首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mucopolysaccharidosis type VI (MPS VI; Maroteaux-Lamy disease) results from the deficient activity of the lysosomal enzyme, arylsulfatase B (ASB; N-acetylgalactosamine-4-sulfatase E.C.3.1.6.1). The enzymatic defect leads to the accumulation of the glycosaminoglycan, dermatan sulfate, primarily in connective tissue and reticuloendothelial cell lysosomes. Although MPS VI patients have normal intelligence and no neurologic abnormalities, the disease is clinically heterogeneous: severely affected individuals expire in childhood or early adolescence while those with the mild or intermediate phenotypes have a slower, milder disease course and a longer life span. The recent isolation of the full-length cDNA-encoding human ASB permitted an investigation of the molecular lesions underlying the phenotypic heterogeneity in MPS VI. The ASB cDNA-coding sequences were determined from two unrelated MPS VI patients with the severe (proband 1) and mild (proband 2) phenotypes. These patients had about 2% and 7% of normal ASB activity in cultured fibroblasts, respectively. Proband 1 was homoallelic for a T-to-C transition in nucleotide (nt) 349, which predicted a cysteine-to-arginine substitution in the ASB polypeptide at residue 117 (C117R). Proband 2 was heteroallelic, having a T-to-C transition in nt 707, which predicted a leucine-to-proline replacement at ASB residue 236 (L236P), and having a G-to-A transition in nt 1214, which predicted a cysteine-to-tyrosine substitution at ASB residue 405 (C405Y). These mutations did not occur in three other unrelated MPS VI patients or in 120 ASB alleles from normal individuals, indicating that they were not polymorphisms. The identification of these three ASB mutations documents the first evidence of molecular heterogeneity in MPS VI and provides an initial basis for genotype/phenotype correlations in this lysosomal storage disease.  相似文献   

2.
A 2.2-kilobase cDNA clone for human arylsulfatase B (ASB) and several genomic clones were isolated and sequenced. The deduced amino acid sequence of 533 amino acids contains a 41-amino acid N-terminal signal peptide and a mature polypeptide of 492 amino acid residues. Overexpression of ASB in transfected baby hamster kidney (BHK) cells resulted in up to 68-fold higher ASB activity than in untransfected BHK cells. Pulse-chase labeling showed that ASB was synthesized and secreted as a 64-kDa precursor and processed to a 47-kDa mature form in BHK cells. The 47-kDa ASB form was located in dense lysosomes. Transport of ASB to the lysosomes was accomplished in a mannose 6-phosphate receptor-dependent manner. The ASB cDNA clone hybridizes to 4.8-, 2.5-, and 1.8-kilobase species of RNA from human fibroblasts. The same pattern was observed in RNA from fibroblasts of three Maroteaux-Lamy patients who were deficient in ASB activity, as well as in RNA from fibroblasts of three patients with multiple sulfatase deficiency, in which all known sulfatases were markedly diminished. Deduced amino acid sequences of human arylsulfatase A, human ASB, human steroid sulfatase, human glucosamine-6-sulfatase, and an arylsulfatase from sea urchin showed a substantial degree of similarity suggesting that they arose from a common ancestral gene and are members of an arylsulfatase gene family.  相似文献   

3.
We report the detection of four new mutations in the ataxia telangiectasia gene (ATM). Reverse-transcribed RNA extracted from cultured cells was analysed for mutations by polymerase chain reaction amplifications and restriction endonuclease fingerprinting. Three deletions and a base substitution are described. The deletions reported here would result in severe disruptions of the ATM gene product by leading either to a protein truncation (a 4-bp deletion) or the loss of stretches of 53 and 58 amino acids (a 159-bp deletion and a 174-bp deletion, respectively); whereas the base substitution would lead to an amino acid change from a highly conserved glycine to an arginine residue. Received: 15 April 1996 / Revised: 24 April 1996  相似文献   

4.
cDNAs encoding the human lysosomal hydrolase, arylsulfatase B (ASB; N-acetylgalactosamine-4-sulfatase, EC 3.1.6.1), were isolated from a hepatoma cell cDNA library using an ASB-specific oligonucleotide generated by the MOPAC (mixed oligonucleotide primed amplification of cDNA) technique. To facilitate cDNA cloning, human ASB was purified to apparent homogeneity and a total of 112 amino acid residues were microsequenced from the N-terminus and four internal tryptic peptides of the 47-kDa subunit. Based on the ASB N-terminal amino acid sequence, two oligonucleotide mixtures containing inosines to reduce the mixture complexity were constructed and used as primers to amplify an ASB-specific product from human placental cDNA by the polymerase chain reaction. DNA sequencing of this MOPAC product demonstrated colinearity with 21 N-terminal ASB amino acids. Based on this sequence and on codon usage for the adjacent conserved amino acids in human arylsulfatases A and C, a unique 66-mer was synthesized and used to screen a human hepatoma cell cDNA library. Four putative positive cDNA clones were isolated, and the largest insert (pASB-1) was sequenced in both orientations. The 1834-bp pASB-1 insert had a 1278-bp open reading frame encoding 425 amino acids that was colinear with 85 microsequenced amino acids of the purified enzyme, demonstrating its authenticity. Using the pASB-1 cDNA as a probe, a full-length cDNA clone, pASB-4, was isolated from a human testes library and sequenced in both orientations. pASB-4 had a 2811-bp insert containing a 559-bp 5' untranslated sequence, a 1602-bp open reading frame encoding 533 amino acids (six potential N-glycosylation sites), a 641-bp 3' untranslated sequence, and a 9-bp poly(A) tract. Comparison of the predicted amino acid sequences of arylsulfatases A, B, and C revealed regions of identity, particularly in their N-termini.  相似文献   

5.
The identification of a second structural gene mutation at the feline arylsulfatase B locus (MPS VIb) provided the opportunity to investigate the expression of allelism by characterization of the residual enzymatic activity in feline mucopolysaccharidosis VI, an animal analogue of human Maroteaux-Lamy syndrome. Matings were designed to produce affected homozygotes who were homoallelic for the MPS VIa and MPS VIb mutations or heteroallelic genetic compounds (MPS VIa/VIb). The physicokinetic and immunological properties of the partially purified residual hepatic arylsulfatase B isozymes from the affected homoallelic and heteroallelic cats were compared to those of the normal feline enzyme. The residual hepatic arylsulfatase B activities from the inbred MPS VIa and MPS VIb homozygotes were distinguished by differences in physicokinetic and immunological properties. The newly identified mutant isozyme b had abnormal kinetic properties toward artificial and natural substrates, normal cryo- and thermostabilities, a normal molecular weight and an altered electrophoretic mobility. Polyacrylamide gel electrophoresis demonstrated that the mutant b subunits formed dimers with normal subunits in obligate heterozygotes (MPS VI+/b). In contrast, mutant isozyme a subunits from obligate MPS VIa/+ heterozygotes did not dimerize with the normal subunit, and the mutant and normal isozymes could be separated by anion exchange chromatography and polyacrylamide gel electrophoresis. Characterization of the partially purified residual hepatic arylsulfatase B activity from the heteroallelic homozygotes revealed the presence of both mutant isozymes a and b. The demonstration of two allelic mutations in the feline arylsulfatase B gene documented the occurrence of genetic heterogeneity in feline mucopolysaccharidosis VI and permitted characterization of the enzymatic defect in homoallelic and heteroallelic (genetic compound) homozygotes, providing a model for the study of allelism in human genetic disorders.  相似文献   

6.
The Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI) is a lysosomal storage disease with autosomal recessive inheritance caused by deficiency of the enzyme arylsulfatase B. Severe, intermediate, and mild forms of the disease have been described. The molecular correlate of the clinical heterogeneity is not known at present. To identify the molecular defect in a patient with the intermediate form of the disease, arylsulfatase B mRNA from his fibroblasts was reverse-transcribed, amplified by the polymerase chain reaction, and subcloned. Three point mutations were detected by DNA sequence analysis, two of which, a silent A to G transition at nucleotide 1191 and a G to A transition at nucleotide 1126 resulting in a methionine for valine 376 substitution, were polymorphisms. A G to T transversion at nucleotide 410 causing a valine for glycine 137 substitution (G137V) was identified as the mutation underlying the Maroteaux-Lamy phenotype of the patient, who was homozygous for the allele. The kinetic parameters of the mutant arylsulfatase B enzyme toward a radiolabeled trisaccharide substrate were normal excluding an alteration of the active site. The G137V mutation did not affect the synthesis but severely reduced the stability of the arylsulfatase B precursor. While the wild type precursor is converted by limited proteolysis in late endosomes or lysosomes to a mature form, the majority of the mutant precursor was degraded presumably in a compartment proximal to the trans Golgi network and only a small amount escaped to the lysosomes accounting for the low residual enzyme activity in fibroblasts of a patient with the juvenile form of the disease.  相似文献   

7.
We have investigated the molecular lesions of T-protein deficiency causing typical or atypical nonketotic hyperglycinemia (NKH) in two unrelated pedigrees. A patient with typical NKH was identified as being homozygous for a missense mutation in the T-protein gene, a G-to-A transition leading to a Gly-to-Asp substitution at amino acid 269 (G269D). Sibling patients of a second family with atypical NKH had two different missense mutations in the T-protein gene (compound heterozygote), a G-to-A transition leading to a Gly-to-Arg substitution at amino acid 47 (G47R) in one allele, and a G-to-A transition leading to an Arg-to-His substitution at amino acid 320 (R320H) in the other allele. Gly 269 is conserved in T-proteins of various species, even in E. coli, whereas Gly 47 and Arg 320 are replaced by Ala and Leu, respectively, in E. coli. The mutation occurring in more conservative amino acid residues thus results in more deleterious damage to the T-protein, and gives the severe clinical phenotype, viz., typical NKH.  相似文献   

8.
Mucopolysaccharidosis type VI, or Maroteaux-Lamy syndrome, is an autosomal recessive disease caused by the deficiency of arylsulfatase B (ARSB; N-acetyl-galactosamine-4-sulfatase, E.C.3.1.6.12), which is involved in the stepwise degradation of dermatan sulfate and chondroitin sulfate. The deficiency of this enzyme causes storage in the lysozomes and excretion in the urine of partially degraded dermatan sulfate. Twenty patients with MPSVI were analyzed, including 2 siblings. Genomic DNA from patients was extracted and amplified by PCR followed by analysis by single-strand conformation polymorphism (SSCP), which detects altered patterns in the single-stranded DNA. Amongst the patients analyzed for exon 8 of the ARSB gene, 5 patients presented an altered band pattern when compared to controls. After sequencing, we have detected a 23-bp deletion, extending from nucleotides 1,533 to 1,555, causing a frameshift and changing 2 amino acids before creating a premature stop codon at amino acid 514.  相似文献   

9.
Purine nucleoside phosphorylase (PNP) deficiency is an inherited autosomal recessive disorder resulting in severe combined immunodeficiency. The purpose of this study was to determine the molecular defects responsible for PNP deficiency in one such patient. The patient's PNP cDNA was amplified by PCR and sequenced. Point mutations leading to amino acid substitutions were found in both alleles. One point mutation led to a Ser-to-Gly substitution at amino acid 51 and was common to both alleles. In addition, an Asp-to-Gly substitution at amino acid 128 and an Arg-to-Pro substitution at amino acid 234 were found in the maternal and paternal alleles, respectively. In order to prove that these mutations were responsible for the disease state, each of the three mutations was constructed separately by site-directed mutagenesis of the normal PNP cDNA, and each was transiently expressed in COS cells. Lysates from cells transfected with the allele carrying the substitution at amino acid 51 retained both function and immunoreactivity. Lysates from cells transfected with PNP alleles carrying a substitution at either amino acid 128 or amino acid 234 contained immunoreactive material but had no detectable human PNP activity. In summary, molecular analysis of this patient identified point mutations within the PNP gene which are responsible for the enzyme deficiency.  相似文献   

10.
Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI, MPS VI) is an autosomal recessive disorder due to the deficiency of the lysosomal enzyme N-acetylgalactosamine-4-sulfatase (arylsulfatase B, ASB). Mutation analysis in Maroteaux-Lamy syndrome resulted in the identification of approximately 40 molecular defects underlying a great genetic heterogeneity. Here we report five novel mutations in Italian subjects: S65F, P116H, R315Q, Q503X, P531R; each defect was confirmed by restriction enzyme or amplification refractory mutation system (ARMS) analysis. We also performed a three-dimensional (3-D) structure analysis of the alterations identified by us, and of an additional 22 point mutations reported by other groups, in an attempt to draw helpful information about their possible effects on protein conformation.  相似文献   

11.
Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disorder caused by deficiency of the glycogen-debranching enzyme (AGL). Recent studies of the AGL gene have revealed the prevalent mutations in North African Jewish and Caucasian populations, but whether these common mutations are present in other ethnic groups remains unclear. We have investigated eight Japanese GSD IIIa patients from seven families and identified seven mutations, including one splicing mutation (IVS 14+1G-->T) previously reported by us, together with six novel ones: a nonsense mutation (L124X), a splice site mutation (IVS29-1G-->C), a 1-bp deletion (587delC), a 2-bp deletion (4216-4217delAG), a 1-bp insertion (2072-2073insA), and a 3-bp insertion (4735-4736insTAT). The last mutation results in insertion of a tyrosine residue at a putative glycogen-binding site, and the rest are predicted to cause synthesis of truncated proteins lacking the glycogen-binding site at the carboxyl terminal. Thirteen novel polymorphisms have also been revealed in this study: three amino acid substitutions (R387Q, G1115R, and E1343 K), one silent point mutation (L298L), one nucleotide change in the 5'-noncoding region, and eight nucleotide changes in introns. Haplotype analysis with combinations of these polymorphic markers showed L124X, IVS14+1G-->T, and 4216-4217delAG to be on different haplotypes. These results demonstrate the importance of the integrity of the carboxy terminal domain in the AGL protein and the molecular heterogeneity of GSD IIIa in Japan.  相似文献   

12.
We recently demonstrated that a single amino acid substitution in matrix residue 12 (12LE) or 30 (30LE) blocks the incorporation of human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins into virions and that this block can be reversed by pseudotyping with heterologous retroviral envelope glycoproteins with short cytoplasmic tails or by truncating the cytoplasmic tail of HIV-1 transmembrane glycoprotein gp41 by 104 or 144 amino acids. In this study, we mapped the domain of the gp41 cytoplasmic tail responsible for the block to incorporation into virions by introducing a series of eight truncation mutations that eliminated 23 to 93 amino acids from the C terminus of gp41. We found that incorporation into virions of a HIV-1 envelope glycoprotein with a deletion of 23, 30, 51, or 56 residues from the C terminus of gp41 is specifically blocked by the 12LE matrix mutation, whereas truncations of greater than 93 amino acids reverse this defect. To elucidate the role of matrix residue 12 in this process, we introduced a number of additional single amino acid substitutions at matrix positions 12 and 13. Charged substitutions at residue 12 blocked envelope incorporation and virus infectivity, whereas more subtle amino acid substitutions resulted in a spectrum of envelope incorporation defects. To characterize further the role of matrix in envelope incorporation into virions, we obtained and analyzed second-site revertants to two different matrix residue 12 mutations. A Val-->Ile substition at matrix amino acid 34 compensated for the effects of both amino acid 12 mutations, suggesting that matrix residues 12 and 34 interact during the incorporation of HIV-1 envelope glycoproteins into nascent virions.  相似文献   

13.
Several mutations in the rhodopsin gene in patients affected by autosomal dominant retinitis pigmentosa (ADRP) have recently been described. We report four new rhodopsin mutations in ADRP families, initially identified as hetero-duplexed PCR fragments on hydrolink gels. One is an in-frame 12-bp deletion of codons 68 to 71. The other three are point mutations involving codons 190, 211, and 296. Each alters the amino acid encoded. The codon 190 mutation has been detected in 2 from a panel of 34 ADRP families, while the remaining mutations were seen in single families. This suggests that, consistent with a dominant condition, no single mutation will account for a large fraction of ADRP cases. The base substitution in codon 296 alters the lysine residue that functions as the attachment site for 11-cis-retinal, mutating it to glutamic acid. This mutation occurs in a family with an unusually severe phenotype, resulting in early onset of disease and cataracts in the third or fourth decade of life. This result demonstrates a correlation between the location of the mutation and the severity of phenotype in rhodopsin RP.  相似文献   

14.
《The Journal of cell biology》1990,111(6):2341-2351
We have previously shown that in some patients with primary hyperoxaluria type 1 (PH1), disease is associated with mistargeting of the normally peroxisomal enzyme alanine/glyoxylate aminotransferase (AGT) to mitochondria (Danpure, C.J., P.J. Cooper, P.J. Wise, and P.R. Jennings. J. Cell Biol. 108:1345-1352). We have synthesized, amplified, cloned, and sequenced AGT cDNA from a PH1 patient with mitochondrial AGT (mAGT). This identified three point mutations that cause amino acid substitutions in the predicted AGT protein sequence. Using PCR and allele-specific oligonucleotide hybridization, a range of PH1 patients and controls were screened for these mutations. This revealed that all eight PH1 patients with mAGT carried at least one allele with the same three mutations. Two were homozygous for this allele and six were heterozygous. In at least three of the heterozygotes, it appeared that only the mutant allele was expressed. All three mutations were absent from PH1 patients lacking mAGT. One mutation encoding a Gly----Arg substitution at residue 170 was not found in any of the control individuals. However, the other two mutations, encoding Pro----Leu and Ile----Met substitutions at residues 11 and 340, respectively, cosegregated in the normal population at an allelic frequency of 5-10%. In an individual homozygous for this allele (substitutions at residues 11 and 340) only a small proportion of AGT appeared to be rerouted to mitochondria. It is suggested that the substitution at residue 11 generates an amphiphilic alpha-helix with characteristics similar to recognized mitochondrial targeting sequences, the full functional expression of which is dependent upon coexpression of the substitution at residue 170, which may induce defective peroxisomal import.  相似文献   

15.
Vitamin D-dependent rickets type II is a hereditary disease resulting from a defective vitamin D receptor. In three Japanese patients with vitamin D-dependent rickets type II whose fibroblasts displayed normal cytosol binding and impaired nuclear uptake of 1,25-dihydroxyvitamin D3, western, Southern, and northern analyses failed to disclose any abnormalities in vitamin D3 receptor protein and its gene. Exons 2 and 3 of the vitamin D receptor cDNA, which encode the DNA-binding domain consisting of two zinc fingers, were amplified by PCR and sequenced to identify the specific mutations in the vitamin D receptor gene. In the three patients and one normal control a T-to-C transition was found in the putative initiation codon, while this transition was not observed in another normal control. This finding suggested that an original initiation codon was located at positions 10-12 in the human vitamin D receptor cDNA sequence reported previously. In contrast, a unique G-to-A transition at position 140 in exon 3, resulting in substitution of arginine by glutamine at residue 47, was revealed only in these three patients. The arginine at 47 is located between two zinc fingers and is conserved within all steroid hormone receptors. Therefore, it is highly conceivable that this amino acid substitution is responsible for the defect of the vitamin D receptor in the patients. Single-strand conformation polymorphism analysis of amplified DNA confirmed that all patients were homozygous and that parents from one family were heterozygous carriers for this mutation.  相似文献   

16.
Efforts were directed to identify the specific mutations in the alpha-galactosidase A (alpha-Gal A) gene which cause Fabry disease in families of Japanese origin. By polymerase-chain-reaction-amplification of DNA from reverse-transcribed mRNA and genomic DNA, different point mutations were found in two unrelated Fabry hemizygotes. A hemizygote with classic disease manifestations and no detectable alpha-Gal A activity had a G-to-A transition in exon 1 (codon 44) which substituted a termination codon (TAG) for a tryptophan codon (TGG) and created an NheI restriction site. This point mutation would predict a truncated alpha-Gal A polypeptide, consistent with the observed absence of enzymatic activity and a classic Fabry phenotype. In an unrelated Japanese hemizygote who had an atypical clinical course characterized by late-onset cardiac involvement and significant residual alpha-Gal activity, a G-to-A transition in exon 6 (codon 301) resulted in the replacement of a glutamine for an arginine residue. This amino acid substitution apparently altered the properties of the enzyme such that sufficient enzymatic activity was retained to markedly alter the disease course. Identification of these mutations permitted accurate molecular heterozygote diagnosis in these families.  相似文献   

17.
We analyzed DNA from 13 males with ornithine transcarbamylase (OTC) deficiency for gene deletions and known point mutations using the polymerase chain reaction (PCR), allelle-specific oligonucleotide (ASO) hybridization, and Southern blotting with full-length OTC cDNA and exon-specific probes. Three patients were found to have deletions: one was missing the whole OTC gene; a second patient had a deletion of both exon 7 and 8; and the third had a deletion of exon 9. Only one of the remaining 10 patients had a known point mutation consisting of a G-to-A change in nucleotide 422 of the sense strand resulting in a glutamine substitution for arginine at amino acid 109 of the mature OTC protein. This study describes the integration of various molecular methods to screen OTC-deficient patients for deletions and points mutations. Two new deletions within the OTC gene are described.  相似文献   

18.
19.
To analyze the genetic abnormality in a Japanese patient with adult-type metachromatic leukodystrophy (MLD), we first elucidated the genomic organization of the human arylsulfatase A (ASA) gene and then compared the nucleotide sequences of exons and splice junctions of the mutant ASA gene to those of a normal control. We have identified a new mutation, a G-to-A transition in exon 2, which results in amino acid substitution of Asp for 99Gly. In a transient expression study, COS cells transfected with the mutant cDNA carrying 99Gly----Asp did not show an increase of ASA activity, which confirms that the mutation is a cause of adult-type MLD.  相似文献   

20.
Four percent of human severe combined immunodeficiency cases are caused by a deficiency of the enzyme purine nucleoside phosphorylase (PNP). In this study we investigated the molecular basis for this rare autosomal recessive disease. Sequence analyses led to the identification of two new mutations in the PNP gene: an A to G transition in exon 5, which leads to the substitution of tyrosine 192 by a cysteine residue, and a 1-bp deletion in exon 6, which causes premature translation termination of the PNP protein. Both PNP mutations affect predicted major structural motifs of the protein and result in posttranslational instability of the enzyme. Received: 5 March 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号