首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of chilling in the light (4 days at 5°C and 100-200 micromoles of photons per square meter per second) on the distribution of chlorophyll (Chl) protein complexes between appressed and nonappressed thylakoid regions of pumpkin (Cucurbita pepo L.) chloroplasts were studied and compared with the changes occurring during in vitro heat treatment (5 minutes at 40°C) of isolated thylakoids. Both treatments induced an increase (18 and 65%, respectively) in the relative amount of the antenna Chl a protein complexes (CP47 + CP43) of photosystem II (PSII) in stroma lamellae vesicles. Freeze-fracture replicas of light-chilled material revealed an increase in the particle density on the exoplasmic fracture face of unstacked membrane regions. These two treatments differed markedly, however, in respect to comigration of the light-harvesting Chl a/b protein complex (LHCII) of PSII. The LHCII/PSII ratio in stroma lamellae vesicles remained fairly constant during chilling in the light, whereas it dropped during the heat treatment. Moreover, it was a minor light-harvesting Chl a/b protein complex of PSII, CP29, that increased most in stroma lamellae vesicles during light-chilling. Changes in the organization of LHCII during chilling were suggested by a shift to particles of smaller sizes on the protoplasmic fracture face of stacked membrane regions and a decrease in the amount of trans3-hexadecenoic acid in the phosphatidyldiacylglycerol fraction.  相似文献   

2.
This study aimed to examine the electron transport rates in the thylakoids, isolated from leaves of pea plants grown under clinorotation and in vertical control, to measure the chlorophyll a/b (Chl a/b) ratio in such thylakoids and in photosystem I (PSI) particles isolated from them, to elucidate if there are any differences in changes of PS II activity in thylakoids and Chl a/b ratio in PS I particles under phosphorylation of polypeptides of thylakoid pigment-protein complexes.  相似文献   

3.
The ultrastructure of the thylakoid membranes of Chlamydomonas reinhardtii was investigated using cell cultures grown under light intensities of 200 and 4000 lx, respectively. A significant difference in the size distribution of the exoplasmic fracture face (EF) particles appears upon Mg2+ treatment of broken cell preparations from the two light growth conditions. Particles larger than 150 Å are seen at 4000 lx only. However neither the absorption spectra of chlorophyll at 77 °K, nor the chlorophyll a/chlorophyll b ratios differ in the two cell batches. In addition, the polypeptide composition of the thylakoid membranes and the Mg2+ effect (spillover) on the photochemical rate of Photosystem II are the same in both conditions. We conclude that the partition coefficient between the two fracture faces of light-harvesting complex-containing particles is variable. It depends on Mg2+ ion concentration in the incubating medium of the membranes and on the light growth conditions of the cell cultures. Our results suggest that 60- to 80-Å protoplasmic fracture face (PF) particles containing the light-harvesting complexes can aggregate either in larger PF particles (100–120 Å) or in EF particles larger than 120 Å which also contain the Photosystem II centers. That some light-harvesting complexes are located on the PF faces is confirmed by the analysis of the BF4 mutant of C. reinhardtii lacking in chlorophyll-protein complex II. The PF faces of the BF4 thylakoids display a reduced number of particles as compared to that in the wild type.  相似文献   

4.
The functional organization of competent photosynthetic units in developing thylakoids from intermittent-light grown pea as well as in the unstacked, stacked and phosphorylated stacked thylakoids from its mature chloroplasts was characterized by polarographic measurements of action spectra, reaction centre contents and optical cross-sections for PS I-mediated O2 uptake and PS II-mediated O2 evolution. The minimum antenna sizes of 60 and 37 chlorophyll a molecules for PS I and PS II, respectively, were determined in developing thylakoids with a ratio of Chl a/Chl b>50. In mature chloroplasts, the embedded light-harvesting chlorophyll a/b-binding (LHC) protein complexes increased the PS I and PS II effective antenna sizes by 3–6 times depending on the thylakoid membrane organization. In unstacked thylakoids, a randomization of PS I, PS II and LHC II led to the most uniform spectral distribution of light harvesting between the two photosystems but caused the maximal difference of their antenna sizes to be 370 and 100 Chls for the competent PS I and PS II units, respectively. Following the Mg2+-induced stacking of thylakoids, opposite complementary changes of the action spectra, antenna sizes and Chl a/Chl b ratios indicated a redistribution of a LHC II pool of 100 Chl ( a + b) molecules from PS I to PS II. Unlike to the stroma-exposed PS II in unstacked thylakoids, the granal PS II units of 200 Chls demonstrated an additional 2-fold increase of the effective antenna size due to energy transfer within PS II dimers under strong background illumination, which closed >90% of reaction centres. Protein phosphorylation of the stacked thylakoids induced a significant inactivation of the O2-evolving PS II centres but did not cause complementary changes of the action spectra and antenna sizes of the competent PS I and PS II. In this case, light harvesting parameters of the O2-evolving PS II units were nearly unaffected, whereas the obvious relative increase of the PS I activity at 650 nm and its decrease at >700 nm both in the action spectrum and optical cross-section measurements might suggest a substitution of PS I units in the O2-reducing fraction by another distinct fraction of -type which in turn is not the same to PS I units in unstacked thylakoids.  相似文献   

5.
The light environment during plant growth determines the structural and functional properties of higher plant chloroplasts, thus revealing a dynamically regulated developmental system. Pisum sativum plants growing under intermittent illumination showed chloroplasts with fully functional photosystem (PS) II and PSI reaction centers that lacked the peripheral chlorophyll (Chi) a/b and Chl a light-harvesting complexes (LHC), respectively. The results suggest a light flux differential threshold regulation in the biosynthesis of the photosystem core and peripheral antenna complexes. Sun-adapted species and plants growing under far-red-depleted illumination showed grana stacks composed of few (3–5) thylakoids connected with long intergrana (stroma) thylakoids. They had a PSII/PSI reaction center ratio in the range 1.3–1.9. Shade-adapted species and plants growing under far-red-enrichcd illumination showed large grana stacks composed of several thylakoids, often extending across the entire chloroplast body, and short intergrana stroma thylakoids. They had a higher PSII/PSI reaction center ratio, in the range of 2.2–4.0. Thus, the relative extent of grana and stroma thylakoid formation corresponds with the relative amounts of PSII and PSI in the chloroplast, respectively. The structural and functional adaptation of the photosynthetic membrane system in response to the quality of illumination involves mainly a control on the rate of PSII and PSI complex biosynthesis.  相似文献   

6.
P Jahns  W Junge 《Biochemistry》1992,31(32):7390-7397
Thylakoid membranes were isolated from pea seedlings grown under intermittent light (2-min light/118-min dark cycles). These preparations differed from controls (thylakoids from plants grown under 16-h light/8-h dark cycles) in the following respects: 15 times smaller chlorophyll/protein ratio, 10 times greater chlorophyll a/b ratio, absence of light-harvesting chlorophyll a/b binding proteins, and 2-3-fold greater ratio of photosystem II over photosystem I. In addition we found the following: (1) Electrogenic electron transfer around cytochrome b6/f under flashing light was greatly enhanced, probably as a consequence of the greater photosystem II/photosystem I ratio. (2) The rate of proton uptake from the medium at the acceptor side of photosystem II was enhanced, probably by unshielding of the quinone binding domain. (3) The N,N'-dicyclohexylcarbodiimide sensitivity of the proton-pumping activity of photosystem II was absent, which was consistent with the attribution of a N,N'-dicyclohexylcarbodiimide-induced protonic short circuit to chlorophyll a/b binding proteins. (4) The sensitivity of oxygen evolution under continuous light to variations of pH or the concentration of Ca2+ was altered. Chlorophyll a/b binding proteins serve as light-harvesting antennas. We found in addition that they modulated the activity of water oxidation and, in particular, the proteolytic reactions around photosystem II.  相似文献   

7.
The light-sensitive chlorophyll b (Chl b)-deficient oil yellow-yellow green (OY-YG) mutant of maize (Zea mays) grown under conditions of high light exhibits differential reductions in the accumulation of the three major Chl b-containing antenna complexes and characteristic changes in thylakoid architecture. When observed by freeze-fracture electron microscopy, the most notable changes in the OY-YG thylakoid structure are: (a) a major reduction in the number of 8 nanometer particles of the protoplasmic fracture face of stacked membrane regions (PFs) paralleled by a 60% reduction in the chlorophyll-proteins (CP) associated with the peripheral light harvesting complex (LHCII) for photosystem II (PSII) and which give rise to the LHCII oligomer/monomer (CPII*/CPII) bands on mildly dissociated green gels; (b) a sizable decrease in the proportion of 11 to 13 nanometer particles of the protoplasmic fracture face of unstacked membrane regions (PFu) that parallels the loss of light harvesting complex I (LHCI) antennae from photosystem I (PSI) centers and a 40% reduction of the band containing CP1 and LHCI (CPI*) on mildly dissociating green gels; (c) an unchanged or slightly increased average size of particles of the exoplasmic fracture face of stacked (or appressed) membrane regions (EFs) along with a relative increase in CP29, the postulated bound LHC of PSII, and of CP47 and CP43, PSII core antenna complexes. This latter result sets the OY-YG mutant apart from all other Chl b-deficient mutants studied to date, all of which possess EFs particles that are substantially reduced in size. Based on these findings, we postulate that the bound LHCII associated with EFs particles consists mostly of CP29 chlorophyll proteins and very little, if any, CPII*/CPII chlorophyll proteins. Indeed, the CPII*/CPII chlorophyll proteins may be exclusively associated with the `peripheral' LHCII units that give rise to 8 nanometer PF particles. The differential effect of the Chl b deficiency on the accumulation of the three main antenna complexes (CPII*/CPII>CPI*>CP29) suggests, furthermore, that there is a hierarchy among Chl b-binding proteins, and that this hierarchy might be an integral part of long-term photoregulation mediating Chl b partitioning in the chloroplast.  相似文献   

8.
Thylakoids isolated from winter rye (Secale cereale L. cv Puma) grown at 20°C (nonhardened rye, RNH) or 5°C (cold-hardened rye, RH) were characterized using chlorophyll (Chl) fluorescence. Low temperature fluorescence emission spectra of RH thylakoids contained emission bands at 680 and 695 nanometers not present in RNH thylakoids which were interpreted as changes in the association of light-harvesting Chl a/b proteins and photosystem II (PSII) reaction centers. RH thylakoids also exhibited a decrease in the emission ratio of 742/685 nanometers relative to RNH thylakoids.

Room temperature fluorescence induction revealed that a larger proportion of Chl in RH thylakoids was inactive in transferring energy to PSII reaction centers when compared with RNH thylakoids. Fluorescence induction kinetics at 20°C indicated that RNH and RH thylakoids contained the same proportions of fast (α) and slow (β) components of the biphasic induction curve. In RH thylakoids, however, the rate constant for α components increased and the rate constant for β components decreased relative to RNH thylakoids. Thus, energy was transferred more quickly within a PSII reaction center complex in RH thylakoids. In addition, PSII reaction centers in RH thylakoids were less connected, thus reducing energy transfers between reaction center complexes. We concluded that both PSII reaction centers and light-harvesting Chl a/b proteins had been modified during development of rye chloroplasts at 5°C.

  相似文献   

9.
The CD3 mutant of wheat is a chlorophyll(Chlo-deficient mutant the phenotype of which depends upon the accumulation of the light-harvesting Chl a/b protein complex in leaves in response to the intensity of illumination. In the present studies, the rates of synthesis and/or uptake, and degradation of the light-harvesting Chl apoprotein in chloroplasts of wild-type wheat ( Triticum aestivum L. selection ND 496) and CD3 wheat leaf segments were examined in response to two different intensities of illumination. We were interested particularly in the 21. 23 kDa proteins of the light-harvesting Chl a/b complex of photosystem I (LHCI) and the 25. 27. 29 kDa proteins of the light-harvesting Chl a/b complex of photosystem II (LHCII). The accumulation of [35S]-Met into the light-harvesting Chl protein of CD3 wheat chloroplasts was impaired by a high but not by a low light fluence. The levels of radiolabel in the supernatant fractions of leaf tissue homogenates from the wild-type and CD3 wheats were not significantly different over time, suggesting that the cellular uptake of [35S]-Met was not limiting in the mutant. The high fluence did not enhance the degradation of light-harvesting Chl protein from CD3 wheat thylakoids. Our data indicate an impairment in the light-harvesting Chl protein synthesis/membrane uptake system in CD3 wheat leaves under high fluence. A recovery in levels of the inner LHCPII, but not of LHCPI, was observed in the Chl-deficient wheat mutant after a prolonged (4 days) exposure to high fluence. Under low fluence, LHCP was added to both photosystem II (PSH) and photosystem I (PSI) but only that added to PSI remained in thylakoids after seedlings were switched to high fluence.  相似文献   

10.
The appearance of the light harvesting II (LHC II) protein in etiolated bean leaves, as monitored by immunodetection in LDS-solubilized leaf protein extracts, is under phytochrome control. A single red light pulse induces accumulation of the protein, in leaves kept in the dark thereafter, which follows circadian oscillations similar to those earlier found for Lhcb mRNA (Tavladoraki et al. (1989) Plant Physiol 90: 665–672). These oscillations are closely followed by oscillations in the capacity of the leaf to form Chlorophyll (Chl) in the light, suggesting that the synthesis of the LHC II protein and its chromophore are in close coordination. Experiments with levulinic acid showed that PChl(ide) resynthesis does not affect the LHC II level nor its oscillations, but new Chl a synthesis affects LHC II stabilization in thylakoids, implicating a proteolytic mechanism. A proteolytic activity against exogenously added LHC II was detected in thylakoids of etiolated bean leaves, which was enhanced by the light pulse. The activity, also under phytochrome control, was found to follow circadian oscillations in verse to those in the stabilization of LHC II protein in thylakoids. Such a proteolytic mechanism therefore, may account for the circadian changes observed in LHC II protein level, being implicated in pigment-protein complex assembly/stabilization during thylakoid biogenesis.Abbreviations Chl chlorophyll - CL continuous light - D dark - FR far-red light - LA levulinic acid - LHC II light-harvesting complex serving Photosystem II - PChl(ide) protochlorophyllide - PCR protochlorophyllide oxidoreductase - R red light  相似文献   

11.
We have previously demonstrated (Armond, P. A., C. J. Arntzen, J.-M. Briantais, and C. Vernotte. 1976. Arch. Biochem. Biophys. 175:54-63; and Davis, D. J., P. A. Armond, E. L. Gross, and C. J. Arntzen. 1976. Arch. Biochem. Biophys. 175:64-70) that pea seedlings which were exposed to intermittent illumination contained incompletely developed chloroplasts. These plastids were photosynthetically competent, but did not contain grana. We now demonstrate that the incompletely developed plastids have a smaller photosynthetic unit size; this is primarily due to the absence of a major light-harvesting pigment-protein complex which is present in the mature membranes. Upon exposure of intermittent- light seedlings to continuous white light for periods up to 48 h, a ligh-harvesting chlorophyll-protein complex was inserted into the chloroplast membrane with a concomitant appearance of grana stacks and an increase in photosynthetic unit size. Plastid membranes from plants grown under intermediate light were examined by freeze-fracture electron microscopy. The membrane particles on both the outer (PF) and inner (EF) leaflets of the thylakoid membrane were found to be randomly distributed. The particle density of the PF fracture face was approx. four times that of the EF fracture face. While only small changes in particle density were observed during the greening process under continuous light, major changes in particle size were noted, particularly in the EF particles of stacked regions (EFs) of the chloroplast membrane. Both the changes in particle size and an observed aggregation of the EF particles into the newly stacked regions of the membrane were correlated with the insertion of light-harvesting pigment- protein into the membrane. Evidence is presented for identification of the EF particles as the morphological equivalent of a "complete" photosystem II complex, consisting of a phosochemically active "core" complex surrounded by discrete aggregates of the light-harvesting pigment protein. A model demonstrating the spatial relationships of photosystem I, photosystem II, and the light-harvesting complex in the chloroplast membrane is presented.  相似文献   

12.
Bean leaves grown under periodic illumination (56 cycles of 2 min light and 98 min darkness) were subsequently exposed to continuous illumination, and in connection with granum formation and accumulation of the light-harvesting pigment-protein complex thermoluminescence and light-induced shrinkage of thylakoid membranes were studied. Juvenile chloroplasts with large double sheets of thylakoids obtained under periodic light exhibited low temperature spectra of polarized fluorescence yielding fluorescence polarization (FP) values < 1 at 695 nm, characteristic for pheophytin emission. In the course of maturation under continuous light when normal grana appeared and the chlorophyll a/b light-harvesting photosystem II complex was incorporated into the membrane, at 695 nm the relative intensity of fluorescence dropped and FP changed to a value of > 1, suggesting an overlap between the emission of pheophytin and that of the chlorophyll a/b light-harvesting photosystem II complex. Thermoluminescence glow curves recorded with juvenile thylakoids displayed a relatively high proportion of emission at low temperatures (around -10°C) while with mature chloroplasts, more thermoluminescence originated from energetically deeper traps (discharged around 28°C). This means that during thylakoid development the capacity of the membrane to stabilize the separated charges increases, which might be favourable for the ultimate conservation of energy. The more extensive energization of mature thylakoids was also indicated by a light-induced decrease in the thickness of the membranes upon illumination; a change which could not be detected in juvenile thylakoids.Abbreviations EDTA ethylenediamine tetraacetic acid - Hepes 4-(2-hydroxy ethyl)-1-piperazine ethane sulfonic acid Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

13.
We studied the organization of the antenna system of maize (Zea mays L.) seedlings grown under intermittent light conditions for 11 d. These plants had a higher chlorophyll-a/b ratio, a higher ratio of carotenoids to chlorophyll and a lower ratio of chlorophyll to protein than plants grown in continuous light. We found all chlorophyll-protein complexes of maize to be present. However, the minor chlorophyll a/b-proteins CP29 and CP26, and to a greater extent CP24 and the major light-harvesting complex II were reduced relative to the photosystem (PS) II core-complex. Also the chlorophyll a/b-antennae of PSI were reduced relative to the reaction-centre polypeptides. When isolated by flatbed isoelectrofocussing, the chlorophyll-a/b complexes of PSII showed a higher chlorophyll-a/b ratio and a lower ratio of chlorophyll to protein than the same complexes from continuous light; additionally, they bound more carotenoids per protein than the latter. Thus the altered organization of the photosynthetic apparatus of plants from intermittent light is caused by two different factors: (i) the altered stoichiometry of chlorophyll-binding proteins and (ii) a different ratio of pigment to protein within individual chlorophyll-proteins.Abbreviations Chl chlorophyll - CL continuous light - F fraction - HPLC high-performance liquid chromatography - IEF isoelectrofocussing - IL intermittent light - LHCII light-harvesting complex II - PAGE polyacrylamide-gel electrophoresis - Phe pheophytin - SDS sodium dodecyl sulfate This work was supported by the grant no. 4.7240.90 from the Italian Ministry of Agriculture and Forestry. We thank Drs. R. Barbato (Dipartimento di Biologia, Padua, Italy) and Olivier Vallon (Institut de Biologie Physico-Chimique, Paris, France) for their gifts of antibodies, Drs. R. Barbato and P. Dainese (Dipartimento di Biologia, Padua, Italy) for fruitful discussion and Prof. G. Gennari (Dipartimento di Chimica fisica, Padua, Italy) for his assistance in recording the excitation spectra. J.M. was supported by a Stipendium from the Deutsche Forschungsgemeinschaft, which is gratefully acknowledged.  相似文献   

14.
The chlorophyll a antenna of photosystems I and II were each isolated after detergent treatment by gel electrophoresis or sucrose gradient centrifugation from a b-less mutant of barley grown in daylight and from wildtype barley developed in intermittent light. We identified each fraction by both its electrophoretic position and PS I activity (P700 content) in the case of the mutant, and by both PS I and PS II activity (DCIP reduction from DPC) in the light-limited plants. The proportion of Chl a in each photosystem was estimated from the amount in each gel or sucrose gradient band, and from addition of the areas under the absorption spectra (650–710 nm) of each fraction to match the spectrum of the solubilized thylakoids. The latter method was possible because the spectrum (77 K) of each fraction was unique; in the mutant about 70% of chlorophyll is associated with PS I and 30% with PS II. In the light-limited plants, the reverse is true with nearly 70% associated with PS II. RESOL analyses of both absorption and fluorescence emission spectra of all isolated fractions indicated an abnormal arrangement of antenna chlorophyll molecules in the light-limited, developing membranes even though their reaction centers are fully functional.Abbreviations DCIP dichlorophenolindophenol - DOC deoxycholate - DPC diphenylcarbazide - DL daylight - ImL intermittent light - LHC light-harvesting Chl a/b protein complex - PAGE polyacrylamide gel electrophoresis DPB-CIW No. 778  相似文献   

15.
A variety of unicellular algae, thylakoids from higher plants in different stages of maturity and isolated pigment-protein complexes were oriented in stretched polyvinyl alcohol films. Low temperature linear dichroism (LD) spectra of Chlorella pyrenoidosa and higher plant thylakoids in the films were very similar to those obtained after orientation of similar samples using magnetic or electric fields. Positive LD bands corresponding to Chl a (670) and (682) and negative bands due to Chl a (658) and Chl b(648) were resolved in spectra of the light harvesting Chl a/b protein. Chl b (648) and Chl a (658) and (670) were not seen in the LD spectrum of thylakoids from plants grown in intermittent light, the Chl b-less mutant of barley, Euglena gracilis or the cyanobacteria, Phormidium luridum and Anacystis nidulans, but did appear upon chloroplast maturation in Romaine lettuce and during the greening of etiolated and intermittent light plants. The highly oriented long wavelength Chl a (682) in the light-harvesting complex may represent residual PS II whose peak dichroism is centered at 681 nm. The PS I preparation had a Chl a/b ratio of approx. 6 and the LD spectrum was positive with a maximum at 690-694 nm and a band of lower amplitude at 652 nm. The minor LD band was not observed in PS I preparations from organisms that lack chl b such as the cyanobacteria, intermittent light plants and the Chl b-less mutant of barley. We suggest that the 652 nm band is due to Chl b molecules associated with the antenna of PS I and are distinct from those on the light harvesting complex whose orientation is different. We also conclude that all the Chl a forms are oriented and that the long geometric axes of the pigment-protein complexes, as deduced from the configuration they assume in the stretched films, are axes that normally lie parallel to the plane of the native thylakoid.  相似文献   

16.
The ultrastructures of two closely related strains of a novel diazotrophic cyanobacterium, Synechocystis sp. BO 8402 and BO 9201, were examined using ultrathin sections and freeze-fracture electron microscopy. Cells of both strains were surrounded by an unusual thick peptidoglycan layer. Substructures in the layer indicated the presence of microplasmodesmata aligned perpendicular to the free cell surface and in the septum of dividing cells. Synechocystis sp. strain BO 8402 contained lobed, electronopaque, highly fluorescent inclusion bodies consisting of phycocyanin-linker complexes. The thylakoids lacked phycobilisomes and accommodated, in addition to randomly distributed exoplasmic freeze-fracture particles, patches of two-dimensionally ordered arrays of dimeric photosystem II particles in the exoplasmic fracture face. Determination of photosystem I and photosystem II suggested an increase of photosystem II in strain BO 8402. Strain BO 9201 performed phycobilisome-supported photosynthesis and showed rows of dimeric photosystem II particles in the exoplasmic fracture face. Corresponding particle-free grooves in the protoplasmic fracture face were lined by a class of large particles tentatively assigned as trimers of photosystem I. The different lateral organization of protein complexes in the thylakoid membranes and the fine structure of the cell wall are discussed with respect to absorption cross-section of photosynthesis and nitrogen fixation.Abbreviations EF Exoplasmic freeze-fracture face - P 700 Reaction centre chlorophyll of photosystem I - PF Protoplasmic freeze-fracture face - PS I Photosystem I - PS II Photosystem II  相似文献   

17.
The development of the photosystem II units in relation to the heterogeneity of their photochemical centers was studied in etiolated bean leaves (Phaseolus vulgaris var. red kidney) greened under continuous or intermittent light. The study was done in order to see whether grana are the loci of the units with the efficient photosystem II activity (α units), while the stroma thylakoids are the loci of the units with the less efficient photosystem II activity (β units), as it has been proposed. In addition, the interrelations between α and β centers have been investigated. It was found that the α and the β centers of photosystem II were present in the first photosynthetic membranes irrespective of the mode of greening of the leaves. The magnitude of their respective photochemical rate constants, K′α and Kβ, increased with time in continuous light and it reached the steady-state values of the mature chloroplasts within 16 hours, while in intermittent light it remained smaller. The differentiation of the system II units in α and β centers containing units is more evident under conditions of intermittent illumination, i.e. when the rate of chlorophyll biosynthesis is the limiting step for chloroplast development.  相似文献   

18.
When isolated, intact chloroplasts of pea (Pisum sativum) are incubated in the light with [32P]-orthophosphate, isotope is incorporated into several polypeptides. Among the most conspicuous phosphoproteins are two which form a very closely spaced doublet on dodecyl sulphate/polyacrylamide gels and co-electrophorese with the major polypeptide component of the light-harvesting chlorophyll a/b binding complex. Like the light-harvesting polypeptide, the phosphoprotein doublet is bound to thylakoids, sediments with the heavy particles released from thylakoids after digitonin treatment, is soluble in chloroform/methanol and has an apparent molecular weight of about 26 000. The doublet also appears in the highly purified light-harvesting chlorophyll a/b binding complex isolated from thylakoids by hydrosylapatite chromatography. I conclude that two polypeptide components of the complex are phosphorylated. One of these components may be the major light-harvesting chlorophyll a/b binding protein.  相似文献   

19.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl Chlorophyll - CL Continuous light - CPa the reaction center complex of PSII - CPI the reaction center complex of PSI - CPIa Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI - fr w fresh weight - LDC Light dark cycles - LHC-I Light-harvesting complex of PSI - LHC-II Light harvesting complex of PSII - PS photosystem - PSI photosystem I - PSII photosystem II  相似文献   

20.
Remodeling of photosynthetic machinery induced by growing spinach plants under low light intensities reveals an up-regulation of light-harvesting complexes and down-regulation of photosystem II and cytochrome b6f complexes in intact thylakoids and isolated grana membranes. The antenna size of PSII increased by 40-60% as estimated by fluorescence induction and LHCII/PSII stoichiometry. These low-light-induced changes in the protein composition were accompanied by the formation of ordered particle arrays in the exoplasmic fracture face in grana thylakoids detected by freeze-fracture electron microscopy. Most likely these highly ordered arrays consist of PSII complexes. A statistical analysis of the particles in these structures shows that the distance of neighboring complexes in the same row is 18.0 nm, the separation between two rows is 23.7 nm, and the angle between the particle axis and the row is 26 degrees . On the basis of structural information on the photosystem II supercomplex, a model on the supramolecular arrangement was generated predicting that two neighboring complexes share a trimeric light-harvesting complex. It was suggested that the supramolecular reorganization in ordered arrays in low-light grana thylakoids is a strategy to overcome potential diffusion problems in this crowded membrane. Furthermore, the occurrence of a hexagonal phase of the lipid monogalactosyldiacylglycerol in grana membranes of low-light-adapted plants could trigger the rearrangement by changing the lateral membrane pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号