共查询到20条相似文献,搜索用时 15 毫秒
1.
Shinji Oikawa Ayako Furukawa Hideyuki Asada Kazutaka Hirakawa Shosuke Kawanishi 《Free radical research》2013,47(8):881-890
Green tea catechins have antimutagenic and anticarcinogenic activities. On the other hand, several epidemiological studies have indicated significant positive relationship between green tea consumption and cancer. Catechins enhance colon carcinogenesis in rats initiated with chemical carcinogen. To clarify the mechanism underlying the potential carcinogenicity, we investigated the DNA-damaging ability of catechins in human cultured cells. Catechin increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a characteristic oxidative DNA lesion, in human leukemia cell line HL-60 but not in HP100, a hydrogen peroxide (H2O2)-resistant cell line derived from HL-60. The catechin-induced formation of 8-oxodG in HL-60 cells significantly decreased by bathocuproine. Furthermore, we investigated DNA damage and its site-specificity induced by catechins, using 32P-labeled DNA fragments. Catechin and epicatechin induced extensive DNA damage in the presence of Cu(II). Catechin caused piperidine-labile sites at thymine and cytosine residues in the presence of Cu(II). Catalase and bathocuproine inhibited the DNA damage, indicating the involvement of H2O2 and Cu(I). NADH enhanced catechins plus Cu(II)-induced 8-oxodG formation in calf thymus DNA, suggesting the redox cycle between catechins and their corresponding quinones, the oxidized forms of catechins. The DNA-damaging ability of epicatechin is stronger than that of catechin, possibly due to the greater turnover frequency of the redox cycle. The difference in their redox properties could be explained by their redox potentials estimated form an ab initio molecular orbital calculation. The present study demonstrated that catechins could induce metal-dependent H2O2 generation during the redox reactions and subsequently damage to cellular and isolated DNA. Therefore, it is reasonably considered that green tea catechins may have the dual function of anticarcinogenic and carcinogenic potentials. 相似文献
2.
Reactive oxygen species (ROS) have emerged as important signaling molecules in the regulation of various cellular processes. They can be generated by the mitochondrial electron transport chain in mitochondria and activation of polymorphonuclear leukocytes (PMN) during inflammatory conditions. Excessive generation of ROS may result in attack of and damage to most intracellular and extracellular components in a living organism. Moreover, ROS can directly induce and/or regulate apoptotic and necrotic cell death. Periodontal pathologies are inflammatory and degenerative diseases. Several forms of periodontal diseases are associated with activated PMN. Damage of tissues in inflammatory periodontal pathologies can be mediated by ROS resulting from the physiological activity of PMN during the phagocytosis of periodontopathic bacteria.__________Translated from Biokhimiya, Vol. 70, No. 6, 2005, pp. 751–761.Original Russian Text Copyright © 2005 by Canakci, Cicek, Canakci. 相似文献
3.
Reactive oxygen species (ROS) have been shown to be a contributor to aging and disease. ROS also serve as a trigger switch for signaling cascades leading to corresponding cellular and molecular events. In the central nervous system (CNS), microglial cells are likely the main source of ROS production. However, activated astrocytes also appear to be capable of generating ROS. In this study we investigated ROS production in human astrocytes stimulated with interleukin (IL)-1β and interferon (IFN)-γ and its potential harmful effects. Although IFN-γ alone had no effect, it potentiated IL-1β-induced ROS production in a time-dependent manner. One of the sources of ROS in IL-1β-activated astrocytes was from increased superoxide production in mitochondria accompanied by enhanced manganese superoxide dismutase and inhibited catalase expression. NADPH oxidase (NOX) may also contribute to ROS production as astrocytes express NOX isoforms. Glutamate uptake, which represents one of the most important methods of astrocytes to prevent excitotoxicity, was down-regulated in IL-1β-activated astrocytes, and was further suppressed in the presence of IFN-γ; IFN-γ itself exerted minimal effect. Elevated levels of 8-isoprostane in IL-1β ± IFN-γ-activated human astrocytes indicate downstream lipid peroxidation. Pretreatment with diphenyleneiodonium abolished the IL-1β ± IFN-γ-induced ROS production, restored glutamate uptake function and reduced 8-isoprostane to near control levels suggesting that ROS contributes to the dysfunction of activated astrocytes. These results support the notion that dampening activated human astrocytes to maintain the redox homeostasis is vital to preserve their neuroprotective potential in the CNS. 相似文献
4.
Background
In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro.Principal Findings
Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR) tuned to 1.8 GHz and covering a range of specific absorption rates (SAR) from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001). Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure.Conclusions
RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications for the safety of extensive mobile phone use by males of reproductive age, potentially affecting both their fertility and the health and wellbeing of their offspring. 相似文献5.
Advanced Glycation End Products (AGEs) has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS) and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA) induced Human telomerase-immortalized corneal epithelial cells (HUCLs) apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE). AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC) or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways. 相似文献
6.
The present study was undertaken to examine the role of reactive oxygen species (ROS) and glutathione (GSH) in glia cells using human glioma cell line A172 cells. HgCl2 caused the loss of cell viability in a dose-dependent manner. HgCl2-induced loss of cell viability was not affected by H2O2 scavengers catalase and pyruvate, a superoxide scavenger superoxide dismutase, a peroxynitrite scavenger uric acid, and an inhibitor of nitric oxide NG-nitro-arginine Methyl ester. HgCl2 did not cause changes in DCF fluorescence, an H2O2-sensitive fluorescent dye. The loss of cell viability was significantly prevented by the hydroxyl radical scavengers dimethylthiourea and thiourea, but it was not affected by antioxidants DPPD and Trlox. HgCl2-induced loss of cell viability was accompanied by a significant reduction in GSH content. The GSH depletion was almost completely prevented by thiols dithiothreitol and GSH, whereas the loss of viability was partially prevented by these agents. Incubation of cells with 0.2 mM buthionine sulfoximine for 24 hr, a selective inhibitor of -glutamylcysteine synthetase, resulted in 56% reduction in GSH content without any change in cell viability. HgCl2 resulted in 34% reduction in GSH content, which was accompanied by 59% loss of cell viability. These results suggest that HgCl2-induced cell death is not associated with generation of H2O2 and ROS-induced lipid peroxidation. In addition, these data suggest that the depletion of endogenous GSH itself may not play a critical role in the HgCl2-induced cytotoxicity in human glioma cells. 相似文献
7.
Quinlan CL Orr AL Perevoshchikova IV Treberg JR Ackrell BA Brand MD 《The Journal of biological chemistry》2012,287(32):27255-27264
Respiratory complex II oxidizes succinate to fumarate as part of the Krebs cycle and reduces ubiquinone in the electron transport chain. Previous experimental evidence suggested that complex II is not a significant contributor to the production of reactive oxygen species (ROS) in isolated mitochondria or intact cells unless mutated. However, we find that when complex I and complex III are inhibited and succinate concentration is low, complex II in rat skeletal muscle mitochondria can generate superoxide or H(2)O(2) at high rates. These rates approach or exceed the maximum rates achieved by complex I or complex III. Complex II generates these ROS in both the forward reaction, with electrons supplied by succinate, and the reverse reaction, with electrons supplied from the reduced ubiquinone pool. ROS production in the reverse reaction is prevented by inhibition of complex II at either the ubiquinone-binding site (by atpenin A5) or the flavin (by malonate), whereas ROS production in the forward reaction is prevented by malonate but not by atpenin A5, showing that the ROS from complex II arises only from the flavin site (site II(F)). We propose a mechanism for ROS production by complex II that relies upon the occupancy of the substrate oxidation site and the reduction state of the enzyme. We suggest that complex II may be an important contributor to physiological and pathological ROS production. 相似文献
8.
辐射及活性氧对DNA的损伤以及芥子碱的保护作用 总被引:1,自引:0,他引:1
在X射线照射下,小牛胸腺DNA的碱基损伤及链断裂随着剂量升高而增加,其损伤主要集中于链断裂;活性氧可以引起DNA损伤,H2O2仅造成少量伤害,当在含有H2O2的体系中加入微量的Cu2+、Fe2+时损伤急剧增加,这是由反应产生的·OH所致,Cu2+的致损伤效果明显高于Fe2+。·OH清除剂芥子碱具有很强的抗辐射及抗氧化作用,且对DNA无伤害。这说明·OH在DNA的氧化损伤中起重要作用。 相似文献
9.
Biophysics - Abstract—The production of reactive oxygen species in human erythrocytes during incubation in the presence of a glycerol–mannitol mixture and polyethylene glycol with a... 相似文献
10.
Bianka Mussil Rodolphe Suspène Marie-Ming Aynaud Anne Gauvrit Jean-Pierre Vartanian Simon Wain-Hobson 《PloS one》2013,8(8)
Human APOBEC3 enzymes deaminate single stranded DNA. At least five can deaminate mitochondrial DNA in the cytoplasm, while three can deaminate viral DNA in the nucleus. However, only one, APOBEC3A, can hypermutate genomic DNA. We analysed the distribution and function of the two APOBEC3A isoforms p1 and p2 in transfected cell lines. Both can translocate to the nucleus and hypermutate CMYC DNA and induce DNA double strand breaks as visualized by the detection of ©H2AX or Chk2. APOBEC3A induced G1 phase cell cycle arrest and triggered several members of the intrinsic apoptosis pathway. Activation of purified human CD4+ T lymphocytes with PHA, IL2 and interferon α resulted in C->T hypermutation of genomic DNA and double stranded breaks suggesting a role for APOBEC3A in pro-inflammatory conditions. As chronic inflammation underlies many diseases including numerous cancers, it is possible that APOBEC3A induction may generate many of the lesions typical of a cancer genome. 相似文献
11.
Yu. O. Teselkin M. V. Khoreva A. V. Veselova I. V. Babenkova A. N. Osipov L. V. Gankovskaya Yu. A. Vladimirov 《Biophysics》2018,63(2):187-192
This paper presents the study on TLR-mediated production of reactive oxygen species and tumor necrosis factor alpha by peripheral blood neutrophils in healthy donors stimulated with zymosan (TLR2/6 ligand), peptidoglycan (TLR2/1 ligand), and lipopolysaccharide (TLR4 ligand). Luminol- and lucigen-independent chemiluminescence was used to detect the production of reactive oxygen species. The concentration of tumor necrosis factor alpha was measured by enzyme immunoassay. The plots of dependence of the light sums of luminol- and lucigenin-dependent chemiluminescence on the concentration of each ligand were shaped as saturation curves. The comparison of the light sums of lucigenin-dependent chemiluminescence (the production of superoxide anion radical) and luminol-dependent chemiluminescence (the total production of reactive oxygen species) showed that the contribution of NADPH oxidase to the total TLR-mediated production of oxidants can reach 40–50%. Stimulation indices were calculated to compare the ability of TLR ligands to stimulate the production of reactive oxygen species and tumor necrosis factor alpha by neutrophils. It has been established that the activation of neutrophils with zymosan leads to higher (more than 8-fold) production of reactive oxygen species rather than production of tumor necrosis factor alpha. Unlike zymosan, lipopolysaccharide stimulated the production of tumor necrosis factor alpha to a greater extent (by more than 2 times) than the production of reactive oxygen species. Peptidoglycan takes an intermediate position between these ligands. Thus, the production of effector molecules (reactive oxygen species and tumor necrosis factor alpha) by human peripheral blood neutrophils depends on the nature of the TRL ligand. 相似文献
12.
NNK诱发BEP2D细胞产生活性氧及其对DNA的损伤 总被引:4,自引:0,他引:4
通过测定细胞内和细胞上清中活性氧(reactive oxygen species,ROS)水平,以及DNA 加合物——8-羟基脱氧鸟嘌呤核苷(8-hydroxydeoxyguanosine,OH8dG)含量,对烟草特异亚硝胺类化合物4-甲基亚硝胺-1(3-吡啶基)-1-丁酮(4-(m ethylnitrosam ino)-1-(3-pyridyl)-1-butanone,NNK)诱发人乳头状病毒永生化的人支气管上皮细胞(hum an papillom avirus-im m ortalized hum anbronchialepithelialcellline,BEP2D)产生的ROS及其对DNA 的氧化损伤进行研究,并观察纳米硒的保护作用.结果表明,BEP2D 细胞经不同浓度的NNK 作用后,细胞内和细胞上清中ROS以及OH8dG含量均显著增加,并有较好的剂量效应关系.1 μm ol·L- 1纳米硒(nanoselenuim ,NS)能明显抑制NNK 诱发BEP2D细胞产生的ROS及OH8dG 水平.揭示NNK 能造成细胞的氧化损伤,而NS对NNK 所致细胞的氧化损伤有保护作用. 相似文献
13.
Dyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS). Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT), perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients’ cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC) for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold) and ROS (1.5-fold to 2-fold). Upon exposure to ionizing radiation (XRT), DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold). DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease). Together, our data supports a mechanism whereby telomerase deficiency and subsequent shortened telomeres initiate a DDR and create a pro-oxidant environment, especially in cells carrying the TINF2 mutations. Finally, the ameliorative effects of antioxidants in vitro suggest this could translate to therapeutic benefits in DC patients. 相似文献
14.
泥鳅多糖清除活性氧和保护DNA链的作用 总被引:43,自引:0,他引:43
采用化学发光法和分光光度法在多种化学模拟体系中研究了泥鳅多糖清除活性氧的作用 ,并用化学发光法观察了泥鳅多糖对·OH导致DNA链损伤的抑制作用。结果表明 ,泥鳅多糖能够有效地清除O·-2 、·OH、H2 O2 等活性氧 ,对DNA链具有良好的保护作用 相似文献
15.
Mhc Class II DNA Polymorphisms within and between Chromosomal Species of the Spalax Ehrenbergi Superspecies in Israel 下载免费PDF全文
Restriction fragment length polymorphisms (RFLPs) of two major histocompatibility class II genes (P alpha 1 and Q beta) were studied in 13 populations of four chromosomal species (2n = 52, 54, 58 and 60) of the mole rat, Spalax ehrenbergi superspecies in Israel. A substantial frequency of allelic fragments was found in both genes for all populations, including a desert isolate. In the P alpha 1 gene, one allelic fragment is a result of a deletion mutation which is diagnostic of the 2n = 52 chromosomal species. All other ten allelic variants are the result of point mutations. All mutations are located in a short region flanking the 3' end of the gene. Based on Mhc polymorphisms we confirm earlier evidence that gene flow does not occur between the older chromosomal species (2n = 52, 54, 58), and that reproductive isolation decreases, progressively from the oldest to the youngest species (2n = 60). 相似文献
16.
Saud Alarifi Daoud Ali Saad Alakhtani Entissar S. Al Suhaibani Ahmed A. Al-Qahtani 《Biological trace element research》2014,157(1):84-93
Nickel nanoparticles (NiNPs) are increasingly used in various applications due to their unique properties. However, there is little information concerning the toxicity of NiNPs in the human skin cell (A431). The present study was designed to investigate the cytotoxicity, apoptosis, and DNA damage due to NiNPs in A431 cells. A cellular proliferative capacity test showed that NiNPs induce significant cytotoxicity in a dose- and time-dependent manner. NiNPs were also found to induce oxidative stress evidenced by the generation of reactive oxygen species (ROS) and depletion of glutathione (GSH). Further, co-treatment with the antioxidant N-acetylcysteine (NAC) mitigated the ROS generation due to NiNPs, suggesting the potential mechanism of oxidative stress. NiNPs also induced significant elevation of lipid peroxidation, catalase, and superoxide dismutase and caspase-3 activity in A431 cells. In addition, NAC suppressed NiNP-induced caspase-3 activity. DNA fragmentation analysis using the comet assay showed that the NiNPs cause genotoxicity in a dose- and time-dependent manner. Therefore, the study points out the capability of the NiNPs to induce oxidative stress resulting in apoptosis and genotoxicity. This study warrants more careful assessment of NiNPs before their industrial applications. 相似文献
17.
Kuo-Feng Hua Pei-Chun Liao Zhanxiong Fang Feng-Ling Yang Yu-Liang Yang Yi-Lin Chen Yi-Chich Chiu May-Lan Liu Yulin Lam Shih-Hsiung Wu 《PloS one》2013,8(6)
Oral squamous cell carcinoma (OSCC) accounts for 5.8% of all malignancies in Taiwan and the incidence of OSCC is on the rise. OSCC is also a common malignancy worldwide and the five-year survival rate remains poor. Therefore, new and effective treatments are needed to control OSCC. In the present study we have investigated the efficacy and associated mechanisms of polyenylpyrroles and their analogs in both in vitro cell culture and in vivo nude mice xenografts. Auxarconjugatin B (compound 1a) resulted in cell cycle arrest in the G2/M phase and caspase-dependent apoptosis in OEC-M1 and HSC-3 cells by activating DNA damage and mitochondria dysfunction through the loss of mitochondrial membrane potential, release of cytochrome c, increase in B-cell lymphoma-2-associated X protein level, and decrease in B-cell lymphoma-2 level. Compound 1a-induced generation of intracellular reactive oxygen species through cytochrome P450 1A1 was identified as a major mechanism of its effect for DNA damage, mitochondria dysfunction and apoptosis, which was reversed by antioxidant N-acetylcysteine as well as cytochrome P450 1A1 inhibitor and specific siRNA. Furthermore, compound 1a-treated nude mice showed a reduction in the OEC-M1 xenograft tumor growth and an increase in the caspase-3 activation in xenograft tissue. These results provide promising insights as to how compound 1a mediates cytotoxicity and may prove to be a molecular rationale for its translation into a potential therapeutic against OSCC. 相似文献
18.
Yang Jiao Sai Ma Yirong Wang Jing Li Lequn Shan Qian Liu Ying Liu Qian Song Fan Yu Haohan Yu Huan Liu Li Huang Jihua Chen 《PloS one》2016,11(1)
Purpose
To investigate the involvement of intrinsic mitochondrial apoptosis in dental monomer-induced cytotoxicity and the influences of N-acetyl cysteine (NAC) on this process.Methods
Human dental pulp cells (hDPCs) were exposed to several dental monomers in the absence or presence of NAC, and cell viability, intracellular redox balance, morphology and function of mitochondria and key indicators of intrinsic mitochondrial apoptosis were evaluated using various commercial kits.Results
Dental monomers exerted dose-dependent cytotoxic effects on hDPCs. Concomitant to the over-production of reactive oxygen species (ROS) and depletion of glutathione (GSH), differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase were detected. Apoptosis, as indicated by positive Annexin V/propidium iodide (PI) staining and activation of caspase-3, was observed after dental monomer treatment. Dental monomers impaired the morphology and function of mitochondria, and induced intrinsic mitochondrial apoptosis in hDPCs via up-regulation of p53, Bax and cleaved caspase-3, and down-regulation of Bcl-2. NAC restored cell viability, relieved oxidative stress and blocked the apoptotic effects of dental monomers.Conclusions
Dental monomers induced oxidative stress and mitochondrial intrinsic apoptosis in hDPCs. NAC could reduce the oxidative stress and thus protect hDPCs against dental monomer-induced apoptosis. 相似文献19.
Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment. 相似文献
20.
Guo-Wei Wang Chao Lv Zhi-Ran Shi Ren-Tao Zeng Xue-Yun Dong Wei-Dong Zhang Run-Hui Liu Lei Shan Yun-Heng Shen 《PloS one》2014,9(12)
Abieslactone is a triterpenoid lactone isolated from Abies plants. Previous studies have demonstrated that its derivative abiesenonic acid methyl ester possesses anti-tumor-promoting activity in vitro and in vivo. In the present study, cell viability assay demonstrated that abieslactone had selective cytotoxicity against human hepatoma cell lines. Immunostaining experiments revealed that abieslactone induced HepG2 and SMMC7721 cell apoptosis. Flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of CDK2 and cyclin D1. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to upregulation of Bax, down-regulation of Bcl-2, mitochondrial release of cytochrome c, reduction of mitochondrial membrane potential (MMP), and activation of caspase cascades (Casp-9 and -3). Activation of caspase cascades also resulted in the cleavage of PARP fragment. Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Recent studies have shown that ROS is upstream of Akt signal in mitochondria-mediated hepatoma cell apoptosis. Our results showed that the accumulation of ROS was detected in HepG2 cells when treated with abieslactone, and ROS scavenger partly blocked the effects of abieslactone-induced HepG2 cell death. In addition, inactivation of total and phosphorylated Akt activities was found to be involved in abieslactone-induced HepG2 cell apoptosis. Therefore, our findings suggested that abieslactone induced G1 cell cycle arrest and caspase-dependent apoptosis via the mitochondrial pathway and the ROS/Akt pathway in HepG2 cells. 相似文献