首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The enzymatic activities and the cytochrome components of the respiratory chain were investigated with membrane fractions from chemoheterotrophically growth Rhodopseudomonas palustris. Whereas the level of electron transfer carriers was not distinctly affected by a change of the culture conditions, the potential activities of the enzymes were clearly increased when the cells were grown aerobically. Reduced-minus oxidized difference spectra of the membrane fractions prepared from dark aerobically grown cells revealed the presence of three beta-types cytochromes b561, b560 and b558, and at least two c-type cytochromes c556 and c2 as electron carriers in the electron transfer chain. Cytochrome of a-type could not be detected in these membranes. Reduced plus CO minus reduced difference spectra of the membrane fractions were indicative of cytochrome o, which may be equivalent to cytochrome b560, appearing in substrate-reduced minus oxidized difference spectra. Cytochrome o was found to be the functional terminal oxidase. CO difference spectra of the high speed supernatant fraction indicated the presence of cytochrome c'. Succinate and NADH reduced the same types of cytochromes. However, a considerable amount of cytochrome b561 with associated beta and gamma bands at 531 and 429 nm, respectively, was reducible by succinate, but not by NADH. A substantial fraction of the membrane-bound b-type cytochrome was non-substrate reducible and was found in dithionite-reduced minus substrate-reduced spectra. Cytochrome c2 may be localized in a branch of the electron transport system, with the branch-point at the level of ubiquinone. The separate pathways rejoined at a common terminal oxidase. Two terminal oxidases with different KCN sensitivity were present in the respiratory chain, one of which was sensitive to low concentrations of KCN and was connected with the cytochrome chain. The other terminal oxidase which was inhibited only by high concentrations of cyanide was located in a branched pathway, through which the electrons could flow from ubiquinone to oxygen bypassing the cytochrome chain.  相似文献   

2.
Phanerochaete chrysosporium cellobiose oxidoreductase (CBOR) comprises two redox domains, one containing flavin adenine dinucleotide (FAD) and the other protoheme. It reduces both two-electron acceptors, including molecular oxygen, and one-electron acceptors, including transition metal complexes and cytochrome c. If the latter reacts with the flavin, the reduced heme b acts merely as a redox buffer, but if with the b heme, enzyme action involves a true electron transfer chain. Intact CBOR fully reduced with cellobiose, CBOR partially reduced by ascorbate, and isolated ascorbate-reduced heme domain, all transfer electrons at similar rates to cytochrome c. Reduction of cationic one-electron acceptors via the heme group supports an electron transfer chain model. Analogous reactions with natural one-electron acceptors can promote Fenton chemistry, which may explain evolutionary retention of the heme domain and the enzyme's unique character among secreted sugar dehydrogenases.  相似文献   

3.
Cellobiose dehydrogenase (CDH) is an extracellular flavocytochrome containing flavin and b-type heme, and plays a key role in cellulose degradation by filamentous fungi. To investigate intermolecular electron transfer from CDH to cytochrome c, Phe166, which is located in the cytochrome domain and approaches one of propionates of heme, was mutated to Tyr, and the thermodynamic and kinetic properties of the mutant (F166Y) were compared with those of the wild-type (WT) enzyme. The mid-point potential of heme in F166Y was measured by cyclic voltammetry, and was estimated to be 25 mV lower than that of WT at pH 4.0. Although presteady-state reduction of flavin was not affected by the mutation, the rate of subsequent electron transfer from flavin to heme was halved in F166Y. When WT or F166Y was reduced with cellobiose and then mixed with cytochrome c, heme re-oxidation and cytochrome c reduction occurred synchronously, suggesting that the initial electron is transferred from reduced heme to cytochrome c. Moreover, in both enzymes the observed rate of the initial phase of cytochrome c reduction was concentration dependent, whereas the second phase of cytochrome c reduction was dependent on the rate of electron transfer from flavin to heme, but not on the cytochrome c concentration. In addition, the electron transfer rate from flavin to heme was identical to the steady-state reduction rate of cytochrome c in both WT and F166Y. These results clearly indicate that the first and second electrons of two-electron-reduced CDH are both transferred via heme, and that the redox reaction of CDH involves an electron-transfer chain mechanism in cytochrome c reduction.  相似文献   

4.
Lactococcus lactis, a facultative anaerobic lactic acid bacterium, is known to have an increased growth yield when grown aerobically in the presence of heme. We have now established the presence of a functional, proton motive force-generating electron transfer chain (ETC) in L. lactis under these conditions. Proton motive force generation in whole cells was measured using a fluorescent probe (3',3'-dipropylthiadicarbocyanine), which is sensitive to changes in membrane potential (Delta psi). Wild-type cells, grown aerobically in the presence of heme, generated a Delta psi even in the presence of the F(1)-F(o) ATPase inhibitor N,N'-dicyclohexylcarbodiimide, while a cytochrome bd-negative mutant strain (CydA Delta) did not. We also observed high oxygen consumption rates by membrane vesicles prepared from heme-grown cells, compared to CydA Delta cells, upon the addition of NADH. This demonstrates that NADH is an electron donor for the L. lactis ETC and demonstrates the presence of a membrane-bound NADH-dehydrogenase. Furthermore, we show that the functional respiratory chain is present throughout the exponential and late phases of growth.  相似文献   

5.
The sequential flow of electrons in the respiratory chain, from a low reduction potential substrate to O(2), is mediated by protein-bound redox cofactors. In mitochondria, hemes-together with flavin, iron-sulfur, and copper cofactors-mediate this multi-electron transfer. Hemes, in three different forms, are used as a protein-bound prosthetic group in succinate dehydrogenase (complex II), in bc(1) complex (complex III) and in cytochrome c oxidase (complex IV). The exact function of heme b in complex II is still unclear, and lags behind in operational detail that is available for the hemes of complex III and IV. The two b hemes of complex III participate in the unique bifurcation of electron flow from the oxidation of ubiquinol, while heme c of the cytochrome c subunit, Cyt1, transfers these electrons to the peripheral cytochrome c. The unique heme a(3), with Cu(B), form a catalytic site in complex IV that binds and reduces molecular oxygen. In addition to providing catalytic and electron transfer operations, hemes also serve a critical role in the assembly of these respiratory complexes, which is just beginning to be understood. In the absence of heme, the assembly of complex II is impaired, especially in mammalian cells. In complex III, a covalent attachment of the heme to apo-Cyt1 is a prerequisite for the complete assembly of bc(1), whereas in complex IV, heme a is required for the proper folding of the Cox 1 subunit and subsequent assembly. In this review, we provide further details of the aforementioned processes with respect to the hemes of the mitochondrial respiratory complexes. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   

6.
An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.  相似文献   

7.
When grown anaerobically in the light, Rhodobacter sphaeroides contains appreciable quantities of cytochromes c2 and c', but smaller amounts of other soluble cytochromes such as cytochrome c551.5, cytochrome c554, and an oxygen-binding heme protein. When R. sphaeroides is mass cultured aerobically in the dark to stationary phase, the content of cytochrome c2 does not change appreciably, whereas cytochrome c554 is approximately 8-fold more abundant, cytochrome c' is at least 10-fold less abundant, and cytochrome c551.5 is fivefold lower than in the phototrophically grown cells. These observations confirm previous literature reports that in this organism a cytochrome c553 (or c554 in our experience) is more abundant when cells are grown aerobically. Furthermore, the aerobic cytochrome c554 is positively identified with the previously characterized minor cytochrome c554 component of anaerobic photosynthetic cells. Preliminary sequence results show that cytochrome c554 is a member of the cytochrome c' structural family, but differs from normal cytochromes c' in having a methionine sixth ligand to the heme. The levels of electron carrier proteins of low redox potential had previously been reported to be less in aerobic than in photoheterotrophic cells and we have verified that observation for the specific examples of cytochromes c' and c551.5. The oxygen binding heme protein, SHP, is not induced by aerobic growth.  相似文献   

8.
The cytochrome o complex is the predominant terminal oxidase in the aerobic respiratory chain of Escherichia coli when the bacteria are grown under conditions of high aeration. The oxidase is a ubiquinol oxidase and reduces molecular oxygen to water. Electron transport through the enzyme is coupled to the generation of a protonmotive force. The purified cytochrome o complex contains four or five subunits, two protoheme IX (heme b) prosthetic groups, plus at least one Cu. The subunits are all encoded by the cyo operon. Sequence comparisons show that the cytochrome o complex is closely related to the aa3-type cytochrome c oxidase family. Gene fusions have been used to define the topology of each of the gene products. Subunits I, II, III and IV are proposed to have 15, 2, 5 and 3 transmembrane spans, respectively. The fifth gene product (cyoE) encodes a protein with 7 membrane spanning segments, and this may also be a subunit of this enzyme. Fourier transform infrared spectroscopy has been used to monitor CO bound in the active site where oxygen is reduced. These data provide definitive proof that the cytochrome o complex has a heme-copper binuclear center, similar to that present in the aa3-type cytochrome c oxidases. Site-directed mutagenesis is being utilized to define which amino acids are ligands to the heme iron and copper prosthetic groups.  相似文献   

9.
The effect of nitrite on respiratory energy coupling of three bacteria was studied in light of a recent report that nitrite acted as an uncoupling agent with Paracoccus denitrificans grown under denitrifying conditions. Our determinations of proton translocation stoichiometry of Pseudomonas putida (aerobically grown), Pseudomonas aeruginosa, and P. denitrificans (grown both aerobically and under denitrifying conditions) showed nitrite inhibition of proton-to-oxidant stoichiometry, but not uncoupling. Nitrite both reduced the H+/O ratio and decreased the rate of proton resorption. Increased proton resorption rates, characteristic of authentic uncoupling agents, were not observed. The lack of enhanced proton permeability due to nitrite was verified via passive proton permeability assays. The H+/O ratio of P. aeruginosa increased when growth conditions were changed from aerobic to denitrifying. This suggested the induction of an additional coupling site in the electron transport chain of denitrifying P. aeruginosa.  相似文献   

10.
Cytochrome b562-o complex, a terminal oxidase in the respiratory chain of aerobically grown Escherichia coli K12, was isolated in a highly purified form. The purified oxidase is composed of equimolar amounts of two polypeptides, with Mr = 33,000 and 55,000, determined by gel electrophoresis in the presence of sodium dodecyl sulfate. It contains 19.5 nmol of heme and 16.8 nmol of copper/mg of protein, but no detectable nonheme iron, phospholipid, ubiquinone, or menaquinone. In the difference spectrum at room temperature, the oxidase shows a single alpha absorption peak at 560 nm and at 77 K it shows two alpha absorption peaks at 555 and 562 nm. This oxidase combines with CO and the CO difference spectrum at room temperature has a peak at 416 nm and a trough at 430 nm in the Soret region. Its oxidation-reduction potential is estimated to be 125 mV (pH 7.4) and it is pH-dependent (-60 mV/pH) in medium of pH 6.0 to 7.4. It catalyzes electron transport to oxygen via ubiquinol and ascorbate in the presence of phenazine methosulfate or N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. This oxidase activity depends on phospholipids and is sensitive to respiratory inhibitors, such as 2-heptyl-4-hydroxyquinoline N-oxide, piericidin A, KCN and NaN3. The divalent cations Zn2+, Cd2+, and Co2+ inhibit the oxidase activity extensively. The oxidase activity of the cytochrome b562-o complex was inhibited by photoinactivation with rose bengal, suggesting that the inhibition by zinc ion results from modification of a histidine residue of cytochrome o.  相似文献   

11.
The ability of rice seedlings to grow from dry seed under anoxia provides a rare opportunity in a multicellular eukaryote to study the stages of mitochondrial biogenesis triggered by oxygen availability. The function and proteome of rice mitochondria synthesized under 6 days of anoxia following 1 day of air adaptation have been compared with mitochondria isolated from 7-day aerobically grown rice seedlings. Rice coleoptiles grown under anoxia, and the mitochondria isolated from them respired very slowly compared with air-adapted and air-grown seedlings. Immunodetection of key mitochondrial protein markers, isoelectric focusing electrophoresis followed by SDS-PAGE to make soluble mitochondria proteome maps, and shotgun sequencing of mitochondrial proteins by liquid chromatography-tandem mass spectrometry all revealed similar patterns of the major function categories of mitochondrial proteins from both anoxic and air-adapted samples. Activity analysis showed respiratory oxidases markedly increased in activity during the air adaptation of seedlings. Blue-native electrophoresis followed by SDS-PAGE of mitochondrial membrane proteins clearly showed the very low abundance of assembled b/c complex and cytochrome c(1) oxidase complex in the mitochondrial membrane in anoxic samples and the dramatic increase in the abundance of these complexes on air adaptation. Total heme content, cytochrome absorbance spectra, and the electron carrier, cytochrome c, also increased markedly on air adaptation. These results likely reflect limited heme synthesis for cytochrome assembly in the absence of oxygen and represent a discrete and reversible blockage of full mitochondrial biogenesis in this anoxia-tolerant species.  相似文献   

12.
This study is part of a series aimed at the characterization of individual steps of electron transfer taking place between prosthetic flavin, heme b2, heme c within active sites and complexes. After rapid mixing of ferricytochrome c with partially reduced flavocytochrome b2, the reaction is followed at the level of two reactants, cytochrome b2 and cytochrome c. In order to define the proper reactivity of flavosemiquinone, conditions under which this form is highly stabilized (presence of pyruvate) have been chosen. With the help of simulations, it has been possible to characterize a rapid step of electron transfer from cytochrome b2 to cytochrome c within a complex (at approx. 70% saturation) and a slow step k = 5 s-1 assigned to cytochrome b2 reduction by flavosemiquinone within the active site of the pyruvate-liganded enzyme.  相似文献   

13.
The aerobic respiratory chain of Escherichia coli is branched. In aerobically grown cells harvested in midexponential phase, a respiratory chain containing only b-type cytochromes is predominant. This chain contains a terminal oxidase which is a b-type cytochrome, referred to as cytochrome o. However, when the bacteria are grown under conditions of oxygen limitation, additional components of the respiratory chain are induced, as evidenced by the appearance of new spectroscopic species. These include a new b-type cytochrome, cytochrome b558, as well as cytochrome a1 and cytochrome d. In this paper, a purification protocol and the initial characterization of the terminal oxidase complex containing cytochrome d are reported. Solubilization of the membrane is effected by Zwittergent 3-12, and purification is accomplished by chromatography with DEAE-Sepharose CL-6B and hydroxyapatite. The complex contains cytochrome b558, a1, and d. Analysis by sodium dodecyl sulfate-polyacrylamide gels indicates that the complex contains only two types of polypeptides with the molecular weights estimated to be 57,000 and 43,000. The purified complex has oxidase activity in the presence of detergents, utilizing substrates including ubinquinol-1, N,N,N',N'-tetramethyl-p-phenylenediamine, and 2,3,5,6-tetramethyl-p-phenylenediamine. The cytochrome d complex contains protoheme IX and iron, but does not contain nonheme iron or copper. Approximately half of the cytochromes which are thought to participate in E. coli aerobic respiration are accounted for by this single complex. These results suggest that the E. coli aerobic respiratory chain is organized around a relatively small number of cytochrome-containing complexes.  相似文献   

14.
15.
Room temperature near-infrared magnetic circular dichroism and low-temperature electron paramagnetic resonance measurements have been used to characterize the ligands of the heme iron in mitochondrial cytochromes c, c1, and b and in cytochrome f of the photosynthetic electron transport chain. The MCD data show that methionine is the sixth ligand of the heme of oxidized yeast cytochrome c1; the identify of this residue is inferred to be the single conserved methionine identified from a partial alignment of the available cytochrome c1 amino acid sequences. A different residue, which is most likely lysine, is the sixth heme ligand in oxidized spinach cytochrome f. The data for oxidized yeast cytochrome b are consistent with bis-histidine coordination of both hemes although the possibility that one of the hemes is ligated by histidine and lysine cannot be rigorously excluded. The neutral and alkaline forms of oxidized yeast cytochrome c have spectroscopic properties very similar to those of the horse heart proteins, and thus, by analogy, the sixth ligands are methionine and lysine, respectively.  相似文献   

16.
It has recently become evident that many bacterial respiratory oxidases are members of a superfamily that is related to the eukaryotic cytochrome c oxidase. These oxidases catalyze the reduction of oxygen to water at a heme-copper binuclear center. Fourier transform infrared (FTIR) spectroscopy has been used to examine the heme-copper-containing respiratory oxidases of Rhodobacter sphaeroides Ga. This technique monitors the stretching frequency of CO bound at the oxygen binding site and can be used to characterize the oxidases in situ with membrane preparations. Oxidases that have a heme-copper binuclear center are recognizable by FTIR spectroscopy because the bound CO moves from the heme iron to the nearby copper upon photolysis at low temperature, where it exhibits a diagnostic spectrum. The FTIR spectra indicate that the binuclear center of the R. sphaeroides aa3-type cytochrome c oxidase is remarkably similar to that of the bovine mitochondrial oxidase. Upon deletion of the ctaD gene, encoding subunit I of the aa3-type oxidase, substantial cytochrome c oxidase remains in the membranes of aerobically grown R. sphaeroides. This correlates with a second wild-type R. sphaeroides is grown photosynthetically, the chromatophore membranes lack the aa3-type oxidase but have this second heme-copper oxidase. Subunit I of the heme-copper oxidase superfamily contains the binuclear center. Amino acid sequence alignments show that this subunit is structurally very highly conserved among both eukaryotic and prokaryotic species. The polymerase chain reaction was used to show that the chromosome of R. sphaeroides contains at least one other gene that is a homolog of ctaD, the gene encoding subunit I of the aa3-type cytochrome c oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Several components of the respiratory chain of the eubacterium Thermus thermophilus have previously been characterized to various extent, while no conclusive evidence for a cytochrome bc(1) complex has been obtained. Here, we show that four consecutive genes encoding cytochrome bc(1) subunits are organized in an operon-like structure termed fbcCXFB. The four gene products are identified as genuine subunits of a cytochrome bc(1) complex isolated from membranes of T. thermophilus. While both the cytochrome b and the FeS subunit show typical features of canonical subunits of this respiratory complex, a further membrane-integral component (FbcX) of so far unknown function copurifies as a subunit of this complex. The cytochrome c(1) carries an extensive N-terminal hydrophilic domain, followed by a hydrophobic, presumably membrane-embedded helical region and a typical heme c binding domain. This latter sequence has been expressed in Escherichia coli, and in vitro shown to be a kinetically competent electron donor to cytochrome c(552), mediating electron transfer to the ba(3) oxidase. Identification of this cytochrome bc(1) complex bridges the gap between the previously reported NADH oxidation activities and terminal oxidases, thus, defining all components of a minimal, mitochondrial-type electron transfer chain in this evolutionary ancient thermophile.  相似文献   

18.
A novel type of cytochrome c oxidase was purified to homogeneity from Pseudomonas aeruginosa which was grown aerobically. The purified oxidase contained two molecules of heme a, two atoms of copper, and one molecule of protoheme per molecule. One of the two heme a molecules in the oxidase reacted with carbon monoxide, so that the enzyme was of baa3-type. The oxidase molecule was composed of three subunits with molecular weights of 38,000, 57,000, and 82,000. Although the oxidase oxidized ferrocytochrome c-550 obtained from the bacterial cells grown aerobically, the oxidizing activity was not high. The "resting form" and the "pulsed form" of the oxidase were observed clearly with this enzyme, and the transition from the resting form to the pulsed form was accompanied by a distinct change of the enzymatic activity. The difference in the kinetics of the catalytic reactions between the two forms is discussed.  相似文献   

19.
Defects in heme biosynthesis have been associated with a large number of diseases, but mostly recognized in porphyrias, which are neurovisceral or cutaneous disorders caused by the accumulation of biosynthetic intermediates. However, defects in the maturation of heme groups that are part of the oxidative phosphorylation system are now also recognized as important causes of disease. The electron transport chain contains heme groups of the types a, b and c, all of which are directly involved in electron transfer reactions. In this article, we review the effect of mutations in enzymes involved in the maturation of heme a (the prosthetic group of cytochrome c oxidase) and heme c (the prosthetic group of cytochrome c) both in yeast and in humans. COX10 and COX15 are two genes, initially identified in Saccharomyces cerevisiae that have been found to cause infantile cytochrome c oxidase deficiency in humans. They participate in the farnesylation and hydroxylation of heme b, steps that are necessary for the formation of heme a, the prosthetic group required for cytochrome oxidase assembly and activity. Deletion of the cytochrome c heme lyase gene in a single allele has also been associated with a human disease, known as Microphthalmia with Linear Skin defects (MLS) syndrome. The cytochrome c heme lyase is necessary to covalently attach the heme group to the apocytochrome c polypeptide. The production of mouse models recapitulating these diseases is providing novel information on the pathogenesis of clinical syndromes.  相似文献   

20.
Chloramphenicol was found to have a direct effect on the respiratory chain of Mycobacterium phlei cells grown in the presence of this drug. Analysis of the respiratory chain components revealed that the presence of chloramphenicol during growth resulted in a partial inhibition in the synthesis of the cytochromes. However, a stimulation in oxidative phosphorylation was observed with the cell-free extract of cells grown in the presence of chloramphenicol. The oxidation of succinate was found to be stimulated 20 to 130%, depending on the particular extract, whereas the oxidation of reduced nicotinamide adenine dinucleotide (NADH) was found to be similar to that of extracts obtained from cells grown in the absence of the drug. Of particular interest was the finding that the cell-free extract of cells grown in the presence of the drug exhibited an increased level of phosphorylation (17 to 100%) when NADH was used as the electron donor. Chloramphenicol appears to affect a component of the respiratory chain between the flavoprotein and cytochrome c. Fractionation of the electron transport particles revealed an increased level of cytochrome b in the fractions which exhibited a stimulation in oxidative phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号