首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The maintenance of undifferentiated human embryonic stem cells (hESC) requires feeder cells, either in co-culture or feeder-free with conditioned medium (CM) from the feeders. In this study, we compared the CM of a supporting primary mouse embryonic feeder (MEF) and an isogenic but non-supporting MEF line (DeltaE-MEF) in order to gain an insight to the differential expression profile of secreted factors. Using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight (MALDI) tandem mass spectrometry, 13 protein identities were found to be downregulated in DeltaE-MEF compared to MEF, of which 4 were found to be soluble factors and 3 proteins were membrane-associated or related to the extracellular matrix. In addition, four other proteins were identified to be differentially expressed in MEF-CM using high pressure liquid chromatography (HPLC) and cytokine arrays. In functional experiments where CM was replaced with six of the factors identified, hESC were able to proliferate for five continuous passages whilst maintaining 68-82% and 74-98% expression of pluripotent markers, Oct-4 and Tra-1-60, respectively. Using proteomic tools, important proteins from CM that supports hESC culture have been identified, which when replaced with recombinant proteins, continue to support undifferentiated hESC growth in a feeder-free culture platform.  相似文献   

2.
3.
Expansion of pluripotent human embryonic stem cells on human feeders   总被引:7,自引:0,他引:7  
Human embryonic stem cells (HES) hold great potential for regenerative medicine because of their ability to differentiate to any cell type. However, a limitation is that HES cells require a feeder layer to stay undifferentiated. Routinely, mouse embryonic fibroblast is used. However, for therapeutic applications, contamination with mouse cells may be considered unacceptable. In this study, we evaluated three commercially available human foreskin feeder (HF) lines for their ability to support HES cell growth in media supplemented with serum or serum replacer. HES cells on HF in serum replacer-supplemented media were cultured for >30 passages. They remained undifferentiated, maintained a normal karyotype, and continued to be positive for the pluripotent markers Oct-4, SOX-2, SSEA-4, GCTM-2, Tra-1-60, Tra-1-81, and alkaline phosphatase. In vivo, HES cells formed teratomas in SCID mouse models that represent the three embryonic germ layers. In contrast, HES cells cultured on HF in serum-supplemented media differentiated after three passages. Morphologically, the cells became cystic with a loss of intracellular Oct-4. We have successfully adapted and cultured undifferentiated HES cells on three human feeder lines for >30 passages. No difficulties were observed with the exception of serum in the media. This study reveals a safe and accessible source for feeders for HES cell research and potential therapeutic applications.  相似文献   

4.
Human embryonic stem cell (hESC) lines are traditionally derived and maintained on mouse embryonic fibroblasts (MEF) which are xenogeneic and enter senescence rapidly. In view of the clinical implications of hESCs, the use of human fibroblast as feeders has been suggested as a plausible alternative. However, use of fibroblast cells from varying sources leads to culture variations along with the need to add FGF2 in cultures to sustain ES cell pluripotency. In this study we report the derivation of FGF2 expressing germ layer derived fibroblast cells (GLDF) from hESC lines. These feeders could support the pluripotency, karyotypes and proliferation of hESCs with or without FGF2 in prolonged cultures as efficiently as that on MEF. GLDF cells were derived from embryoid bodies and characterized for expression of fibroblast markers by RT-PCR, Immunofluorescence and by flow cytometry for CD marker expression. The expression and secretion of FGF2 was confirmed by RT-PCR, Western blot, and ELISA. The hESC lines cultured on MEF and GLDF were analyzed for various stemness markers. These feeder cells with fibroblast cells like properties maintained the properties of hESCs in prolonged culture over 30 passages. Proliferation and pluripotency of hESCs on GLDF was comparable to that on mouse feeders. Further we discovered that these GLDF cells could secrete FGF2 and maintained pluripotency of hESC cultures even in the absence of supplemental FGF2. To our knowledge, this is the first study reporting a novel hESC culture system which does not warrant FGF2 supplementation, thereby reducing the cost of hESC cultures.  相似文献   

5.
Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. These cells have, therefore, potential for in vitro differentiation studies, gene function, and so on. The aim of this study was to produce a human embryonic stem cell line. An inner cell mass of a human blastocyst was separated and cultured on mouse embryonic fibroblasts in embryonic stem cell medium with related additives. The established line was evaluated by morphology; passaging; freezing and thawing; alkaline phosphatase; Oct-4 expression; anti-surface markers including Tra-1-60 and Tra-1-81; and karyotype and spontaneous differentiation. Differentiated cardiomyocytes and neurons were evaluated by transmission electron microscopy and immunocytochemistry. Here, we report the derivation of a new embryonic stem cell line (Royan H1) from a human blastocyst that remains undifferentiated in morphology during continuous passaging for more than 30 passages, maintains a normal XX karyotype, is viable after freezing and thawing, and expresses alkaline phosphatase, Oct-4, Tra-1-60, and Tra-1-81. These cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers in the presence or absence of recombinant human leukemia inhibitory factor. Royan H1 cells can differentiate in vitro in the absence of feeder cells and can produce embryoid bodies that can further differentiate into beating cardiomyocytes as well as neurons. These results define Royan H1 cells as a new human embryonic stem cell line.  相似文献   

6.
Mouse embryonic fibroblasts (MEFs) were used to establish human embryonic stem cells (hESCs) cultures after blastocyst isolation1. This feeder system maintains hESCs from undergoing spontaneous differentiation during cell expansion. However, this co-culture method is labor intensive, requires highly trained personnel, and yields low hESC purity4. Many laboratories have attempted to minimize the number of feeder cells in hESC cultures (i.e. incorporating matrix-coated dishes or other feeder cell types5-8). These modified culture systems have shown some promise, but have not supplanted the standard method for culturing hESCs with mitomycin C-treated mouse embyronic fibroblasts in order to retard unwanted spontaneous differentiation of the hESC cultures. Therefore, the feeder cells used in hESC expansion should be removed during differentiation experiments. Although several techniques are available for purifying the hESC colonies (FACS, MACS, or use of drug resistant vectors) from feeders, these techniques are labor intensive, costly and/or destructive to the hESC. The aim of this project was to invent a method of purification that enables the harvesting of a purer population of hESCs. We have observed that in a confluent hESC culture, the MEF population can be removed using a simple and rapid aspiration of the MEF sheet. This removal is dependent on several factors, including lateral cell-to-cell binding of MEFs that have a lower binding affinity to the styrene culture dish, and the ability of the stem cell colonies to push the fibroblasts outward during the generation of their own "niche". The hESC were then examined for SSEA-4, Oct3/4 and Tra 1-81 expression up to 10 days after MEF removal to ensure maintenance of pluripotency. Moreover, hESC colonies were able to continue growing from into larger formations after MEF removal, providing an additional level of hESC expansion.  相似文献   

7.
Chemically fixed mouse embryonic fibroblasts (MEFs), instead of live feeder cells, were applied to the maintenance of mouse induced pluripotent stem (miPS) cells. Formaldehyde and glutaraldehyde were used for chemical fixation. The chemically fixed MEF feeders maintained the pluripotency of miPS cells, as well as their undifferentiated state. Furthermore, the chemically fixed MEF feeders were reused several times without affecting their functions. These results indicate that chemical fixation can be applied to modify biological feeders chemically, without losing their original functions. Chemically fixed MEF feeders will be applicable to other stem cell cultures as a reusable extracellular matrix candidate that can be preserved on a long-term basis.  相似文献   

8.
Feeder cells are commonly used to culture embryonic stem cells to maintain their undifferentiated and pluripotent status. Conventionally, mouse embryonic fibroblasts (MEFs), supplemented with leukemia inhibitory factor (LIF), are used as feeder cells to support the growth of mouse embryonic stem cells (mESCs) in culture. To prepare for fresh MEF feeder or for MEF-conditioned medium, sacrifice of mouse fetuses repeatedly is unavoidable in these tedious culture systems. Here we report the discovery of a human endothelial cell line (ECV-304 cell line) that efficiently supports growth of mESCs LIF-free conditions. mESCs that were successfully cultured for eight to 20 passages on ECV-304 feeders showed morphological characteristics similar to cells cultured in traditional feeder cell systems. These cells expressed the stem cell markers Oct3/4, Nanog, Sox2, and SSEA-1. Furthermore, cells cultured on the ECV-304 cell line were able to differentiate into three germ layers and were able to generate chimeric mice. Compared with traditional culture systems, there is no requirement for mouse fetuses and exogenous LIF does not need to be added to the culture system. As a stable cell line, the ECV-304 cell line efficiently replaces MEFs as an effective feeder system and allows the efficient expansion of mESCs.  相似文献   

9.
Development of generic differentiation protocols that function in a range of independently-derived human embryonic stem cell (hESC) lines remains challenging due to considerable diversity in culture methods practiced between lines. Maintenance of BG01 and HUES-7 has routinely been on mouse embryonic fibroblast (MEF) feeder layers using manual- and trypsin-passaging, respectively. We adapted both lines to trypsin-passaging on feeders or on Matrigel in feeder-free conditions and assessed proliferation and cardiac differentiation. On feeders, undifferentiated proliferation of BG01 and HUES-7 was supported by all three media tested (BG-SK, HUES-C and HUES-nL), although incidence of karyotypic instability increased in both lines in BG-SK. On Matrigel, KSR-containing conditioned medium (CM) promoted undifferentiated cell proliferation, while differentiation occurred in CM containing Plasmanate or ES-screened Fetal Bovine Serum (FBS) and in unconditioned medium containing 100 ng/ml bFGF. Matrigel cultures were advantageous for transfection but detrimental to embryoid body (EB) formation. However, transfer of hESCs from Matrigel back to feeders and culturing to confluence was found to rescue EB formation. EBs formed efficiently when hESCs on feeders were treated with collagenase, harvested by scraping and then cultured in suspension in CM. Subsequent culture in FBS-containing medium produced spontaneously contracting EBs, for which the mean beat rate was 37.2 +/- 2.3 and 41.1 +/- 3.1 beats/min for BG01-EBs and HUES-7-EBs, respectively. Derived cardiomyocytes expressed cardiac genes and responded to pharmacological stimulation. Therefore the same culture and differentiation conditions functioned in two independently-derived hESC lines. Similar studies in other lines may facilitate development of universal protocols.  相似文献   

10.

Background  

Human embryonic stem (hES) cell lines were derived from the inner cell mass of human blastocysts, and were cultured on mouse embryonic fibroblast (MEF) feeder to maintain undifferentiated growth, extensive renewal capacity, and pluripotency. The hES-T3 cell line with normal female karyotype was previously used to differentiate into autogeneic fibroblast-like cells (T3HDF) as feeder to support the undifferentiated growth of hES-T3 cells (T3/HDF) for 14 passages.  相似文献   

11.
Fibroblast feeder cells play an important role in supporting the derivation and long term culture of undifferentiated, pluripotent human embryonic stem cells (hESCs). The feeder cells secrete various growth factors and extracellular matrix (ECM) proteins into extracellular milieu. However, the roles of the feeder cell-secreted factors are largely unclear. Animal feeder cells and use of animal serum also make current feeder cell culture conditions unsuitable for derivation of clinical grade hESCs. We established xeno-free feeder cell lines using human serum (HS) and studied their function in hESC culture. While human foreskin fibroblast (hFF) feeder cells were clearly hESC supportive, none of the established xeno-free human dermal fibroblast (hDF) feeder cells were able to maintain undifferentiated hESC growth. The two fibroblast types were compared for their ECM protein synthesis, integrin receptor expression profiles and key growth factor secretion. We show that hESC supportive feeder cells produce laminin-511 and express laminin-binding integrins α3ß1, α6ß1 and α7ß1. These results indicate specific laminin isoforms and integrins in maintenance of hESC pluripotency in feeder-dependent cultures. In addition, several genes with a known or possible role for hESC pluripotency were differentially expressed in distinct feeder cells.  相似文献   

12.
Human embryonic stem (hES) cells are usually established and maintained on mouse embryonic fibroblast (MEFs) feeder layers. However, it is desirable to develop human feeder cells because animal feeder cells are associated with risks such as viral infection and/or pathogen transmission. In this study, we attempted to establish new hES cell lines using human uterine endometrial cells (hUECs) to prevent the risks associated with animal feeder cells and for their eventual application in cell-replacement therapy. Inner cell masses (ICMs) of cultured blastocysts were isolated by immunosurgery and then cultured on mitotically inactivated hUEC feeder layers. Cultured ICMs formed colonies by continuous proliferation and were allowed to proliferate continuously for 40, 50, and 55 passages. The established hES cell lines (Miz-hES-14, -15, and -9, respectively) exhibited typical hES cells characteristics, including continuous growth, expression of specific markers, normal karyotypes, and differentiation capacity. The hUEC feeders have the advantage that they can be used for many passages, whereas MEF feeder cells can only be used as feeder cells for a limited number of passages. The hUECs are available to establish and maintain hES cells, and the high expression of embryotrophic factors and extracellular matrices by hUECs may be important to the efficient growth of hES cells. Clinical applications require the establishment and expansion of hES cells under stable xeno-free culture systems.  相似文献   

13.
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.  相似文献   

14.
Human feeder layers for human embryonic stem cells   总被引:39,自引:0,他引:39  
Human embryonic stem (hES) cells hold great promise for future use in various research areas, such as human developmental biology and cell-based therapies. Traditionally, these cells have been cultured on mouse embryonic fibroblast (MEF) feeder layers, which permit continuous growth in an undifferentiated stage. To use these unique cells in human therapy, an animal-free culture system must be used, which will prevent exposure to mouse retroviruses. Animal-free culture systems for hES cells enjoy three major advantages in the basic culture conditions: 1). the ability to grow these cells under serum-free conditions, 2). maintenance of the cells in an undifferentiated state on Matrigel matrix with 100% MEF-conditioned medium, and 3). the use of either human embryonic fibroblasts or adult fallopian tube epithelial cells as feeder layers. In the present study, we describe an additional animal-free culture system for hES cells, based on a feeder layer derived from foreskin and a serum-free medium. In this culture condition, hES cells maintain all embryonic stem cell features (i.e., pluripotency, immortality, unlimited undifferentiated proliferation capability, and maintenance of normal karyotypes) after prolonged culture of 70 passages (>250 doublings). The major advantage of foreskin feeders is their ability to be continuously cultured for more than 42 passages, thus enabling proper analysis for foreign agents, genetic modification such as antibiotic resistance, and reduction of the enormous workload involved in the continuous preparation of new feeder lines.  相似文献   

15.
Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.  相似文献   

16.
Experiments were conducted to determine the effects of feeder layers composed of different cell types on the efficiency of isolation and the behavior of porcine embryo-derived cell lines. Inner cell masses (ICM) isolated from 7- to 8-d-old embryos were plated on feeder layers composed of Buffalo rat liver cells (BRL), a continuous cell line of murine embryonic fibroblasts (STO), STO combined with BRL at a 9:1 and 1:1 ratio, STO with BRL-conditioned medium (STO + CM), porcine embryonic fibroblasts (PEF), PEF combined with BRL at a 9:1 and 1:1 ratio, porcine uterine epithelial cells (PUE), murine embryonic fibroblasts (MEF), or an epithelial-like porcine embryo-derived cell line (PH3A). It was found that embryo-derived cell lines could be isolated only from the STO and the STO with BRL-conditioned medium treatments. The isolated cell lines were of epithelial-like and embryonic stem cell-like (ES-like) morphology. The feeders tested had an effect on the behavior of plated ICM. Some feeders, represented by PUE, BRL, STO:BRL (1:1), PEF:BRL (1:1), and PH3A, did not promote attachment of the ICM to the feeder layer; others, represented by STO and MEF, allowed attachment, differentiation and proliferation. On PEF feeders the ICM spread onto the feeder layer after attachment without apparent signs of proliferation or differentiation. None of the feeders tested increased the efficiency of isolation or the growth characteristics of embryo-derived (both ES-like and epithelial-like) cell lines over that of STO feeders.  相似文献   

17.
Human induced pluripotent stem cells (hiPSCs) are a type of pluripotent stem cells artificially derived from an adult somatic cell (typically human fibroblast) by forced expression of specific genes. In recent years, different feeders like inactivated mouse embryonic fibroblasts (MEFs), human dermal fibroblasts (HDFs), and feeder free system have commonly been used for supporting the culture of stem cells in undifferentiated state. In the present work, the culture of hiPSCs and their characterizations on BD Matrigel (feeder-and serum-free system), MEF and HDF feeders using cell culture methods and molecular techniques were evaluated and compared. The isolated HDFs from foreskin samples were reprogrammed to hiPSCs using gene delivery system. Then, the pluripotency ability of hiPSCs cultured on each layer was determined by teratoma formation and immunohistochemical staining. After EBs generation the expression level of three germ layers genes were evaluated by Q-real-time PCR. Also, the cytogenetic stability of hiPSCs cultured on each condition was analyzed by karyotyping and comet assay. Then, the presence of pluripotency antigens were confirmed by Immunocytochemistry (ICC) test and alkaline phosphatase staining. This study were showed culturing of hiPSCs on BD Matrigel, MEF and HDF feeders had normal morphology and could maintain in undifferentiated state for prolonged expansion. The hiPSCs cultured in each system had normal karyotype without any chromosomal abnormalities and the DNA lesions were not observed by comet assay. Moreover, up-regulation in three germ layers genes in cultured hiPSCs on each layer (same to ESCs) compare to normal HDFs were observed (p < 0.05). The findings of the present work were showed in stem cells culturing especially hiPSCs both MEF and HDF feeders as well as feeder free system like Matrigel are proper despite benefits and disadvantages. Although, MEFs is suitable for supporting of stem cell culturing but it can animal pathogens transferring and inducing immune response. Furthermore, HDFs have homologous source with hiPSCs and can be used as feeder instead of MEF but in therapeutic approaches the cells contamination is a problem. So, this study were suggested feeder free culturing of hiPSCs on Matrigel in supplemented media (without using MEF conditioned medium) resolves these problems and could prepare easy applications of hiPSCs in therapeutic approaches of regenerative medicine such as stem-cell therapy and somatic cell nuclear in further researches.  相似文献   

18.
19.

Background

For therapeutic usage of induced Pluripotent Stem (iPS) cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES) cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders.

Methodology/Principal Findings

This report demonstrates that human induced Pluripotent Stem (iPS) cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation.

Conclusions/Significance

These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.  相似文献   

20.
One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号