首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary goal of this study was to better understand the microbial composition and functional genetic diversity associated with turkey fecal communities. To achieve this, 16S rRNA gene and metagenomic clone libraries were sequenced from turkey fecal samples. The analysis of 382 16S rRNA gene sequences showed that the most abundant bacteria were closely related to Lactobacillales (47%), Bacillales (31%), and Clostridiales (11%). Actinomycetales, Enterobacteriales, and Bacteroidales sequences were also identified, but represented a smaller part of the community. The analysis of 379 metagenomic sequences showed that most clones were similar to bacterial protein sequences (58%). Bacteriophage (10%) and avian viruses (3%) sequences were also represented. Of all metagenomic clones potentially encoding for bacterial proteins, most were similar to low G+C Gram-positive bacterial proteins, particularly from Lactobacillales (50%), Bacillales (11%), and Clostridiales (8%). Bioinformatic analyses suggested the presence of genes encoding for membrane proteins, lipoproteins, hydrolases, and functional genes associated with the metabolism of nitrogen and sulfur containing compounds. The results from this study further confirmed the predominance of Firmicutes in the avian gut and highlight the value of coupling 16S rRNA gene and metagenomic sequencing data analysis to study the microbial composition of avian fecal microbial communities.  相似文献   

2.
Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ∼60% and ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising ∼88% and ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (∼0.2% and ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.  相似文献   

3.
In Arctic regions, glaciers are major sources of iron to rivers and streams; however, estuaries are considered iron sinks due to the coagulation and flocculation processes that occur at higher salinities. It is unknown how iron dynamics in a glacial influenced river and estuary environment affect microbial mechanisms for iron acquisition. Microbial taxonomic and functional sequencing was performed on samples taken throughout the year from the Kenai River and the estuary, Alaska. Despite distinct iron, sodium, and other nutrient concentrations, the river and estuary did not have statistically different microbial communities nor was time of sampling significant. However, ferrous iron transport (Feo) system genes were more abundant in river environments, while siderophore genes were more abundant and diverse in estuary environments. Siderophore transport and iron storage genes were found in all samples, but gene abundance and distribution were potentially influenced by physical drivers such as discharge rates and nutrient distributions. Differences in iron metabolism between river and estuary ecosystems indicate environmental conditions drive microbial mechanisms to sequester iron. This could have implications for iron transport as the Arctic continues to warm.  相似文献   

4.
KM Singh  SJ Jakhesara  PG Koringa  DN Rank  CG Joshi 《Gene》2012,507(2):146-151
A major research goal in rumen microbial ecology is to understand the relationship between community composition and its function, particularly involved in fermentation process is of a potential interest. The buffalo rumen microbiota impacts human food safety as well as animal health. Although the bacteria of bovine rumen have been well characterized, techniques have been lacking to correlate total community structure with gene function. We applied 454 next generations sequencing technology to characterize general microbial diversity present in buffalo rumen metagenome and also identified the repertoire of microbial genes present, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that over six percent (6.44%) of the sequences from our buffalo rumen pool sample could be categorized as virulence genes and genes associated with resistance to antibiotic and toxic compounds (RATC), which is a higher proportion of virulence genes reported from metagenome samples of chicken cecum (5.39%), cow rumen (4.43%) and Sargasso sea (2.95%). However, it was lower than the proportion found in cow milk (11.33%) cattle faeces (8.4%), Antarctic marine derived lake (8.45%), human fecal (7.7%) and farm soil (7.79%). The dynamic nature of metagenomic data, together with the large number of RATC classes observed in samples from widely different ecologies indicates that metagenomic data can be used to track potential targets and relative amounts of antibiotic resistance genes in individual animals. In addition, these data can be also used to generate antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats.  相似文献   

5.
Exploring the mechanisms of maintaining microbial community structure is important to understand biofilm development or microbiota dysbiosis. In this paper, we propose a functional gene-based composition prediction(FCP) model to predict the population structure composition within a microbial community. The model predicts the community composition well in both a low-complexity community as acid mine drainage(AMD) microbiota, and a complex community as human gut microbiota. Furthermore, we define community structure shaping(CSS) genes as functional genes crucial for shaping the microbial community. We have identified CSS genes in AMD and human gut microbiota samples with FCP model and find that CSS genes change with the conditions. Compared to essential genes for microbes, CSS genes are significantly enriched in the genes involved in mobile genetic elements, cell motility, and defense mechanisms, indicating that the functions of CSS genes are focused on communication and strategies in response to the environment factors. We further find that it is the minority, rather than the majority, which contributes to maintaining community structure. Compared to health control samples, we find that some functional genes associated with metabolism of amino acids, nucleotides, and lipopolysaccharide are more likely to be CSS genes in the disease group. CSS genes may help us to understand critical cellular processes and be useful in seeking addable gene circuitries to maintain artificial self-sustainable communities. Our study suggests that functional genes are important to the assembly of microbial communities.  相似文献   

6.
Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, along four sites/elevations of a Tibetan mountainous grassland, aiming to explore the potential microbial responses to climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities were distinct for most but not all of the sites. Substantial variations were apparent in stress, N and C-cycling genes, but they were in line with the functional roles of these genes. Cold shock genes were more abundant at higher elevations. Also, gdh converting ammonium into urea was more abundant at higher elevations, whereas ureC converting urea into ammonium was less abundant, which was consistent with soil ammonium contents. Significant correlations were observed between N-cycling genes (ureC, gdh and amoA) and nitrous oxide flux, suggesting that they contributed to community metabolism. Lastly, we found by Canonical correspondence analysis, Mantel tests and the similarity tests that soil pH, temperature, NH4+–N and vegetation diversity accounted for the majority (81.4%) of microbial community variations, suggesting that these four attributes were major factors affecting soil microbial communities. On the basis of these observations, we predict that climate changes in the Tibetan grasslands are very likely to change soil microbial community functional structure, with particular impacts on microbial N-cycling genes and consequently microbe-mediated soil N dynamics.  相似文献   

7.
Polar and alpine microbial communities experience a variety of environmental stresses, including perennial cold and freezing; however, knowledge of genomic responses to such conditions is still rudimentary. We analyzed the metagenomes of cyanobacterial mats from Arctic and Antarctic ice shelves, using high-throughput pyrosequencing to test the hypotheses that consortia from these extreme polar habitats were similar in terms of major phyla and subphyla and consequently in their potential responses to environmental stresses. Statistical comparisons of the protein-coding genes showed similarities between the mats from the two poles, with the majority of genes derived from Proteobacteria and Cyanobacteria; however, the relative proportions differed, with cyanobacterial genes more prevalent in the Antarctic mat metagenome. Other differences included a higher representation of Actinobacteria and Alphaproteobacteria in the Arctic metagenomes, which may reflect the greater access to diasporas from both adjacent ice-free lands and the open ocean. Genes coding for functional responses to environmental stress (exopolysaccharides, cold shock proteins, and membrane modifications) were found in all of the metagenomes. However, in keeping with the greater exposure of the Arctic to long-range pollutants, sequences assigned to copper homeostasis genes were statistically (30%) more abundant in the Arctic samples. In contrast, more reads matching the sigma B genes were identified in the Antarctic mat, likely reflecting the more severe osmotic stress during freeze-up of the Antarctic ponds. This study underscores the presence of diverse mechanisms of adaptation to cold and other stresses in polar mats, consistent with the proportional representation of major bacterial groups.  相似文献   

8.
Viruses are the most abundant biological entities on our planet. Interactions between viruses and their hosts impact several important biological processes in the world's oceans such as horizontal gene transfer, microbial diversity and biogeochemical cycling. Interrogation of microbial metagenomic sequence data collected as part of the Sorcerer II Global Ocean Expedition (GOS) revealed a high abundance of viral sequences, representing approximately 3% of the total predicted proteins. Cluster analyses of the viral sequences revealed hundreds to thousands of viral genes encoding various metabolic and cellular functions. Quantitative analyses of viral genes of host origin performed on the viral fraction of aquatic samples confirmed the viral nature of these sequences and suggested that significant portions of aquatic viral communities behave as reservoirs of such genetic material. Distributional and phylogenetic analyses of these host-derived viral sequences also suggested that viral acquisition of environmentally relevant genes of host origin is a more abundant and widespread phenomenon than previously appreciated. The predominant viral sequences identified within microbial fractions originated from tailed bacteriophages and exhibited varying global distributions according to viral family. Recruitment of GOS viral sequence fragments against 27 complete aquatic viral genomes revealed that only one reference bacteriophage genome was highly abundant and was closely related, but not identical, to the cyanomyovirus P-SSM4. The co-distribution across all sampling sites of P-SSM4-like sequences with the dominant ecotype of its host, Prochlorococcus supports the classification of the viral sequences as P-SSM4-like and suggests that this virus may influence the abundance, distribution and diversity of one of the most dominant components of picophytoplankton in oligotrophic oceans. In summary, the abundance and broad geographical distribution of viral sequences within microbial fractions, the prevalence of genes among viral sequences that encode microbial physiological function and their distinct phylogenetic distribution lend strong support to the notion that viral-mediated gene acquisition is a common and ongoing mechanism for generating microbial diversity in the marine environment.  相似文献   

9.
后基因组时代,仅依靠基因组方法来研究原位微生物群落的功能已远远不够,在这种背景下元蛋白质组学研究逐渐兴起。应用元蛋白质组学技术可大规模研究原位微生物群落的蛋白质表达,分析生态系统中微生物的功能,寻找新的功能基因和代谢通路,为微生物群体的基因和功能多样性研究提供数据。同时,还可鉴定与微生物功能相关的蛋白质,这些蛋白质未来可以作为生物标记物为环境可持续发展铺路。综述了元蛋白质组学的发展概况及其在微生物功能研究中的重大作用,强调了元蛋白质组学方法在分析新功能基因及其相关基因,揭示微生物多样性与微生物群体功能之间的关系等方面起到的作用,并对其应用前景进行了展望。  相似文献   

10.
Diatom blooms can significantly influence the dynamics of microbial communities, yet little is known about the interaction and assembly mechanisms of abundant and rare taxa during bloom process. Here, using 16S rRNA gene amplicon sequencing, we investigated the co-occurrence patterns and assembly processes of abundant and rare microbial communities during an early spring diatom bloom in Xiangshan bay. Our results showed that α-diversity indices in the rare subcommunity (RS) were significantly higher than those in the abundant and common subcommunities. β-Diversity of the RS was the highest among three subcommunities, and the variation of β-diversity in the three subcommunities was mainly induced by species turnover, which was also the highest in the RS. The assembly of microbial communities was mainly driven by the neutral processes, but the roles of neutral processes might differ in each subcommunity. Co-occurrence network analysis revealed that abundant and common operational taxonomic units were more often located in central positions within the network. Most of the modules in the network were specific to a particular bloom stage, owing to the succession of Skeletonema costatum. Overall, these findings expand current understanding of the microbial interaction and assembly mechanisms in marine environment suffering harmful algal bloom disturbance.  相似文献   

11.

Background

Natural microbial communities are extremely complex and dynamic systems in terms of their population structure and functions. However, little is known about the in situ functions of the microbial communities.

Results

This study describes the application of proteomic approaches (metaproteomics) to observe expressed protein profiles of natural microbial communities (metaproteomes). The technique was validated using a constructed community and subsequently used to analyze Chesapeake Bay microbial community (0.2 to 3.0 μm) metaproteomes. Chesapeake Bay metaproteomes contained proteins from pI 4–8 with apparent molecular masses between 10–80 kDa. Replicated middle Bay metaproteomes shared ~92% of all detected spots, but only shared 30% and 70% of common protein spots with upper and lower Bay metaproteomes. MALDI-TOF analysis of highly expressed proteins produced no significant matches to known proteins. Three Chesapeake Bay proteins were tentatively identified by LC-MS/MS sequencing coupled with MS-BLAST searching. The proteins identified were of marine microbial origin and correlated with abundant Chesapeake Bay microbial lineages, Bacteroides and α-proteobacteria.

Conclusion

Our results represent the first metaproteomic study of aquatic microbial assemblages and demonstrate the potential of metaproteomic approaches to link metagenomic data, taxonomic diversity, functional diversity and biological processes in natural environments.  相似文献   

12.
Human commensal microbiota are an important determinant of health and disease of the host. Different human body sites harbour different bacterial microbiota, bacterial communities that maintain a stable balance. However, many of the factors influencing the stabilities of bacterial communities associated with humans remain unknown. In this study, we identified putative bacteriocins produced by human commensal microbiota. Bacteriocins are peptides or proteins with antimicrobial activity that contribute to the stability and dynamics of microbial communities. We employed bioinformatic analyses to identify putative bacteriocin sequences in metagenomic sequences obtained from different human body sites. Prevailing bacterial taxa of the putative bacteriocins producers matched the most abundant organisms in each human body site. Remarkably, we found that samples from different body sites contain different density of putative bacteriocin genes, with the highest in samples from the vagina, the airway, and the oral cavity and the lowest in those from gut. Inherent differences of different body sites thus influence the density and types of bacteriocins produced by commensal bacteria. Our results suggest that bacteriocins play important roles to allow different bacteria to occupy several human body sites, and to establish a long‐term commensal relationship with human hosts.  相似文献   

13.
The microbial communities from the Tinto River, a natural acid mine drainage environment, were explored to search for novel genes involved in arsenic resistance using a functional metagenomic approach. Seven pentavalent arsenate resistance clones were selected and analysed to find the genes responsible for this phenotype. Insights about their possible mechanisms of resistance were obtained from sequence similarities and cellular arsenic concentration. A total of 19 individual open reading frames were analysed, and each one was individually cloned and assayed for its ability to confer arsenic resistance in Escherichia coli cells. A total of 13 functionally active genes involved in arsenic resistance were identified, and they could be classified into different global processes: transport, stress response, DNA damage repair, phospholipids biosynthesis, amino acid biosynthesis and RNA‐modifying enzymes. Most genes (11) encode proteins not previously related to heavy metal resistance or hypothetical or unknown proteins. On the other hand, two genes were previously related to heavy metal resistance in microorganisms. In addition, the ClpB chaperone and the RNA‐modifying enzymes retrieved in this work were shown to increase the cell survival under different stress conditions (heat shock, acid pH and UV radiation). Thus, these results reveal novel insights about unidentified mechanisms of arsenic resistance.  相似文献   

14.
The microbial communities of high‐latitude ecosystems are expected to experience rapid changes over the next century due to climate warming and increased deposition of reactive nitrogen, changes that will likely affect microbial community structure and function. In moist acidic tundra (MAT) soils on the North Slope of the Brooks Range, Alaska, substantial losses of C and N were previously observed after long‐term nutrient additions. To analyse the role of microbial communities in these losses, we utilized 16S rRNA gene tag pyrosequencing coupled with community‐level physiological profiling to describe changes in MAT bacterial communities after short‐ and long‐term nutrient fertilization in four sets of paired control and fertilized MAT soil samples. Bacterial diversity was lower in long‐term fertilized plots. The Acidobacteria were one of the most abundant phyla in all soils and distinct differences were noted in the distributions of Acidobacteria subgroups between mineral and organic soil layers that were also affected by fertilization. In addition, Alpha‐ and Gammaproteobacteria were more abundant in long‐term fertilized samples compared with control soils. The dramatic increase in sequences within the Gammaproteobacteria identified as Dyella spp. (order Xanthomonadales) in the long‐term fertilized samples was confirmed by quantitative PCR (qPCR) in several samples. Long‐term fertilization was also correlated with shifts in the utilization of specific substrates by microbes present in the soils. The combined data indicate that long‐term fertilization resulted in a significant change in microbial community structure and function linked to changes in carbon and nitrogen availability and shifts in above‐ground plant communities.  相似文献   

15.
Proteorhodopsins are light-energy-harvesting transmembrane proteins encoded by genes recently discovered in the surface waters of the world's oceans. Metagenomic data from the Global Ocean Sampling expedition (GOS) recovered 2674 proteorhodopsin-related sequences from 51 aquatic samples. Four of these samples were from non-marine environments, specifically, Lake Gatun within the Panama Canal, Delaware Bay and Chesapeake Bay and the Punta Cormorant Lagoon in Ecuador. Rhodopsins related to but phylogenetically distinct from most sequences designated proteorhodopsins were present at all four of these non-marine sites and comprised three different clades that were almost completely absent from marine samples. Phylogenomic analyses of genes adjacent to those encoding these novel rhodopsins suggest affiliation to the Actinobacteria , and hence we propose to name these divergent, non-marine rhodopsins 'actinorhodopsins'. Actinorhodopsins conserve the acidic amino acid residues critical for proton pumping and their genes lack genomic association with those encoding photo-sensory transducer proteins, thus supporting a putative ion pumping function. The ratio of rec A and rad A to rhodopsin genes in the different environment types sampled within the GOS indicates that rhodopsins of one type or another are abundant in microbial communities in freshwater, estuarine and lagoon ecosystems, supporting an important role for these photosystems in all aquatic environments influenced by sunlight.  相似文献   

16.
The relationship between the abundance of three functional genes and their corresponding biochemical reaction rates was investigated in several activated sludge and mill effluent microbial communities. Gene probes were prepared for two key denitrification genes (nirS and nirK) and for one nitrogen-fixation gene (nifH) and were validated using a variety of strains of known nir and nif genotype. ATP-based measures of viable cell numbers were used to provide total population sizes. In certain microbial communities (activated sludge enrichment cultures and multiple samples taken from the same mill primary clarifier), a strong correlation was observed between gene abundance and biochemical activity rates. However, when comparing several different nonenriched activated sludge bioreactors and separate primary clarifier microbial communities, the ratio of specific gene abundance to biochemical activity rates varied widely. These results suggest that in cases where a microbial community is not fully induced for a given biochemical activity or when very different communities are compared, quantitative gene probing can give a better measure of a community's potential to carry out the encoded function than can the relevant biochemical assay. However, the gene quantitation method employed here probably underestimated the true number of probed genes present in the microbial communities due to nirS and nifH genes in the communities having reduced DNA sequence similarity with the probes used.  相似文献   

17.
Little is known about microbial communities in the Ganges River, India and how they respond to intensive anthropogenic inputs. Here we applied shotgun metagenomics sequencing to study microbial community dynamics and function in planktonic samples collected along an approximately 700 km river transect, including urban cities and rural settings in upstream waters, before and after the monsoon rainy season. Our results showed that 11%–32% of the microbes represented terrestrial, sewage and human inputs (allochthonous). Sewage inputs significantly contributed to the higher abundance, by 13-fold of human gut microbiome (HG) associated sequences and 2-fold of antibiotic resistance genes (ARGs) in the Ganges relative to other riverine ecosystems in Europe, North and South America. Metagenome-assembled genome sequences (MAGs) representing allochthonous populations were detectable and tractable across the river after 1–2 days of (downstream) transport (> 200 km apart). Only approximately 8% of these MAGs were abundant in U.S. freshwater ecosystems, revealing distinct biodiversity for the Ganges. Microbial communities in the rainy season exhibited increased alpha-diversity and spatial heterogeneity and showed significantly weaker distance-decay patterns compared with the dry season. These results advance our understanding of the Ganges microbial communities and how they respond to anthropogenic pollution.  相似文献   

18.
[目的] 黄河三角洲区域具有重要的湿地生态系统。碱蓬、野大豆和芦苇是该地区典型的盐生植物。本研究针对碱蓬、野大豆和芦苇混生植物的根际土壤微生物群落组成和功能基因进行了分析比较。[方法] 对碱蓬,野大豆-芦苇混生植物的根际微生物菌群和光滩土壤菌群进行了宏基因组测序,使用COG和KEGG数据库对微生物菌群的功能进行了注释和比较。[结果] 本研究结果表明,变形菌门是3个取样点的主要菌门,其在碱蓬、野大豆-芦苇根际土壤中的相对含量比光滩土壤分别多28.8%和10.6%。此外,拟杆菌门、放线菌门和芽单胞菌门是3个取样点中的优势物种。中华根瘤菌属是野大豆-芦苇混生植物根际土壤的最主要的属。对功能基因进行分析表明,光滩土壤中的功能基因的数量多于碱蓬根际土壤和野大豆-芦苇混生植物根际土壤的功能基因数。在这3个位点中,氨基酸代谢、碳水化合物代谢和能量代谢,以及无机离子转运和代谢的基因最多。[结论] 本研究为发掘有价值的微生物资源和海岸带盐碱土壤修复提供了一定的理论基础。  相似文献   

19.
Yang  Mei  Zou  Jie  Liu  Chengyi  Xiao  Yujun  Zhang  Xiaoping  Yan  Lijuan  Ye  Lei  Tang  Ping  Li  Xiaolin 《Annals of microbiology》2019,69(5):553-565

Here, we investigated the influence of Chinese white truffle (Tuber panzhihuanense) symbioses on the microbial communities associated with Corylus avellana during the early development stage of symbiosis. The microbial communities associated with ectomycorrhizae, and associated with roots without T. panzhihuanense colonization, were determined via high-throughput sequencing of bacterial 16S rRNA genes and fungal ITS genes. Microbial community diversity was higher in the communities associated with the ectomycorrhizae than in the control treatment. Further, bacterial and fungal community structures were different in samples containing T. panzhihuanense in association with C. avellana compared to the control samples. In particular, the bacterial genera Rhizobium, Pedomicrobium, and Herbiconiux were more abundant in the ectomycorrhizae, in addition to the fungal genus Monographella. Moreover, there were clear differences in some physicochemical properties among the rhizosphere soils of the two treatments. Statistical analyses indicated that soil properties including exchangeable magnesium and exchangeable calcium prominently influenced microbial community structure. Lastly, inference of bacterial metabolic functions indicated that sugar and protein metabolism functions were significantly more enriched in the communities associated with the ectomycorrhizae from C. avellana mycorrhized with T. panzhihuanense compared to communities from roots of cultivated C. avellana without T. panzhihuanense. Taken together, these results highlight the interactions among ectomycorrhizal fungi, soil properties, and microbial communities that are associated with host plants and further our understanding of the ecology and cultivation of the economically important T. panzhihuanense truffles.

  相似文献   

20.
Selenium is an important trace element that occurs in proteins in the form of selenocysteine (Sec) and in tRNAs in the form of selenouridine. Recent large-scale metagenomics projects provide an opportunity for understanding global trends in trace element utilization. Herein, we characterized the selenoproteome of the microbial marine community derived from the Global Ocean Sampling (GOS) expedition. More than 3,600 selenoprotein gene sequences belonging to 58 protein families were detected, including sequences representing 7 newly identified selenoprotein families, such as homologs of ferredoxin–thioredoxin reductase and serine protease. In addition, a new eukaryotic selenoprotein family, thiol reductase GILT, was identified. Most GOS selenoprotein families originated from Cys-containing thiol oxidoreductases. In both Pacific and Atlantic microbial communities, SelW-like and SelD were the most widespread selenoproteins. Geographic location had little influence on Sec utilization as measured by selenoprotein variety and the number of selenoprotein genes detected; however, both higher temperature and marine (as opposed to freshwater and other aquatic) environment were associated with increased use of this amino acid. Selenoproteins were also detected with preference for either environment. We identified novel fusion forms of several selenoproteins that highlight redox activities of these proteins. Almost half of Cys-containing SelDs were fused with NADH dehydrogenase, whereas such SelD forms were rare in terrestrial organisms. The selenouridine utilization trait was also analyzed and showed an independent evolutionary relationship with Sec utilization. Overall, our study provides insights into global trends in microbial selenium utilization in marine environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号