not reversible and exchange reactions between [32P]pyrophosphate and ATP were not detected. However, an enzyme-AMP intermediate could be identified that was hydrolyzed by the addition of inorganic pyrophosphate or 3'-phosphate terminated RNA chains but not by 3'-OH terminated chains or inorganic phosphate. 3'-[32P](Up)10Gp* could be converted to a form that yielded, (Formula: see text) after degradation with nuclease P1, by the addition of wheat germ RNA ligase, 5'-hydroxylpolynucleotide kinase, RNA cyclase, and ATP. This indicates that the RNA cyclase had catalyzed the formation of the 2',3'-cyclic phosphate derivative, the kinase had phosphorylated the 5'-hydroxyl end of the RNA, and the wheat germ RNA ligase had catalyzed the formation of a 3',5'-phosphodiester linkage concomitant with the conversion of the 2',3'-cyclic end to a 2'-phosphate terminated residue. 相似文献
4.
I D Bobruskin M V Muratova N N Kireeva A A Belov E S Severin 《Biokhimii?a (Moscow, Russia)》1989,54(9):1499-1507
3':5'-Cyclic nucleotide phosphodiesterase was isolated from human brain and characterized. After the first stage of purification on phenyl-Sepharose, the enzyme activity was stimulated by Ca2+ and micromolar concentrations of cGMP. High pressure liquid chromatography on a DEAE-TSK-3SW column permitted to identify three ranges of enzymatic activity designated as PDE I, PDE II and PDE III. Neither of the three enzymes possessed a high selectivity for cAMP and cGMP substrates. The catalytic activity of PDE I and PDE II increased in the presence of Ca2+-calmodulin (up to 6-fold); the degradation of cAMP was decreased by cGMP. The Ca2+-calmodulin stimulated PDE I and PDE II activity was decreased by W-7. PDE I and PDE II can thus be classified as Ca2+-calmodulin-dependent phosphodiesterases. With cAMP as substrate, the PDE III activity increased in the presence of micromolar concentrations of cGMP (up to 10-fold), Ca2+ and endogenous calmodulin (up to 2-3-fold). No additivity in the effects of saturating concentrations of these compounds on PDE III was observed. Ca2+ did not influence the rate of cGMP hydrolysis catalyzed by PDE III. In comparison with PDE I and PDE II, the inhibition of PDE III was observed at higher concentrations of W-7 and was not limited by the basal level of the enzyme. These results do not provide any evidence in favour of the existence of several forms of the enzyme in the PDE III fraction. The double regulation of PDE III creates some difficulties for its classification. 相似文献
5.
6.
K N Prasad G Becker K Tripathy 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1975,149(3):757-762
There are phosphodiesterase activities in both particulate and supernatant fractions which hydrolyze guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP) with an apparent Km of 2-8 muM and with an apparent Km of 44-222 muM. 4-(3-Butoxy-4-methoxybenzyl-2-imidazolidinone (RO20-1724) did not inhibit cGMP phosphodiesterase activity in homogenates of mouse neuroblastoma cells, but markedly inhibited cAMP phosphodiesterase activity. Papaverine and theophylline inhibited both cGMP and cAMP phosphodiesterase activities to about the same extent. The former was more potent than the latter. The specific activity of cGMP phosphodiesterase as a function of protein concentrations first increased and then decreased. The specific activity of cAMP phosphodiesterase decreased under a similar experimental condition. 相似文献
7.
M Shimoyama M Kawai Y Hoshi I Ueda 《Biochemical and biophysical research communications》1972,49(4):1137-1141
8.
9.
10.
Purification and properties of 3',5'-cyclic nucleotide phosphodiesterase from dog heart 总被引:10,自引:0,他引:10
K G Nair 《Biochemistry》1966,5(1):150-157
11.
cCMP-specific phosphodiesterase activity was demonstrated in the 80 to 100% ammonium sulfate fraction obtained from disrupted leukemia L-1210 cells. The activity was linear with time (up to 60 min), was a function of protein concentration, and was markedly stimulated by Mg2+ and by ammonium sulfate. Under identical assay conditions, no significant hydrolysis of cAMP or cGMP was observed, although these cyclic nucleotides served as substrates for phosphodiesterase(s) present in all the fractions obtained by less than 80% ammonium sulfate saturation. This is the first demonstration of a cCMP-specific phosphodiesterase. 相似文献
12.
Exercise-induced increases in myocardial adenosine 3',5'-cyclic monophosphate and phosphodiesterase activity 总被引:1,自引:0,他引:1
Numerous cellular biochemical events caused by hormones are mediated through cyclic AMP. Although many changes occur in the cell during exercise that could be attributed to this nucleotide, little evidence is available implicating it as an important regulator of exercise metabolism. In this investigation it was found that a 60 min bout of treadmill exercise caused a 2.4-fold increase in myocardial cyclic AMP immediately following the work. Rather than the immediate nucleotide hydrolysis that was expected, it was found that the elevated cyclic AMP level remained for approx. 24 h before returning to control levels. Cardiac glycogen fell to 30% of control after work but supercompensated 60% above control within 1 h following exercise. Therefore, cardiac cyclic AMP was elevated at a time when glycogen was being synthesized. Study of the temporal relationship between the exercise-induced increase in cyclic AMP and cyclic nucleotide phosphodiesterase indicated that the work caused an increase in the hearts' capacity to hydrolyze cyclic AMP. Measurement of heart phosphodiesterase at substrate concentrations of 1.0 and 100 microM produced significant increases in enzyme activity immediately following exercise which remained elevated for 48 h and was back to control activity 96 h following work. These data present a potentially fascinating model for the study of the dissociation between cyclic AMP, glycogenesis and elevations in phosphodiesterase activity in the heart. 相似文献
13.
Adenosine 3',5'-cyclic monophosphate phosphodiesterase (EC 3.1.4.17) has been investigated in rat liver as to its insulin sensitivity. Hormone action has been assayed in vitro on a liver homogenate purified by DEAE-cellulose column chromatography, on isolated hepatocytes, on isolated plasma membranes. The DEAE-cellulose chromatography purified homogenate showed no sensitivity to insulin, whereas isolated hepatocytes incubated in presence of insulin showed increased phosphodiesterase activity in a plasma membrane-containing fraction. The plasma membrane-bound enzyme, which shows both high and low affinity components, was significantly stimulated after hormonal treatment; this effect being dependent on a V increase of the low Km form. 相似文献
14.
15.
16.
The potential antiallergic compounds doxantrazole (3- (5-tetrazolyl)-thioxanthone 10, 10-dioxide) and CTD (3- carboxythioxanthone 10, 10-dioxide) are inhibitors of the phosphodiesterases of human and guinea pig lung and beef heart. Disodium cromoglycate is a weak inhibitor of all these enzymes. It is suggested that the antiallergic activity of doxantrazole and CTD is due, at least in part, to their ability to elevate intracellular cAMP levels by inhibiting phosphodiesterase activity. 相似文献
17.
J P Miller K H Boswell K Muneyama L N Simon R K Robins D A Shuman 《Biochemistry》1973,12(26):5310-5319
18.
The 2':3'-cyclic nucleotide phosphodiesterase:3'-nucleotidase of Haemophilus influenzae was purified from a periplasmic preparation by affinity chromatographic techniques. The enzyme-catalysed hydrolysis of 2':3'-cyclic AMP to adenosine without accumulation of the intermediate substrate 3'-AMP was demonstrated by high performance liquid chromatography. Competitive inhibition of the enzyme by a variety of nucleosides and mononucleotides indicated the presence of either purine or pyrimidine bases to be essential for selective interactions with the enzyme, and confirmed the need for a 3'-position phosphate for the functioning of mononucleotides as substrates for the enzyme. The enzyme had a molecular weight of 79 000, was stable at low temperatures and was thermally denatured at temperatures above 50 degrees C. 相似文献
19.