首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CYP199A2, a bacterial P450 monooxygenase from Rhodopseudomonas palustris, was found to exhibit oxidation activity towards three hydroxynaphthoic acids. Whole cells of the recombinant Escherichia coli strain expressing CYP199A2 efficiently catalyzed the regioselective oxidation of 1-, 3-, and 6-hydroxy-2-naphthoic acids to produce 1,7-, 3,7-, and 6,7-dihydroxynaphthoic acid respectively. These results suggest that CYP199A2 might be a useful oxidation biocatalyst for the synthesis of dihydroxynaphthoic acids.  相似文献   

2.
CYP199A2, a bacterial P450 monooxygenase from Rhodopseudomonas palustris, was previously reported to oxidize 2-naphthoic acid and 4-ethylbenzoic acid. In this study, we examined the substrate specificity and regioselectivity of CYP199A2 towards indole- and quinolinecarboxylic acids. The CYP199A2 gene was coexpressed with palustrisredoxin gene from R. palustris and putidaredoxin reductase gene from Pseudomonas putida to provide the redox partners of CYP199A2 in Escherichia coli. Following whole-cell assays, reaction products were identified by mass spectrometry and NMR spectroscopy. CYP199A2 did not exhibit any activity towards indole and indole-3-carboxylic acid, whereas this enzyme oxidized indole-2-carboxylic acid, indole-5-carboxylic acid, and indole-6-carboxylic acid. Indole-2-carboxylic acid was converted to 5- and 6-hydroxyindole-2-carboxylic acids at a ratio of 59:41. In contrast, the indole-6-carboxylic acid oxidation generated only one product, 2-indolinone-6-carboxylic acid, at a rate of 130 mol (mol P450)−1 min−1. Furthermore, CYP199A2 also oxidized quinoline-6-carboxylic acid, although this enzyme did not exhibit any activity towards quinoline and its derivatives with a carboxyl group at the C-2, C-3, or C-4 positions. The oxidation product of quinoline-6-carboxylic acid was identified to be 3-hydroxyquinoline-6-carboxylic acid, which was a novel compound. These results suggest that CYP199A2 may be a valuable biocatalyst for the regioselective oxidation of various aromatic carboxylic acids.  相似文献   

3.
Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play important and diverse roles in the cardiovascular system. The anti-inflammatory, anti-apoptotic, pro-angiogenic, and anti-hypertensive properties of EETs in the cardiovascular system suggest a beneficial role for EETs in diabetic nephropathy. This study investigated the effects of endothelial specific overexpression of CYP2J2 epoxygenase on diabetic nephropathy in streptozotocin-induced diabetic mice. Endothelial CYP2J2 overexpression attenuated renal damage as measured by urinary microalbumin and glomerulosclerosis. These effects were associated with inhibition of TGF-β/Smad signaling in the kidney. Indeed, overexpression of CYP2J2 prevented TGF-β1-induced renal tubular epithelial-mesenchymal transition in vitro. These findings highlight the beneficial roles of the CYP epoxygenase-EET system in the pathogenesis of diabetic nephropathy.  相似文献   

4.
Cytochrome P450s (CYPs) are a large family of heme-containing monooxygenase enzymes involved in the first-pass metabolism of drugs and foreign chemicals in the body. CYP reactions, therefore, are of high interest to the pharmaceutical industry, where lead compounds in drug development are screened for CYP activity. CYP reactions in vivo require the cofactor NADPH as the source of electrons and an additional enzyme, cytochrome P450 reductase (CPR), as the electron transfer partner; consequently, any laboratory or industrial use of CYPs is limited by the need to supply NADPH and CPR. However, immobilizing CYPs on an electrode can eliminate the need for NADPH and CPR provided the enzyme can accept electrons directly from the electrode. The immobilized CYP can then act as a biosensor for the detection of CYP activity with potential substrates, albeit only if the immobilized enzyme is electroactive. The quest to create electroactive CYPs has led to many different immobilization strategies encompassing different electrode materials and surface modifications. This review focuses on different immobilization strategies that have been used to create CYP biosensors, with particular emphasis on mammalian drug-metabolizing CYPs and characterization of CYP electrodes. Traditional immobilization methods such as adsorption to thin films or encapsulation in polymers and gels remain robust strategies for creating CYP biosensors; however, the incorporation of novel materials such as gold nanoparticles or quantum dots and the use of microfabrication are proving advantageous for the creation of highly sensitive and portable CYP biosensors.  相似文献   

5.

Introduction

Cyclophosphamide is commonly used as an important component in conditioning prior to hematopoietic stem cell transplantation, a curative treatment for several hematological diseases. Cyclophosphamide is a prodrug activated mainly by cytochrome P450 2B6 (CYP2B6) in the liver. A high degree of inter- and intra-individual variation in cyclophosphamide kinetics has been reported in several studies.

Materials and Methods

Hydroxylation of cyclophosphamide was investigated in vitro using three microsomal batches of CYP2B6*1 with different ratios of POR/CYP expression levels. Twenty patients undergoing hematopoietic stem cell transplantation were also included in the study. All patients received an i.v. infusion of cyclophosphamide (60 mg/kg/day, for two days) as a part of their conditioning. Blood samples were collected from each patient before cyclophosphamide infusion, 6 h after the first dose and before and 6 h after the second dose. POR gene expression was measured by mRNA analysis and the pharmacokinetics of cyclophosphamide and its active metabolite were determined.

Results

A strong correlation between the in vitro intrinsic clearance of cyclophosphamide and the POR/CYP ratio was found. The apparent K m for CYP2B6.1 was almost constant (3-4 mM), while the CLint values were proportional to the POR/CYP ratio (3-34 μL/min/nmol CYP). In patients, the average expression of the POR gene in blood was significantly (P <0.001) up-regulated after cyclophosphamide infusion, with high inter-individual variations and significant correlation with the concentration ratio of the active metabolite 4-hydroxy-cyclophosphamide/cyclophosphamide. Nine patients were carriers for POR*28; four patients had relatively high POR expression.

Conclusions

This investigation shows for the first time that POR besides CYP2B6 can influence cyclophosphamide metabolism. Our results indicate that not only CYPs are important, but also POR expression and/or activity may influence cyclophosphamide bioactivation, affecting therapeutic efficacy and treatment related toxicity and hence on clinical outcome. Thus, both POR and CYP genotype and expression levels may have to be taken into account when personalizing treatment schedules to achieve optimal therapeutic drug plasma concentrations of cyclophosphamide.  相似文献   

6.
Transient expression of a cytochrome P450 gene (CYP78A2) cloned from Phalaenopsis was shown to enhance the anthocyanin contents in the petals of transformed Phalaenopsis. In this study, it was characterized further to understand the relationship between this P450 and the anthocyanin biosynthesis in flowers. The enhancement effect exerted by the P450 gene exhibits the following characteristics. First, its product seems to be able to effectively boost the existing pathway of biosynthesis without causing synthesis of any new anthocyanin. Second, the effect is not limited to Phalaenopsis, a monocotyledon, but also occurs in dicotyledons such as carnation and rose, indicating its wide range of action in heterologous plants. Third, the gene is not expressed in petals at any stage of flower development of Phalaenopsis, thus ruling out its direct participation in anthocyanin biosynthesis. It is possible that this P450 gene is associated with the biosynthesis of plant hormones or second metabolites, and through which to positively and indirectly influence the existing biosynthesis pathway of anthocyanins in petals.  相似文献   

7.
细胞色素P450 2D6缺陷型等位基因的家系分析   总被引:1,自引:1,他引:1  
利用等位基因特民扩增法(ASA)为基础的基因分型法,对细胞色素P4502D6 (CYP2D6)缺陷型等位基因携带者的9个家庭共38个进行了基因分型,并与用右旋美沙芬为 探针的表型分型法进行对比,发现两种方法的结果是一致的,CYP2D6酶缺陷型等位基因呈常染色体隐性遗传。 Abstract:A genotyping method based on the principle of allele-specific amplification and a phenotyping procedure with dextromethorphan as a probe were employed in familial study of nine families with 38 members for the cytochrome P450 2D6(CYP2D6)deficient alleles——CYP2D6A,CYP2D6B,CYP2D6D and CYP2D6T.The results showed that the CYP2D6 deficient alleles were inherited as an autosomal recessive trait.  相似文献   

8.
9.
The biosynthetic pathway for the production of phenylacetonitrile (PAN), which has a wide variety of uses in chemical and pharmaceutical industries, was constructed in Escherichia coli utilizing enzymes from the plant glucosinolate-biosynthetic and bacterial aldoxime-nitrile pathways. First, the single-step reaction to produce E,Z-phenylacetaldoxime (PAOx) from l-Phe was constructed in E. coli by introducing the genes encoding cytochrome P450 (CYP) 79A2 and CYP reductase from Arabidopsis thaliana, yielding the E,Z-PAOx-producing transformant. Second, this step was expanded to the production of PAN by further introducing the aldoxime dehydratase (Oxd) gene from Bacillus sp. strain OxB-1, yielding the PAN-producing transformant. The E,Z-PAOx-producing transformant also produced phenethyl alcohol and PAN as by-products, which were suggested to be the metabolites of E,Z-PAOx produced by E. coli enzymes, while the PAN-producing transformant accumulated only PAN in the culture broth, which suggested that the CYP79A2 reaction (the conversion of l-Phe to E,Z-PAOx) was a potential bottleneck in the PAN production pathway. Expression of active CYP79A2 and concentration of biomass were improved by the combination of the autoinduction method, coexpression of groE, encoding the heat shock protein GroEL/GroES, N-terminal truncation of CYP79A2, and optimization of the culture conditions, yielding a >60-fold concentration of E,Z-PAOx (up to 2.9 mM). The concentration of PAN was 4.9 mM under the optimized conditions. These achievements show the potential of this bioprocess to produce nitriles and nitrile derivatives in the absence of toxic chemicals.  相似文献   

10.
Deoxynivalenol (DON) is a natural toxin of fungi that cause Fusarium head blight disease of wheat and other small-grain cereals. DON accumulates in infected grains and promotes the spread of the infection on wheat, posing serious problems to grain production. The elucidation of DON-catabolic genes and enzymes in DON-degrading microbes will provide new approaches to decrease DON contamination. Here, we report a cytochrome P450 system capable of catabolizing DON in Sphingomonas sp. strain KSM1, a DON-utilizing bacterium newly isolated from lake water. The P450 gene ddnA was cloned through an activity-based screening of a KSM1 genomic library. The genes of its redox partner candidates (flavin adenine dinucleotide [FAD]-dependent ferredoxin reductase and mitochondrial-type [2Fe-2S] ferredoxin) were not found adjacent to ddnA; the redox partner candidates were further cloned separately based on conserved motifs. The DON-catabolic activity was reconstituted in vitro in an electron transfer chain comprising the three enzymes and NADH, with a catalytic efficiency (kcat/Km) of 6.4 mM−1 s−1. The reaction product was identified as 16-hydroxy-deoxynivalenol. A bioassay using wheat seedlings revealed that the hydroxylation dramatically reduced the toxicity of DON to wheat. The enzyme system showed similar catalytic efficiencies toward nivalenol and 3-acetyl deoxynivalenol, toxins that frequently cooccur with DON. These findings identify an enzyme system that catabolizes DON, leading to reduced phytotoxicity to wheat.  相似文献   

11.
细胞色素P450 2D6酶缺陷等位基因的分析   总被引:2,自引:0,他引:2  
细胞色素P450 2D6(CYP2D6)第1 795位胸腺嘧啶核苷缺失造成CYP2D6酶活性缺陷,该等位基因被称为CYP2D6T.对该等位基因的测定有助于准确预测CYP2D6表现型.利用等位基因特异扩增法的基本原理,建立了测定CYP2D6T的方法.经396例测定,证明比利用PCR扩增后再酶切的方法更为快捷、更少污染,为该项测定应用于临床奠定基础.  相似文献   

12.
17α-羟基黄体酮(17α-OH-PROG)是甾体激素类药物的关键中间体,其生物合成主要由细胞色素单加氧酶(CYP17)催化生成。在此过程中,细胞色素 P450还原酶(cytochrome P450 reductase,CPR)作为细胞色素P450 酶电子传递链的重要组成部分,直接影响CYP17的催化效率。为研究不同来源CPR与17α-羟化酶的适配性,首先以人源17α-羟化酶作为研究对象,构建了表达质粒pPIC3.5k-hCYP17,获得了重组毕赤酵母菌株。其次筛选获得3种不同来源CPR,构建了表达质粒 pPICZX-CPR,获得17α-羟化酶与CPR共表达菌株,并在毕赤酵母中进行转化实验,对转化产物进行薄层色谱(TLC)和高效液相色谱(HPLC)分析。结果显示,重组菌株具有17α-羟化酶活性,能够催化黄体酮生成目标产物17α-OH-PROG 以及副产物16α-羟基黄体酮(16α-OH-PROG)。不同来源的CPR与17α-羟化酶共表达与仅表达17α-羟化酶的产率相比均有所提高,其中hCPR-CYP17共表达菌株表现出最高的转化水平,17α-OH-PROG产率提高42%。上述结果表明:17α-羟化酶基因与CPR共表达能够提高其黄体酮17α-羟基化水平。为甾体黄体酮17α-羟基化的生物催化研究提供思路,对甾体药物的工业生产具有重要意义。  相似文献   

13.
CYP199A2, a cytochrome P450 enzyme from Rhodopseudomonas palustris, oxidatively demethylates 4-methoxybenzoic acid to 4-hydroxybenzoic acid. 4-Ethylbenzoic acid is converted to a mixture of predominantly 4-(1-hydroxyethyl)-benzoic acid and 4-vinylbenzoic acid, the latter being a rare example of CC bond dehydrogenation of an unbranched alkyl group. The crystal structure of CYP199A2 has been determined at 2.0-Å resolution. The enzyme has the common P450 fold, but the B′ helix is missing and the G helix is broken into two (G and G′) by a kink at Pro204. Helices G and G′ are bent back from the extended BC loop and the I helix to open up a clearly defined substrate access channel. Channel openings in this region of the P450 fold are rare in bacterial P450 enzymes but more common in eukaryotic P450 enzymes. The channel is hydrophobic except for the basic residue Arg246 at the entrance, which probably plays a role in the specificity of this enzyme for charged benzoates over neutral phenols and benzenes. The substrate binding pocket is hydrophobic, with Ser97 and Ser247 being the only polar residues. Computer docking of 4-ethylbenzoic acid into the active site suggests that the substrate carboxylate oxygens interact with Ser97 and Ser247, and the β-methyl group is located over the heme iron by Phe185, the side chain of which is only 6.35 Å above the iron in the native structure. This binding orientation is consistent with the observed product profile of exclusive attack at the para substituent. Putidaredoxin of the CYP101A1 system from Pseudomonas putida supports substrate oxidation by CYP199A2 at ∼6% of the activity of the physiological ferredoxin. Comparison of the heme proximal faces of CYP199A2 and CYP101A1 suggests that charge reversal surrounding the surface residue Leu369 in CYP199A2 may be a significant factor in this low cross-activity.  相似文献   

14.
The presence of oligomers of cytochrome P450 1A2 in membranes of proteoliposomes produced by the cholate-dialysis technique was demonstrated by cross-linking of protein molecules with bifunctional reagents followed by electrophoretic analysis of the modified proteins. A hexameric organization of cytochrome P450 1A2 in the membrane of proteoliposomes is suggested with high probability based on the comparison of the purified hemoprotein oligomeric structure in an aqueous medium and that in the proteoliposomes. The comparison was carried out using the same method.  相似文献   

15.
16.
在研究治疗肾功能紊乱植物的细胞培养时, 建立了一个Eritrichium sericeum的E-4愈伤组织株系, 发现此株系可产生大量的咖啡酸代谢物、(–)-rabdosiin (1.8%干重)和迷迭香酸(4.6%干重), 通过诱导(–)-rabdosiin的含量提高至4.1% (干重)。将E-4愈伤组织喂服Masugi肾炎大鼠, 结果发现, 与对照组(未喂服E-4愈伤组织的Masugi肾炎大鼠)相比, 处理组(喂服E-4愈伤组织)中的大鼠出现如下症状: 尿多、排泄物中肌氨酸酐降低、尿蛋白水平降低; 当对照组中所有大鼠都出现疼痛症状时, 处理组中仍有约/4的大鼠表现出健康状况良好。以上结果表明, E-4株系具有缓解肾炎症状的潜在功能。此外, 利用富含多酚的rolC转基因的细胞株系, 研究了愈伤组织中咖啡酸代谢物的诱导合成机制。结果发现,在rloC转基因的E. sericeum愈伤组织中,咖啡酸代谢物的高产与迷迭香酸生物合成中的关键基因CYP98A3的高表达有关。  相似文献   

17.
Two acidic residues, Glu-48 and Glu-49, of cytochrome b5 (b5) are essential for stimulating the 17,20-lyase activity of cytochrome P450c17 (CYP17A1). Substitution of Ala, Gly, Cys, or Gln for these two glutamic acid residues abrogated all capacity to stimulate 17,20-lyase activity. Mutations E49D and E48D/E49D retained 23 and 38% of wild-type activity, respectively. Using the zero-length cross-linker ethyl-3-(3-dimethylaminopropyl)carbodiimide, we obtained cross-linked heterodimers of b5 and CYP17A1, wild-type, or mutations R347K and R358K. In sharp contrast, the b5 double mutation E48G/E49G did not form cross-linked complexes with wild-type CYP17A1. Mass spectrometric analysis of the CYP17A1-b5 complexes identified two cross-linked peptide pairs as follows: CYP17A1-WT: 84EVLIKK89-b5: 53EQAGGDATENFEDVGHSTDAR73 and CYP17A1-R347K: 341TPTISDKNR349-b5: 40FLEEHPGGEEVLR52. Using these two sites of interaction and Glu-48/Glu-49 in b5 as constraints, protein docking calculations based on the crystal structures of the two proteins yielded a structural model of the CYP17A1-b5 complex. The appositional surfaces include Lys-88, Arg-347, and Arg-358/Arg-449 of CYP17A1, which interact with Glu-61, Glu-42, and Glu-48/Glu-49 of b5, respectively. Our data reveal the structural basis of the electrostatic interactions between these two proteins, which is critical for 17,20-lyase activity and androgen biosynthesis.  相似文献   

18.
Cytochrome P450 (P450 or CYP) monooxygenases play an important role in the oxidation of a number of lipophilic substrates including secondary metabolites in higher plants. Larkin reported that CYP78A1 was preferentially expressed in developing inflorescences of Zea mays (Larkin, Plant Mol. Biol. 25: 343-353, 1994). However, the enzymatic function of CYP78A1 hasn’t been clarified yet. To characterized the enzymatic activity of CYP78A1, in this study, CYP78A1 cDNA and tobacco or yeast NADPH-cytochrome P450 oxidoreductase (P450 reductase) was expressed in the yeast Saccharomyces cerevisiae AH22 cells under the control of alcohol dehydrogenase promoter I and terminator. The reduced CO-difference spectrum of a microsomal fraction prepared from the transformed yeast cells expressing CYP78A1 and yeast P450 reductase showed a peak at 449 nm. Based on the spectrum, the content of a P450 molecule was estimated to be 45 pmol P450 equivalent/mg of protein in the microsomal fraction. The recombinant yeast microsomes containing CYP78A1 and yeast P450 reductase were found to catalyze 12-monooxygenation of lauric acid. Based on these results, CYP78A1 preferentially expressed in developing inflorescences of Zea mays appeared to have participated in the monooxygenation of fatty acids.  相似文献   

19.
Cytochrome P450c17 (P450 17A1, CYP17A1) is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions.  相似文献   

20.
P450 oxidoreductase (POR) has a pivotal role in facilitating electron transfer from nicotinamide adenine dinucleotide phosphate to microsomal cytochrome P450 (CYP) enzymes, including the steroidogenic enzymes CYP17A1 and CYP21A2. Mutations in POR have been shown recently to cause congenital adrenal hyperplasia with apparent combined CYP17A1 and CYP21A2 deficiency that comprises a variable clinical phenotype, including glucocorticoid deficiency, ambiguous genitalia, and craniofacial malformations. To dissect structure-function relationships potentially explaining this phenotypic diversity, we investigated whether specific POR mutations have differential effects on CYP17A1 and CYP21A2. We compared the impact of missense mutations encoding for single amino acid changes in three distinct regions of the POR molecule: 1), Y181D and H628P close to the central electron transfer area, 2) S244C located within the hinge close to the flavin adenine dinucleotide and flavin mononucleotide domains of POR, and 3) A287P that is clearly distant from the two other regions. Functional analysis using a yeast microsomal assay with coexpression of human CYP17A1 or CYP21A2 with wild-type or mutant human POR revealed equivalent decreases in CYP17A1 and CYP21A2 activities by Y181D, H628P, and S244C. In contrast, A287P had a differential inhibitory effect, with decreased catalytic efficiency (Vmax/Km) for CYP17A1, whereas CYP21A2 retained near normal activity. In vivo analysis of urinary steroid excretion by gas chromatography/mass spectrometry in 11 patients with POR mutations showed that A287P homozygous patients had the highest corticosterone/cortisol metabolite ratios, further indicative of preferential inhibition of CYP17A1. These findings provide novel mechanistic insights into the redox regulation of human steroidogenesis. Differential interaction of POR with electron-accepting CYP enzymes may explain the phenotypic variability in POR deficiency, with additional implications for hepatic drug metabolism by POR-dependant CYP enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号