首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple protein kinase activities were found in the luminal segment of the renal proximal tubule cell plasma membrane (brush border membrane). Membranes were extracted with Lubrol, with no loss in activity, and the extract was chromatographed on diethylaminoethyl cellulose with a salt gradient. With protamine as substrate, activity eluted in two peaks, designated I and IIb, and was cyclic AMP independent. With histone VII-S, one peak, designated IIa, appeared, which eluted slightly ahead of IIb and was cyclic AMP dependent. The three activities eluted in their original patterns following rechromatography. Histone kinase activity in the combined IIa+b fraction was stimulated threefold by cyclic nucleotides (Ka = 0.013 and 0.94 μM for cyclic AMP and cyclic GMP, respectively) by increasing V. Cyclic AMP binding activity eluted with histone kinase activity. Rechromatography of IIa+b on diethylaminoethyl cellulose containing 1 μm cyclic AMP resulted in passage through the column of most of the histone kinase activity (IIa) prior to the salt gradient, but retention of kinase IIb, which again eluted in its original position. Characterization of the separated enzymes revealed that kinase I was highly specific for protamine and totally insensitive to cyclic AMP and a specific protein inhibitor of cyclic AMP-dependent kinases. Kinase IIa was relatively specific for histones and was completely inhibited by the protein inhibitor. Kinase IIb was nonspecific, catalyzing phosphorylation of protamine, casein, histones, and phosvitin in decreasing order of activity, and was insensitive to cyclic AMP and the protein inhibitor. Exposure of intact brush border membranes to elevated temperatures revealed that phosphorylation of intrinsic membrane proteins and protamine was thermolabile, whereas cyclic AMP-dependent histone kinase activity was relatively thermostable. These findings implicate cyclic AMP-independent protamine kinases in the cyclic AMP-independent autophosphorylation of the brush border membrane.  相似文献   

2.
3.
Both cyclic AMP-binding and cyclic AMP-dependent protein kinase activities exists in Chinese hamster ovary cell extract. Competition experiments demonstrate that the binding is specific for cyclic AMP. All cellular elements including nucleus, mitochondria, plasma membrane, microsome, ribosome and cytosol contain both activities. Binding activity is highest in the cytosol and lowest in the nucleus. Each fraction contains endogenous protein kinase activity which is insensitive to cyclic AMP activation. When histone was used as a substrate, protein kinase activity in all fractions was stimulated by cyclic AMP (with the highest in cytosol and lowest in the nucleus) and inhibited by Walsh's protein kinase inhibitor.  相似文献   

4.
Protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) and cyclic adenosine 3',5'-monophosphate binding activities have been identified in zoospore extracts of the water mold Blastocladiella emersonii. More than 75% of these activities is found in the soluble fraction. Soluble protein kinase activity is resolved in three peaks(I, II and III) by DEAE-cellulose chromatography. Peak I is casein dependent and insensitive to cyclic AMP. Peak II is histone dependent and cyclic AMP independent; this enzyme is inhibited by the heat-stable inhibitor from bovine muscle. Peak III utilizes histone as substrate and is activated by cyclic AMP.  相似文献   

5.
Differential centrifugation was used to prepare heavy and light membrane fractions from the seminal plasma of vasectomized men. The two membrane fractions combined contained half of the phosvitin and histone kinase activities but only 7% of the total protein content in vasectomy semen. These two kinase activities as well as phosphorylation of endogenous membrane proteins were optimally stimulated by Mg2+; Mn2+ could effectively substitute for Mg2+ only in endogenous phosphorylation reactions. Neither the phosvitin nor histone kinase responded to cAMP or cGMP, but the histone kinase was strongly inhibited by the heat-stable cAMP-dependent protein kinase inhibitor. The phosvitin kinase was not affected by this inhibitor. The phosphorylation of endogenous proteins in the heavy membrane fraction was not affected by the protein kinase inhibitor but protein phosphorylation in the light membrane fraction was partly (45%) inhibited. The differential effects of increased ionic strength, sulphydryl protecting agents, and the protein kinase inhibitor on protein kinase activity towards lysine-rich histones, phosvitin and endogenous proteins, as well as differential extractability and binding to an anion exchange column of histone kinase and phosvitin kinase activities, indicate that more than one kinase activity is present in these membrane subfractions. Electron microscopic examination showed that there are several kinds of membrane-limited components in vasectomy seminal fluid that vary in size, density, and ultrastructure. The association of type(s) of protein kinase to individual membrane components remains to be established.  相似文献   

6.
Protein kinases from normal and from hyperfunctioning “toxic” adenoma human thyroid tissue were analyzed by DE 52 cellulose chromatography. In normal, as well as in toxic adenoma, three peaks of histone kinase activity were eluted. The first two corresponded to types I and II cAMP dependent histone kinases. The third, eluting at 350 mM, was cAMP independent. Two peaks of phosvitin kinase (125 mM and 450 mM) and one of casein kinase (125 mM) activities were also observed. The toxic adenoma elution pattern differed from normal by the presence of an additional peak of histone kinase activity which coeluted with the second peak of phosvitin kinase (450 mM). This additional histone kinase activity was cAMP independent.  相似文献   

7.
8.
Partial purification of cyclic AMP-binding proteins from porcine thyroid cytosol was performed by gel filtration on Bio Gel 1.5 m followed by ion exchange chromatography on DEAE Sephadex A25. Three fractions presenting cyclic AMP-binding activities were resolved by gel filtration (I, II, III). Approximate molecular weights were respectively 280 000, 145 000 and 65 000. Fraction I was further resolved into two peaks (Ialpha and Ibeta) on DEAE-Sephadex A25. Fractions I, Ialpha, Ibeta comigrated with protein kinase activity whereas peaks II and III did not. These fractions differed with respect to the folling characteristics: rate and stability of cyclic AMP binding to isolated fractions were differently affected by pH (4.0 or 7.5). Electrophoretic mobility on polyacrylamide gels (5%) of fractions preincubated with cyclic [3H]AMP showed similar mobilities for Ialpha, Ibeta or II (Rf 0.37) whereas fraction III displayed a much greater mobility (RF 0.73); Scatchard plots were linear for fractions Ialpha, II and III with an apparent Kd in the same range (2 to 5 nM) whereas fraction Ibeta generated a biphasic plot with Kd 0.4 nM and 20 nM; cyclic [3H] AMP added to fraction I, Ialpha or Ibeta generated a cyclic [3H] AMP-binding protein complex of lower molecular weight as shown by Sephadex G 150 filtration; on the basis of the elution volume, this complex was not distinguished from fraction II. In the course of this work, we separated at the first step of purification (Bio Gel 1.5 m) a protein kinase not associated with cyclic AMP binding activity which exhibited marked specificity for protamine as compared to histone II A.  相似文献   

9.
Summary cAMP independent glycogen synthase kinase and phosvitin kinase activity was purified from the 180 000 × g supernatant of human polymorphonuclear leukocytes by ammonium sulphate precipitation and phosphocellulose chromatography. The cAMP independent glycogen synthase kinase eluted from the phosphocellulose at 0.54 m NaCl (peak A) separate from the major phosvitin kinase eluting at 0.68 m NaCl (peak B). The kinase activity of both peaks tended to form aggregates, but in the presence of 0.6 m NaCl, the peak B enzyme had Mr 250 000, 7.2S and the peak A enzyme Mr 38 000, 3.8S. The ratio between synthase kinase and phosvitin kinase activity in peak A was 1:3.2 and in peak B 1:31.4. In addition the kinase activities differed with respect to sensitivity to temperature, ionic strength and CaCl2. It is suggested that the peak A enzyme represents the cAMP independent glycogen synthase kinase of leukocytes, whereas the peak B enzyme is a phosvitin kinase, which is insignificantly contaminated with some synthase kinase (peak A) and contains a separate, second synthase kinase.Synthase kinase had K m app 4.2 m for muscle glycogen synthease I and K m app 45 m for ATP. GTP was a poor substrate. The activity was not influenced by cyclic nucleotides, Ca2+, or glucose-6-P. Synthase I from muscle and leukocytes was phosphorylated to a ratio of independence of less than 0.05.Abbreviations cAMP adenosine cyclic 3:5-monophosphate - DTT dithiothreitol - EGTA ethylene glycol-bis-(-amino-ethylether)-N,N-tetraacetic acid - PMSF phenylmethylsulfonylfluoride - PKI protein kinase inhibitor - RI ratio of independence for glycogen synthase - SDS sodium dodecyl sulphate  相似文献   

10.
The ontogeny of protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) and cyclic AMP-binding activity in subcellular fractions of liver was examined during prenatal and postnatal development of the male rat. 1. Protein kinase activity and cyclic AMP-binding activity were found in the nuclear, microsomal, lysosomal-mitochondrial, and soluble liver fractions. 2. The protein kinase activity of the soluble (105 000 X g supernatant) fraction measured with histone F1 as substrate was stimulated by cyclic AMP. Cyclic AMP did not stimulate the protein kinase activity of the particulate fractions. 3. The protein kinase activity of all subcellular fractions increased rapidly from the activity observed in prenatal liver (3-4 days before birth) to reach maximal activity in 2-day-old rats. Thereafter, the protein kinase activity declined more slowly and regained the prenatal levels at 10 days after birth. 4. Considerable latent protein kinase activity was associated with liver microsomal fractions which could be activated by treatment of microsomes with Triton X-100. The latent microsomal protein kinase activity was highest in prenatal liver, at the time of birth, and 2 days after birth. During the subsequent postnatal development the latent microsomal protein kinase activity gradually declined to insignificantly low levels. 5. During the developmental period examined (4 days before birth to age 60-90 days) marked alterations of the cyclic AMP-binding activity were determined in all subcellular fractions of rat liver. In general, cytosol, microsomal, and lysosomal-mitochondrial cyclic AMP-binding activity was highest in 10-11 day-old rats. Nuclear cyclic AMP-binding activity was highest 3-4 days before birth and declined at birth and during the postnatal period. There was no correlation between the developmental alteration of cyclic AMP-binding activity and cyclic AMP dependency of the protein kinase activity in any of the subcellular fractions. This suggests that the measured cyclic AMP-binding activity does not reflect developmental alterations of the cyclic AMP-binding regulatory subunit of cyclic AMP-dependent protein kinase.  相似文献   

11.
Casein kinases I and II bound to pig brain microtubules   总被引:1,自引:0,他引:1  
1. Microtubules prepared from pig brain by two cycles of assembly-disassembly comprise cyclic nucleotide-independent protein kinase activity with phosvitin and troponin T as substrates. 2. Phosphocellulose chromatography resolved two phosvitin kinase activity peaks, one of which coincided with the troponin T kinase peak. 3. The activity peak corresponding to troponin T kinase was inhibited by heparin (I50 = 0.06 micrograms/ml), whereas the other phosvitin kinase peak was unaffected. 4. Both kinase fractions phosphorylated tubulin and microtubule-associated protein (MAP-2). 5. It is concluded that pig brain microtubules contain bound casein kinases I and II. The association may target the action of these kinases toward microtubular proteins in vivo.  相似文献   

12.
1. A cyclic 3',5'-AMP-independent protein kinase (ATP : protein phosphotransferase, EC 2.7.1.37) from rat liver cytosol was partially purified and characterized. Purification by (NH4)2SO4 precipitation, DEAE-cellulose, Bio Gel A-0.5 m and cellulose phosphate chromatography increased the specific activity about 700-fold. 2. An endogenous protein substrate was closely associated with the protein kinase and was not separable from this enzyme up to the cellulose phosphate stage. After phosphorylation, chromatography with Bio Gel A-0.5 m partially separated this endogenous phosphoprotein from the enzyme activity; this dissociation had no apparent effect on kinase activity with casein or phosvitin as substrates, or on the apparent molecular weight of the enzyme (approx. 158,000). 3. This protein kinase with casein, phosvitin, or the endogenous substrate was totally insensitive to the thiol reagents, p-hydroxymercuribenzoate, 5,5'-dithiobis(2-nitrobenzoic acid), iodoacetamide, and N-ethylmaleimide. The enzyme was also unaffected by cyclic 3',5'-AMP, heat-stable protein kinase inhibitor, and the regulatory subunit of a cyclic 3',5'-AMP-dependent protein kinase.  相似文献   

13.
Protein kinase activities in mammalian blood fluid   总被引:1,自引:0,他引:1  
Two protein kinase activities, one specific for phosvitin and another specific for histone, were detected in serum and plasma of calf as well as of human blood after precipitation with ammonium sulfate (40%) and chromatography on DEAE-Sephacel. The enzymes were separated by chromatography on phosphocellulose. The histone kinase is not related to the cyclic AMP-dependent protein kinase; it may derive at least partly from damaged cells. The phosvitin kinase activity carries characteristics of the so called casein kinase type II similar to that present at the surface of cells including blood cells.  相似文献   

14.
Cyclic nucleotide dependent protein kinase has been extracted wiht Tris or Lubrol PX from purified rod outer segments (ROS) of bovine retina. The activity of the enzyme is unaffected by light but is stimulated by either cyclic guanosine 3',5'-monophosphate (cGMP) or cyclic adenosine 3',5'-monophosphate (cAMP). Most of the solubilized enzyme elutes from DEAE-cellulose with about 0.18 M NaCl (type II protein kinase). An endogenous 30,000 molecular weight protein of the soluble fraction of ROS as well as exogenous histone are phosphorylated by the protein kinase in a cyclic nucleotide dependent manner. The Tris-extracted enzyme can be reassociated in the presence of Mg2+ with ROS membranes that are depleted of protein kinase activity. The reassociated protein kinase is insensitive to exogenous cyclic nucleotides, and it catalyzes the phosphorylation of the membrane protein, bleached rhodopsin. While the soluble and membrane-associated protein kinases may be interchangeable, they appear to be modulated by different biological signals; soluble protein kinase activity is increased by cyclic nucleotides whereas membrane-bound activity is enhanced when rhodopsin is bleached by light.  相似文献   

15.
Myclin from rat brain contained adenosine 3′, 5′-monophosphate (cyclic AMP)-dependent protein kinase activity, which was solubilized by 0.2% Triton X-100 and required exogenous protein substrate for its activity. Also present was a protein kinase which catalysed the phosphorylation of the endogenous substrate and which was neither solubilized by Triton X-100 nor stimulated by cyclic AMP. Sodium fluoride was required to maintain the activity of the endogenous phosphorylation, probably by inhibiting ATPase activity, but had no effect on the phosphorylation of histone by the solubilized enzyme. Protamine and myelin basic protein served as well as histone as a substrate for the solubilized enzyme. A protein kinase modulator had no effect on the endogenous phosphorylation, but inhibited histone phosphorylation by the solubilized enzyme. Cyclic AMP-binding activity was observed in both the solubilized and non-solubilized preparations. The concentration of cyclic AMP required to give half-maximal binding activity of the preparations was about 2.5 nM. The results indicate that the cyclic AMP-binding site of the protein kinase in myelin may partially be accessible, whereas the catalytic site may be integrated into the membrane structure of myelin.  相似文献   

16.
Cyclic AMP-dependent protein kinase of Neurospora crassa   总被引:3,自引:0,他引:3  
Neurosporacrassa was surveyed for cyclic AMP-dependent protein kinase activity. Two peaks (I and II) of protein kinase activity were demonstrated by DEAE-cellulose chromatography of wild type Neurospora extracts. Peak I was stimulated by cyclic AMP, eluted below 60 mM NaCl and had high activity using histone H2B as substrate. Peak II eluted at 200–250 mM NaCl; its activity was not cyclic AMP stimulated and was highest with dephosphorylated casein as a substrate. Cyclic AMP binding to a protein associated with the protein kinase is specifically inhibited by certain cyclic AMP analogs.  相似文献   

17.
Rabbit renal cortex was found to contain three types of glycogen synthase kinase (GSK). Cylic AMP-dependent protein kinase (GSK-C) accounted for only a small fraction of the total GSK activity. The predominant type of GSK (GSK-P) could be adsorbed to phosphocellulose, but not to DEAE cellulose. The other major type (GSK-D) could be adsorbed to DEAE cellulose and exhibited several peaks when eluted with a linear NaC1 gradient. GSK-P and GSK-D were not affected by cyclic AMP or by the heat-stable protein inhibitor of cyclic AMP-dependent protein kinase. This suggests that cyclic AMP-independent mechanisms may play a major role in regulation of GSK. Neither GSK-P nor GSK-D were associated with the major peak of histone, kinase, casein kinase, protamine kinase or phosvitin kinase. Therefore it cannot be assumed that these protein kinase activities can be used to monitor GSK activity.  相似文献   

18.
1. Two cyclic AMP independent protein kinases phosphorylating preferentially acidic substrates have been identified in soluble extract from human, rat and pig thyroid glands/ Both enzymes were retained on DEAE-cellulose. The first enzyme activity eluted between 60 and 100 mM phosphate (depending on the species), phosphorylated both casein and phosvitin and was retained on phosphocellulose; this enzyme likely corresponds to a casein kinase already described in many tissues. The second enzyme activity eluted from DEAE-cellulose at phosphate concentrations higher than 3000 mM, phosphorylated only phosvitin and was not retained on phophocellulose. These enzymes were neither stimulated by cyclic AMP, cyclic GMP and calcium, nor inhbiited by the inhibitor of the cyclic AMP dependent protein kinases. 2. The second enzyme activity was purified from pig thyroid gland by the association of affinity chromatography on insolubilized phosvitin and DEAE-cellulose chromatography. Its specific activity was increased by 8400. 3. The purified enzyme (phosvitin kinase) was analyzed for biochemical and enzymatic properties. Phosvitin kinase phosphorylated phosvitin with an apparent Km of 100 μg/ml; casein, histone, protamine and bovine serum albumin were not phosphorylated. The enzyme utilized ATP as well as GTP as phosphate donor with an apparent Km of 25 and 28 μM, respectively. It had an absolute requirement for Mg2+ with a maximal activity at 4 mM and exhibited an optimal activity at pH 7.0. The molecular weight of the native enzyme was 110 000 as determined by Sephacryl S300 gel filtration. The analysis by SDS-polyacrylamide gel electrophoresis revealed a major band with a molecualr weight of 35 000 suggesting a polymeric structure of the enzyme.  相似文献   

19.
Protein phosphokinase activity from a 0.5 M NaCl extract of purified porcine ovary nuclei has been resolved by Sephadex G-200 gel filtration into three forms of kinase, protein kinase I and III, both independent of adenosine 3':5'-monophosphate (cyclic AMP), and cyclic-AMP-dependent protein kinase II. Cyclic AMP-binding activity was associated with protein kinase II but not with protein kinases I and III. Protein kinases I, II, and III exhibited different cyclic nucleotide dependency and substrate specificity. Protein kinase II was inhibited by a heat-stable protein from rabbit skeletal muscle, whereas protein kinases I and III were not inhibited. According to previously established criteria [Traugh, J.A., Ashby, C.D. and Walsh, D.A. (1974) nuclear protein kinase II can be classified as cyclic-AMP-dependent protein kinase consisting of regulatory and catalytic subunits. Nuclear protein kinases I and III are cyclic-AMP-independent enzymes. Evidence for the identity of nuclear cyclic-AMP-dependent protein kinase II with cytosol (105 000 X g supernatant fraction) cyclic-AMP-dependent protein kinase was obtained in several ways. Nuclear and cytosol cyclic-AMP-dependent protein kinases exhibited identical elution characteristics on DEAE-cellulose and Sephadex G-200 indicating that both kinases are of similar molecular size and possess similar ionic charge. Both kinases exhibited an identical Km for ATP of 8 muM, showed similar substrate specificity, and revealed similar antigenic properties. Cyclic-AMP-dependent protein kinase II was also identified in nuclei isolated in nonaqueous media, eliminating the possibility that the cyclic-AMP-dependent protein kinase activity identified in nuclei isolated in aqueous media may have arisen as the result of cytoplasmic contamination. After incubation of neonatal porcine ovaries which lack nuclear cyclic-AMP-dependent protein kinase with 0.1 muM 8-p-chlorophenylthio cyclic AMP, considerable cyclic-AMP-dependent protein kinase II activity was identified in nuclei isolated in nonaqueous media. From these data it is concluded that the nuclear cyclic-AMP-dependent protein kinase II is related to or identical with the ovary cytoplasmic cyclic-AMP-dependent protein kinase, supporting the concept that nuclear cyclic-AMP-dependent protein kinase is of cytoplasmic origin.  相似文献   

20.
A protein kinase activity was identified in pig brain that co-purified with microtubules through repeated cycles of temperature-dependent assembly and disassembly. The microtubule-associated protein kinase (MTAK) phosphorylated histone H1; this activity was not stimulated by cyclic nucleotides. Ca2+ plus calmodulin, phospholipids or polyamines. MTAK did not phosphorylate synthetic peptides which are substrates for cyclic AMP-dependent protein kinase, cyclic GMP-dependent protein kinase. Ca2+/calmodulin-dependent protein kinase II, protein kinase C or casein kinase II. MTAK activity was inhibited by trifluoperazine [IC50 (median inhibitory concn.) = 600 microM] in a Ca2+-independent fashion. Ca2+ alone was inhibitory [IC50 = 4 mM). MTAK was not inhibited by heparin, a potent inhibitor of casein kinase II, nor a synthetic peptide inhibitor of cyclic AMP-dependent protein kinase. MTAK demonstrated a broad pH maximum (7.5-8.5) and an apparent Km for ATP of 45 microM. Mg2+ was required for enzyme activity and could not be replaced by Mn2+. MTAK phosphorylated serine and threonine residues on histone H1. MTAK is a unique cofactor-independent protein kinase that binds to microtubule structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号