首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the interaction of the NF-kappa B precursor p105 with NF-kappa B subunits. Similar to an I kappa B molecule, p105 associates in the cytoplasm with p50 or p65. Through this assembly, p105 efficiently blocks nuclear transfer of either subunit. Moreover, the p105 protein inhibits DNA binding of dimeric NF-kappa B subunits in a similar, but not identical, manner to its isolated C-terminal domain, which contains an ankyrin-like repeat domain (ARD). The proto-oncogene product Bcl-3 also controls nuclear translocation of p50, but not of p65. Hence, p50 can be retained in the cytoplasm via at least three distinct interactions: through direct interactions either with its own precursor, with Bcl-3 or indirectly through I kappa B alpha or -beta when attached to p65. We discuss a function of p105 as a cytoplasmic assembly unit for homo- and heteromeric NF-kappa B complexes and of Bcl-3 as an I kappa B with novel subunit specificity.  相似文献   

2.
3.
4.
The vertebrate NF-kappa B/c-rel inhibitors MAD-3/I kappa B alpha, I kappa B gamma/pdI and bcl-3 all share a conserved ankyrin repeat domain (ARD) consisting of six complete repeats, a short acidic motif and/or an incomplete seventh repeat. We present here a detailed analysis of the domain in p105/pdI and MAD-3/I kappa B involved in inhibition of DNA binding and in protein interaction with rel factors. We demonstrate that in both cases an acidic region and six ankyrin-like repeats are sufficient and required for protein interaction with the rel factors. However, for p105/pdI to achieve the high affinity needed to suppress DNA binding, an incomplete seventh repeat is required in addition. Both pdI and MAD-3 associate with rel proteins by forming heterotrimeric complexes, as shown by native gel analysis and by cross-linking. Furthermore, we demonstrate that deletion of only three amino acids in the first repeat converts the subunit specificity of the p105 ARD into that of MAD-3/I kappa B. We conclude that functionally the ARD in these molecules has a modular structure, with different subregions determining the specificity for the NF-kappa B subunits p50 and p65.  相似文献   

5.
In vivo control of NF-kappa B activation by I kappa B alpha.   总被引:44,自引:8,他引:36       下载免费PDF全文
N R Rice  M K Ernst 《The EMBO journal》1993,12(12):4685-4695
  相似文献   

6.
The precursor of NF-kappa B p50 has I kappa B-like functions.   总被引:60,自引:0,他引:60  
N R Rice  M L MacKichan  A Isra?l 《Cell》1992,71(2):243-253
  相似文献   

7.
8.
9.
Signal-induced degradation of I(kappa)B(alpha) via the ubiquitin-proteasome pathway requires phosphorylation on residues serine 32 and serine 36 followed by ubiquitination on lysines 21 and 22. We investigated the role of other regions of I(kappa)B(alpha) which may be involved in its degradation. Here we report that the carboxy-terminal PEST sequence is not required for I(kappa)B(alpha) signal-induced degradation. However, removal of the PEST sequence stabilizes free I(kappa)B(alpha) in unstimulated cells. We further report that a PEST deletion mutant does not associate well with NF-(kappa)B proteins but is degraded in response to signal. Therefore, we conclude that both association with NF-(kappa)B and a PEST sequence are not required for signal-induced I(kappa)B(alpha) degradation. Additionally, the PEST sequence may be required for constitutive turnover of free I(kappa)B(alpha).  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
The p50 subunit of NF-kappaB is generated by limited processing of the precursor p105. IkappaB kinase-mediated phosphorylation of the C-terminal domain of p105 recruits the SCF(beta-TrCP) ubiquitin ligase, resulting in rapid ubiquitination and subsequent processing/degradation of p105. NEDD8 is known to activate SCF ligases following modification of their cullin component. Here we show that NEDDylation is required for conjugation and processing of p105 by SCF(beta-TrCP) following phosphorylation of the molecule. In a crude extract, a dominant negative E2 enzyme, UBC12, inhibits both conjugation and processing of p105, and inhibition is alleviated by an excess of WT- UBC12. In a reconstituted cell-free system, ubiquitination of p105 was stimulated only in the presence of all three components of the NEDD8 pathway, E1, E2, and NEDD8. A Cul-1 mutant that cannot be NEDDylated could not stimulate ubiquitination and processing of p105. Similar findings were observed also in cells. It should be noted that NEDDylation is required only for the stimulated but not for basal processing of p105. Although the mechanisms that underlie processing of p105 are largely obscure, it is clear that NEDDylation and the coordinated activity of SCF(beta-TrCP) on both p105 and IkappaBalpha serve as an important regulatory mechanism controlling NF-kappaB activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号