首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HDL cholesterol (HDL-C) efflux function may be a more robust biomarker of coronary artery disease risk than HDL-C. To study HDL function, apoB-containing lipoproteins are precipitated from serum. Whether apoB precipitation affects HDL subspecies composition and function has not been thoroughly investigated. We studied the effects of four common apoB precipitation methods [polyethylene glycol (PEG), dextran sulfate/magnesium chloride (MgCl2), heparin sodium/manganese chloride (MnCl2), and LipoSep immunoprecipitation (IP)] on HDL subspecies composition, apolipoproteins, and function (cholesterol efflux and reduction of LDL oxidation). PEG dramatically shifted the size distribution of HDL and apolipoproteins (assessed by two independent methods), while leaving substantial amounts of reagent in the sample. PEG also changed the distribution of cholesterol efflux and LDL oxidation across size fractions, but not overall efflux across the HDL range. Dextran sulfate/MgCl2, heparin sodium/MnCl2, and LipoSep IP did not change the size distribution of HDL subspecies, but altered the quantity of a subset of apolipoproteins. Thus, each of the apoB precipitation methods affected HDL composition and/or size distribution. We conclude that careful evaluation is needed when selecting apoB depletion methods for existing and future bioassays of HDL function.  相似文献   

2.
Apolipoprotein E (apoE) plays important roles in lipid homeostasis, anti-inflammation, and host defense. Since tissue apoE mRNA levels have been reported to decrease during inflammatory responses, we were surprised to find that plasma apoE levels were significantly elevated during septic infections in both humans and mice. This apparent paradox was also observed during lipopolysaccharide-induced acute inflammation in mice: plasma levels of apoE increased up to 4-fold despite sharply decreased apoE gene expression in the liver, macrophages, and extrahepatic tissues. We hypothesized that apoE levels were augmented by decreased plasma clearance. Our analysis revealed that apoE associated principally with HDL in mice and that apoE was cleared from the circulation principally via LDL receptors. The acute inflammatory response decreased LDL receptor expression in the liver and significantly reduced the rate of apoE clearance. In contrast, the same inflammatory stimuli increased LDL receptor expression in macrophages. Our results define a novel acute phase mechanism that increases circulating apoE levels as apoE production decreases. Diminished hepatic LDL receptor expression may thus cooperate with elevated LDL receptor expression in macrophages to facilitate the forward transport of apoE and its associated lipids to these key defense cells.  相似文献   

3.
Serum amyloid A (SAA) is an acute phase protein of unknown function that is involved in systemic amyloidosis and may also be involved in atherogenesis. The precise role of SAA in these processes has not been established. SAA circulates in plasma bound to high density lipoprotein-3 (HDL3). The pathway for the production of SAA-containing HDL is not known. To test whether apolipoprotein (apo)A-I-HDL is required in the production of SAA-HDL, we analyzed the lipopolysaccharide (LPS)-induced changes in apoA-I+/+ and apoA-I-/- mice. In apoA-I+/+ mice, after injection of LPS, remodeling of HDL occurred: total cholesterol increased and apoA-I decreased slightly and shifted to lighter density. Dense (density of HDL3) but large (size of HDL2 ) SAA-containing particles were formed. Upon fast phase liquid chromatography fractionation of plasma, >90% of SAA eluted with HDL that was enriched in cholesterol and phospholipid and shifted "leftward" to larger particles. Non-denaturing immunoprecipitation with anti-mouse apoA-I precipitated all of the apoA-I but not all of the SAA, confirming the presence of SAA-HDL devoid of apoA-I. In the apoA-I-/- mice, which normally have very low plasma lipid levels, LPS injection resulted in significantly increased total and HDL cholesterol. Greater than 90% of the SAA was lipid associated and was found on dense but large, spherical HDL particles essentially devoid of other apolipoproteins.We conclude that serum amyloid A (SAA) is able to sequester lipid, forming dense but large HDL particles with or without apoA-I or other apolipoproteins. The capacity to isolate lipoprotein particles containing SAA as the predominant or only apolipoprotein provides an important system to further explore the biological function of SAA.  相似文献   

4.
We have previously shown that plasma lipoproteins can be separated by analytical capillary isotachophoresis (ITP) according to their electrophoretic mobility in a defined buffer system. As in lipoprotein electrophoresis, HDL show the highest mobility followed by VLDL, IDL, and LDL. Chylomicrons migrate according to their net-charge between HDL and VLDL, because ITP has negligible molecular sieve effects. Three HDL subfractions were obtained which were designated fast-, intermediate-, and slow-migrating HDL. To further characterize these HDL subfractions, a newly developed free-solution ITP (FS-ITP)-system was used, that allows micro-preparative separation of human lipoproteins directly from whole plasma (B?ttcher, A. et al. 1998. Electrophoresis. 19: 1110-1116). The fractions obtained by FS-ITP were analyzed for their lipid and apolipoprotein composition and by two-dimensional nondenaturing polyacrylamide gradient gel electrophoresis (2D-GGE) with subsequent immunoblotting. fHDL are characterized by the highest proportion of esterified cholesterol of all three subfractions and are relatively enriched in LpA-I. Together with iHDL they contain the majority of plasma apoA-I, while sHDL contain the majority of plasma apoA-IV, apoD, apoE, and apoJ. Pre-beta-HDL were found in separate fractions together with triglyceride-rich fractions between sHDL and LDL. In summary, ITP can separate the bulk of HDL into lipoprotein subfractions, which differ in apolipoprotein composition and electrophoretic mobility. While analytical ITP permits rapid separation and quantitation for diagnostic purposes, FS-ITP can be used to obtain these lipoprotein subfractions on a preparative scale for functional analysis. As FS-ITP is much better suited for preparative purposes than gel electrophoresis, it represents an important novel tool for the functional analysis of lipoprotein subclasses.  相似文献   

5.
The ability of apolipoprotein E (apoE) to be spared degradation in lysosomes and to recycle to the cell surface has been demonstrated by our group and others, but its physiologic relevance is unknown. In this study, we characterized apoE recycling in primary murine macrophages and probed the effects of HDL and apoA-I on this process. In cells pulsed with (125)I.apoE bound to VLDL, intact apoE was found in the chase medium for up to 24 h after the pulse. Approximately 27 +/- 5% of the apoE internalized during the pulse was recycled after 4 h of chase. Addition of apoA-I and HDL increased apoE recycling to 45 +/- 3% and 46 +/- 3%, respectively, similar to the amount of apoE recycled after pulsing the cells with (125)I.apoE.HDL. In addition, apoA-I-producing macrophages from transgenic mice showed increased apoE recycling at 4 h (38 +/- 3%). Increased ABCA1 expression potentiated apoE recycling, suggesting that recycling occurs via ABCA1. Finally, in the presence of apoA-I, recycled apoE exited the cells on HDL-like particles. These results suggest that apoE recycling in macrophages may be part of a larger signaling loop activated by HDL and directed at maximizing cholesterol losses from the cell.  相似文献   

6.
7.
Background: Acromegalic patients have increased cardiometabolic risk factors due to an elevation of growth hormone (GH) levels. Human serum paraoxonase (PON), a high-density lipoprotein (HDL)-related enzyme, is one of the major bioscavengers and decreases the oxidation of low-density lipoprotein (LDL), a key regulator in the pathogenesis of atherosclerosis. In this study, we investigated a potential relationship between serum PON levels or PON polymorphisms and acromegaly.

Methods: A total of 48 acromegalic patients and 44 healthy controls were included in this study. Serum GH levels, insulin-like growth factor-1 levels and lipid profiles were measured. Serum PON levels, as well as PON 1 L55M and Q192R gene polymorphisms, were examined.

Results: No significant differences were found in terms of age, gender, presence of diabetes, serum LDL cholesterol (LDL-C), HDL-C, or triglyceride levels between the case and control groups (P?>?0.05). A statistically significant difference was found in serum PON levels between the cases and controls (P?=?0.007). The median serum PON level was 101?±?63.36?U/l in the case group and 63?±?60.50?U/l in the control group. There was a significant correlation between serum PON levels and IGF-1 levels (P?=?0.004, r?=?0.319); however, no significant differences were found in PON1 L55M and PON Q192R polymorphisms between the patients and controls (P?=?0.607 and P?=?0.308, respectively). In addition, no significant differences were found in serum PON levels in acromegalic patients who were and were not in remission (P?=?0.385), nor between those with PON1 L55M and Q192R polymorphisms (P?=?0.161 and P?=?0.336, respectively).

Conclusions: Elevated serum PON levels were detected in acromegalic patients, independently of their remission status. This suggests protective effects for cardiometabolic risk parameters.  相似文献   

8.
The distribution of apolipoprotein (apo) A-I between human high-density lipoproteins (HDL) and water is an important component of reverse cholesterol transport and the atheroprotective effects of HDL. Chaotropic perturbation (CP) with guanidinium chloride (Gdm-Cl) reveals HDL instability by inducing the unfolding and transfer of apo A-I but not apo A-II into the aqueous phase while forming larger apo A-I deficient HDL-like particles and small amounts of cholesteryl ester-rich microemulsions (CERMs). Our kinetic and hydrodynamic studies of the CP of HDL species separated according to size and density show that (1) CP mediated an increase in HDL size, which involves quasi-fusion of surface and core lipids, and release of lipid-free apo A-I (these processes correlate linearly), (2) >94% of the HDL lipids remain with an apo A-I deficient particle, (3) apo A-II remains associated with a very stable HDL-like particle even at high levels of Gdm-Cl, and (4) apo A-I unfolding and transfer from HDL to water vary among HDL subfractions with the larger and more buoyant species exhibiting greater stability. Our data indicate that apo A-I's on small HDL (HDL-S) are highly dynamic and, relative to apo A-I on the larger more mature HDL, partition more readily into the aqueous phase, where they initiate the formation of new HDL species. Our data suggest that the greater instability of HDL-S generates free apo A-I and an apo A-I deficient HDL-S that readily fuses with the more stable HDL-L. Thus, the presence of HDL-L drives the CP remodeling of HDL to an equilibrium with even larger HDL-L and more lipid-free apo A-I than with either HDL-L or HDL-S alone. Moreover, according to dilution studies of HDL in 3 M Gdm-Cl, CP of HDL fits a model of apo A-I partitioning between HDL phospholipids and water that is controlled by the principal of opposing forces. These findings suggest that the size and relative amount of HDL lipid determine the HDL stability and the fraction of apo A-I that partitions into the aqueous phase where it is destined for interaction with ABCA1 transporters, thereby initiating reverse cholesterol transport or, alternatively, renal clearance.  相似文献   

9.
It is important to understand HDL heterogeneity because various subspecies possess different functionalities. To understand the origins of HDL heterogeneity arising from the existence of particles containing only apoA-I (LpA-I) and particles containing both apoA-I and apoA-II (LpA-I+A-II), we compared the abilities of both proteins to promote ABCA1-mediated efflux of cholesterol from HepG2 cells and form nascent HDL particles. When added separately, exogenous apoA-I and apoA-II were equally effective in promoting cholesterol efflux, although the resultant LpA-I and LpA-II particles had different sizes. When apoA-I and apoA-II were mixed together at initial molar ratios ranging from 1:1 to 16:1 to generate nascent LpA-I+A-II HDL particles, the particle size distribution altered, and the two proteins were incorporated into the nascent HDL in proportion to their initial ratio. Both proteins formed nascent HDL particles with equal efficiency, and the relative amounts of apoA-I and apoA-II incorporation were driven by mass action. The ratio of lipid-free apoA-I and apoA-II available at the surface of ABCA1-expressing cells is a major factor in determining the contents of these proteins in nascent HDL. Manipulation of this ratio provides a means of altering the relative distribution of LpA-I and LpA-I+A-II HDL particles.  相似文献   

10.
Serum acute phase response (APR)-related proteome of loach to trauma   总被引:5,自引:0,他引:5  
Proteome analysis by two-dimensional polyacrylamide gel electrophoresis (2-DE PAGE) together with mass spectrometry was applied to screen acute phase response (APR)-related proteins in serum from loach following injury. Six APR-related proteins were identified, in which apolipoprotein, cathepsin, C-reactive protein (CRP) were known APP, while signal recognition protein (SRP), gastrin 71 and parvalbumin were new APR-related proteins.  相似文献   

11.
Plasma triglyceride (TG) levels are altered during the acute phase response (APR). Plasma levels of the recently discovered apolipoprotein A-V (apoA-V) are inversely associated with plasma TG. The aim of this study was to investigate the change of apoA-V plasma levels and hepatic apoA-V expression during the APR in relation to plasma TG. During human APR plasma apoA-V was decreased as were plasma TG (each P<0.01). Also early in the course of the murine APR plasma apoA-V levels and hepatic apoA-V expression were decreased and changed in the same direction as plasma TG. Treatment of HepG2 cells with TNF-alpha and IL-1beta decreased apoA-V mRNA levels early by 42% and 55%, respectively (each P<0.001). However, in promoter/reporter assays the human apoA-V promoter was unresponsive to proinflammatory cytokines. Instead, we demonstrate that a significant decrease in apoA-V mRNA stability in response to treatment with TNF-alpha and IL-1beta is the underlying basis of decreased apoA-V expression during the APR (P<0.05). These data demonstrate that (i) apoA-V expression decreases early during the APR due to changes in mRNA stability, and (ii) during the APR apoA-V is not inversely related to plasma TG levels in mice and humans, thereby identifying a relevant pathophysiological setting, in which the previously reported close inverse association between these parameters does not hold true.  相似文献   

12.
13.
The aim of this study was to investigate the effect of HDL oxidation on PON1 paraoxonase activity. Also, we were interested in investigating the mechanism by which PON1 could be inactivated and the correlation between its enzymatic activity and the antioxidant properties of HDL. Three different oxidation systems were used for the HDL oxidation: (1) oxidation induced by THP1 cells, (2) oxidation induced by copper ions at a concentration 10 microM, and (3) oxidation induced by *OH and O2.- oxygen free radicals produced by gamma-radiolysis. HDL oxidation was followed by the measurement of lipid peroxide formation, and PON1 activity was determined by measuring the rate of paraoxon hydrolysis. Our results show that HDL oxidation is accompanied by a reduction in the PON1 paraoxonase activity. The extent of PON1 inactivation depends both on the extent of HDL oxidation and on the oxidation system used. The rates of HDL oxidation and PON1 inactivation were significantly correlated (r = 0.93, p < 0.0054). Our results show that oxidized HDL loses its protective effect toward LDL oxidation. The antioxidant action of HDL towards LDL oxidation and the degradation of PON1 paraoxonase activity were significantly correlated (r = 0.95, p < 0.04).  相似文献   

14.
15.
16.
Mouse plasma from strains C57BL/6J and C3H/HeJ includes a high density lipoprotein (HDL) fraction containing apolipoprotein A-I which migrates in the prebeta region upon agarose gel electrophoresis, similar to the prebeta HDL previously reported in humans. This prebeta A-I lipoprotein species has a buoyant density of 1.080-1.210 g/ml and has two molecular weight species, 65,000 and 71,000. It is lipid-poor and deficient in apolipoprotein E. When mice are fed a high fat and high cholesterol diet, the quantity of prebeta A-I increases in both strains as determined by quantitative densitometry of agarose gel immunoblots. Prebeta A-I species are highly unstable in plasma at 37 degrees C. Initially (0-1 h) levels decreased and with further incubation (1-8 h) levels increased. Nondenaturing polyacrylamide gel electrophoresis (PAGE) demonstrated that the prebeta HDL formed during prolonged incubation (1-8 h) was identical in size to HDL in unincubated samples. The initial decrease of prebeta HDL observed during the first hour of incubation, phase I, was inhibited by DTNB, suggesting that phase I is dependent on lecithin:cholesterol acyltransferase (LCAT); however, the subsequent increase, phase II, was unaffected by DTNB and appears LCAT-independent. The prebeta A-I species formed in plasma containing DTNB after a 4-h incubation resulted in a polydisperse particle size distribution. The two strains, the atherosclerosis-susceptible C57BL/6 and -resistant C3H, displayed a similar elevation and induction of prebeta HDL during a dietary switch from laboratory chow to an atherogenic diet with a transient peak occurring at 7 days even when total HDL in the susceptible strain was greatly reduced.  相似文献   

17.
Low-dose aspirin therapy has become a standard in the treatment of cardiovascular diseases. Aspirin has been shown to inhibit atherosclerosis in mouse models. To determine the mechanisms by which aspirin might inhibit atherosclerosis, we incubated HEPG2 cells and rat primary hepatocytes with aspirin or salicylic acid and noted an increase in paraoxonase 1(PON1) activity in the medium, together with an induction of PON1 and apolipoprotein A-I (apoA-I) gene expression. Mice treated with aspirin also showed a 2-fold increase in plasma PON1 activity and a significant induction of both PON1 and apoA-I gene expression in the liver. The induction of the PON1 gene in cell culture was accompanied by an increase in arylhydrocarbon receptor (AhR) gene expression. Accordingly, aspirin treatment of AhR(-/-) animals failed to induce PON1 gene expression. We previously suggested that aspirin might be hydrolyzed by serum PON1, which could account for its short plasma half-life of 10 min. Taken together with the current studies, we suggest that the antiatherosclerotic effects of aspirin might be mediated by its hydrolytic product salicylate and that the induction of PON1 and apoA-I might be important in the cardioprotective effects of aspirin.  相似文献   

18.
The thymus is a primary lymphoid organ with both endocrine and immune functions. There is a large body of evidence indicating the existence of a complex neuroendocrine control of the thymus physiology. This is supported by the historic observation that the thymus becomes involuted during the response to stress. The thymus is dramatically affected by the acute phase response (APR), a systemic reaction to tissue injury and/or infection accompanied by profound neuroendocrine and metabolic changes. The APR comprises alterations in behavior, body temperature, and production and release of cytokines, particularly interleukin (IL)-1, IL-6 and TNFalpha, and glucocorticoids (GCs) and is characterized by suddenly increased production of so-called acute phase proteins (APPs). The stimulation of APR activates the hypothalamic-pituitary-adrenal (HPA) axis, resulting in the suppression of specific immunity, which might serve to protect the organism from adverse immune reactions; the immunostimulatory hormones (e.g., PRL, GH, IGF-1) are suppressed, whereas the production of APPs in the liver is stimulated by IL-6, catecholamines and GCs. The most striking effect of the latter on the immune system is the induction of apoptosis in the thymus. In concert with GCs, elevated levels of catecholamines also selectively suppress immune response mechanisms. APR may be regarded as an emergency response that represents a switch of the host defense from the adaptive immune response which is slow to develop and is commanded by the thymus and T-lymphocytes to a less specific, but more rapid and intense reaction. Here we discuss the immunoregulatory changes during the APR with a special emphasis on the role of thymus in this process.  相似文献   

19.
Interleukin-6 and the acute phase response.   总被引:71,自引:0,他引:71  
  相似文献   

20.
Summary A methodology for obtaining reproducible in vitro induction of the synthesis of the acute phase reactant serum amyloid P-component (SAP) by purified mouse hepatocytes was established. Optimal hepatocyte culture conditions for the induction and synthesis of SAP required certain hormones, a substratum for cell attachment, and activated macrophages. Leibowitz L15 medium had to be supplemented with dexamethasone, indomethacin, insulin, glucose, and fetal bovine serum. Purified mouse IL 1 could substitute for activated macrophages in the induction of SAP. Hepatocytes were allowed to adhere to a collagen matrix to enhance both cell viability and SAP synthesis induced by IL 1. Elicited macrophages cultured with hepatocytes were capable of augmenting SAP synthesis in the presence of IL 1. This study was supported by Grant CA-30015 from the National Institutes of Health, Bethesda, MD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号