首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stimulation of FcepsilonRI, the high affinity IgE receptor of mast cells results in the rapid binding of the Syk tyrosine kinase to cytoplasmic domains of FcepsilonRI and to its subsequent activation. Syk plays an essential role in signal transduction from FcepsilonRI as shown by Syk-deficient mast cells, which are defective in receptor-induced degranulation, cytokine synthesis, and intracellular pathways. However the mechanism by which Syk activates these pathways remains unclear. Activation of Syk is associated with its phosphorylation on several tyrosine residues, including the linker tyrosines Tyr317, Tyr342, and Tyr346. These residues have been proposed to play important roles in the transduction of signals by binding to other signaling proteins. To test these hypotheses in primary murine mast cells, we used retroviral infection of Syk-deficient mast cells to generate cells expressing Syk proteins bearing mutations in the linker tyrosines. We show that Tyr342 and Tyr346 contribute positively to the function of Syk and have both overlapping as well as distinct functions. Mutations in either Tyr342 or Tyr346 alone had no effect on FcepsilonRI-induced degranulation or calcium flux, whereas mutation of both residues caused a significant reduction in both pathways. In contrast, phosphorylation of PLCgamma1, PLCgamma2, and Vav1 was strongly decreased by a mutation in Tyr342 alone, whereas phosphorylation of ERK and Akt was more dependent on Tyr346. Finally we show that Tyr317 functions as a negative regulatory site and that its mutation can partially compensate for the loss of both Tyr342 and Tyr346.  相似文献   

2.
Observing FcepsilonRI signaling from the inside of the mast cell membrane   总被引:8,自引:0,他引:8  
We have determined the membrane topography of the high-affinity IgE receptor, FcstraightepsilonRI, and its associated tyrosine kinases, Lyn and Syk, by immunogold labeling and transmission electron microscopic (TEM) analysis of membrane sheets prepared from RBL-2H3 mast cells. The method of Sanan and Anderson (Sanan, D.A., and R.G.W. Anderson. 1991. J. Histochem. Cytochem. 39:1017-1024) was modified to generate membrane sheets from the dorsal surface of RBL-2H3 cells. Signaling molecules were localized on the cytoplasmic face of these native membranes by immunogold labeling and high-resolution TEM analysis. In unstimulated cells, the majority of gold particles marking both FcepsilonRI and Lyn are distributed as small clusters (2-9 gold particles) that do not associate with clathrin-coated membrane. Approximately 25% of FcepsilonRI clusters contain Lyn. In contrast, there is essentially no FcepsilonRI-Syk colocalization in resting cells. 2 min after FcepsilonRI cross-linking, approximately 10% of Lyn colocalizes with small and medium-sized FcepsilonRI clusters (up to 20 gold particles), whereas approximately 16% of Lyn is found in distinctive strings and clusters at the periphery of large receptor clusters (20-100 gold particles) that form on characteristically osmiophilic membrane patches. While Lyn is excluded, Syk is dramatically recruited into these larger aggregates. The clathrin-coated pits that internalize cross-linked receptors bud from membrane adjacent to the Syk-containing receptor complexes. The sequential association of FcstraightepsilonRI with Lyn, Syk, and coated pits in topographically distinct membrane domains implicates membrane segregation in the regulation of FcstraightepsilonRI signaling.  相似文献   

3.
Exosome vesicles of endocytic origin are involved in communication between tumor and immune cells. In addition, membrane rafts (MR) may support the sorting of proteins associated with exosomes. CD38 is found at the plasma membrane and in recycling endosomes, which are both redistributed toward the immunological synapse (IS) upon T cell antigen receptor (TCR) engagement. The data of this study provide evidence that CD38 is expressed on the surface of secreted exosomes derived from lymphoblastoid B cells. Exosomic CD38 is associated with the signaling molecules CD81, Hsc-70 and Lyn. Likewise, in MR, CD38 is associated with CD81, CD19, Lyn, Gαi-2, Hsc-70 and actin. Therefore, a high degree of overlap in the pattern of signaling proteins associated with CD38 in exosomes and MR exists. Exosomic and MR CD38, by virtue of these interactions, have signaling potential. Indeed, CD38 is enzymatically active in both exosomes and MR, and CD38 ligation induces Akt/PKB and Erk activation, which is accompanied by increased translocation of CD38 into MR. In conclusion, the present study indicates that CD38 localizes to MR, where it promotes cell signaling, and it is exported out of the cells through the exosome-mediated exocytic pathway, where it may act as an intercellular messenger.  相似文献   

4.
Myelin protein zero (MPZ) is the major integral membrane protein of peripheral nerve myelin in higher vertebrates, mediating homoadhesion of the multiple, spiraling wraps of the myelin sheath. Previous studies have shown that full-length MPZ can form dimers and tetramers, and biochemical studies on the extracellular domain (ECD) indicate that it can form a tetramer, albeit very weakly. On the basis of cross-linking studies and equilibrium sedimentation of a transmembrane (TM) domain peptide (MPZ-TM), we find that the MPZ-TM can form homodimers. We further characterized the dimer by measuring the effects of alanine and leucine substitutions on the ability of the TM to dimerize in Escherichia coli membranes. Our results indicate that the primary packing interface for the MPZ TM homodimer is a glycine zipper (GxxxGxxxG) motif. We also find that the G134R mutation, which lies within the glycine zipper packing interface and causes Charcot-Marie-Tooth disease type 1B, severely inhibits dimerization, suggesting that dimerization of the TM domain may be important for the normal functioning of MPZ. By combining our new results with prior work, we suggest a new model for an MPZ lattice that may form during the construction of myelin.  相似文献   

5.
Tyrosine phosphorylation of numerous proteins is one of the earliest events detectable during Fcgamma receptor-mediated phagocytosis. We demonstrate that IgG-coated particles associated with the surface of macrophages are enriched with numerous tyrosine-phosphorylated proteins. During particle internalization the proteins are still associated with particles but their phosphorylation is reduced. Lyn kinase is phosphorylated both at particle binding and internalization steps. The phosphorylated Syk kinase is the major kinase associated with engulfed particles. Imnunofluorescent studies confirm spatial and temporal distribution of Lyn and Syk kinases at different stages of phagocytosis. Our data indicate that ligation of Fcgamma receptors activates Lyn followed by Syk kinase and in the result multimolecular complex of the kinases and several accompanying tyrosine phosphorylated proteins with Fcgamma receptors is organized leading to local reorganization of actin-based skeleton and particle uptake.  相似文献   

6.
Sphingosine kinase has been recognized as an essential signaling molecule that mediates the intracellular conversion of sphingosine to sphingosine-1-phosphate. In mast cells, induction of sphingosine kinase and generation of sphingosine-1-phosphate have been linked to the initial rise in Ca(2+), released from internal stores, and to degranulation. These events either precede or are concomitant with the activation of phospholipase C-gamma and the generation of inositol trisphosphate. Here we show that sphingosine kinase type 1 (SPHK1) interacts directly with the tyrosine kinase Lyn and that this interaction leads to the recruitment of this lipid kinase to the high-affinity receptor for immunoglobulin E (FcepsilonRI). The interaction of SPHK1 with Lyn caused enhanced lipid and tyrosine kinase activity. After FcepsilonRI triggering, enhanced sphingosine kinase activity was associated with FcepsilonRI in sphingolipid-enriched rafts of mast cells. Bone marrow-derived mast cells from Lyn(-/)(-) mice, compared to syngeneic wild-type cells, were defective in the initial induction of SPHK1 activity, and the defect was overcome by retroviral Lyn expression. These findings position the activation of SPHK1 as an FcepsilonRI proximal event.  相似文献   

7.
《The Journal of cell biology》1995,130(5):1117-1125
Lysin is a 16-kD acrosomal protein used by abalone spermatozoa to create a hole in the egg vitelline envelope (VE) by a nonenzymatic mechanism. The crystal structure of the lysin monomer is known at 1.9 A resolution. The surface of the molecule reveals two tracks of basic residues running the length of one surface of the molecule and a patch of solvent-exposed hydrophobic residues on the opposite surface. Here we report that lysin dimerizes via interaction of the hydrophobic patches of monomers. Triton X-100 dissociates the dimer. The crystal structure of the dimer is described at 2.75 A resolution. Fluorescence energy transfer experiments show that the dimer has an approximate KD of 1 microM and that monomers exchange rapidly between dimers. Addition of isolated egg VE dissociates dimers, implicating monomers as the active species in the dissolution reaction. This work represents the first step in the elucidation of the mechanism by which lysin enables abalone spermatozoa to create a hole in the egg envelope during fertilization.  相似文献   

8.
Syk protein-tyrosine kinase (PTK) has been implicated in a variety of hematopoietic cell responses including immunoreceptor signaling. However, so far, there has been no evidence of the expression of Syk or Syk-related PTK in non-hematopoietic tissues. In this study, we have purified from blood cell-depleted rat liver a 72-kDa cytoplasmic PTK which shows cross-reactivity with anti-Syk antibody. Partial amino acid sequence analysis revealed that this 72-kDa PTK is identical to Syk. Immunohistochemical and RT-PCR analyses demonstrated that Syk is expressed in human hepatocytes and two rat liver-derived cell lines, JTC-27 and RLC-16. Furthermore, Syk is significantly tyrosine-phosphorylated in response to angiotensin II in JTC-27 cells, and angiotensin II-induced MAP kinase activation is blocked by the treatment of cells with a Syk-selective inhibitor, piceatannol. These results suggest that Syk plays an important role in signaling events of hepatocytes, such as signaling steps leading to MAP kinase activation by G-protein-coupled receptors. This is the first report of the expression of Syk in non-hematopoietic tissue.  相似文献   

9.
The EICP22 protein (EICP22P) of Equine herpesvirus 1 (EHV-1) is an early protein that functions synergistically with other EHV-1 regulatory proteins to transactivate the expression of early and late viral genes. We have previously identified EICP22P as an accessory regulatory protein that has the ability to enhance the transactivating properties and the sequence-specific DNA-binding activity of the EHV-1 immediate-early protein (IEP). In the present study, we identify EICP22P as a self-associating protein able to form dimers and higher-order complexes during infection. Studies with the yeast two-hybrid system also indicate that physical interactions occur between EICP22P and IEP and that EICP22P self-aggregates. Results from in vitro and in vivo coimmunoprecipitation experiments and glutathione S-transferase (GST) pull-down studies confirmed a direct protein-protein interaction between EICP22P and IEP as well as self-interactions of EICP22P. Analyses of infected cells by laser-scanning confocal microscopy with antibodies specific for IEP and EICP22P revealed that these viral regulatory proteins colocalize in the nucleus at early times postinfection and form aggregates of dense nuclear structures within the nucleoplasm. Mutational analyses with a battery of EICP22P deletion mutants in both yeast two-hybrid and GST pull-down experiments implicated amino acids between positions 124 and 143 as the critical domain mediating the EICP22P self-interactions. Additional in vitro protein-binding assays with a library of GST-EICP22P deletion mutants identified amino acids mapping within region 2 (amino acids [aa] 65 to 196) and region 3 (aa 197 to 268) of EICP22P as residues that mediate its interaction with IEP.  相似文献   

10.
The glycoprotein VI (GPVI)-Fc receptor (FcR) gamma-chain complex, a key activatory receptor for collagen on platelet surface membranes, is constitutively associated with the Src family kinases Fyn and Lyn. Molecular cloning of GPVI has revealed the presence of a proline-rich domain in the sequence of GPVI cytoplasmic tail which has the consensus for interaction with the Src homology 3 (SH3) domains of Fyn and Lyn. A series of in vitro experiments demonstrated the ability of the SH3 domains of both Src kinases to bind the proline-rich domain of GPVI. Furthermore, depletion of the proline-rich domain in GPVI (Pro(-)-GPVI) prevented binding of Fyn and Lyn and markedly reduced phosphorylation of FcR gamma-chain in transiently transfected COS-7 cells, but did not affect the association of the gamma-chain with GPVI. Jurkat cells stably transfected with wild type GPVI show robust increases in tyrosine phosphorylation and intracellular Ca2+ in response to the snake venom convulxin that targets GPVI. Importantly, convulxin is not able to activate cells transfected with Pro(-)-GPVI, even though the association with the immunoreceptor tyrosine-based activation motif-containing chains is maintained. These findings demonstrate that the proline-rich domain of GPVI mediates the association with Fyn/Lyn via their SH3 domain and that this interaction initiates activation signals through GPVI.  相似文献   

11.
12.
13.
14.
B cell receptor (BCR) stimulation induces phosphorylation of a number of proteins, leading to functional activation of B lymphocytes. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase, involved in a variety of signaling pathways. In this study, we show that FAK is tyrosine-phosphorylated and activated following BCR stimulation. We also demonstrate constitutive association of FAK with the Src-family kinase Lyn and with components of the BCR. Association of Lyn with FAK which was not correlated with BCR-induced activation of both kinases, appeared to be mediated via the binding of Lyn to the COOH-terminal part of the FAK molecule. Our results indicate that FAK is a component of the BCR complex and that it participates in BCR signaling.  相似文献   

15.
16.
The human immunodeficiency virus type 1 (HIV-1) integrase is an essential enzyme in the life cycle of the virus and is therefore an attractive target for the development of new antiviral drugs. Among them, inhibitors which are capable of targeting the preassembled integrase/DNA complex are of particular interest, because they could suppress integrase activity in the context of the HIV-1 preintegration complex. Here, we study the mechanism of action of 11-mer oligonucleotides, which are efficient inhibitors of the catalytic activity of integrase, provided that they are conjugated to a hydrophobic compound, acridine. To understand the mechanism of the conjugate inhibitory action, we used a steady-state fluorescence anisotropy assay, which allowed us to study the stability of the integrase/DNA complex in various conditions. We found that oligonucleotide-acridine conjugates induced the efficient dissociation of preassembled integrase/DNA complexes. The simultaneous presence of both acridine and an oligonucleotidic moiety is required for the inhibitory activity of conjugates. However, the dissociation effect is not dependent on the oligonucleotide sequence. Finally, our results suggest that the conjugates bind directly to integrase within its complex with DNA at a site different from the viral DNA binding site.  相似文献   

17.
Platelet activation by collagen is mediated by the sequential tyrosine phosphorylation of the Fc receptor gamma-chain (FcR gamma-chain), which is part of the collagen receptor glycoprotein VI, the tyrosine kinase Syk and phospholipase C-gamma2 (PLC-gamma2). In this study tyrosine-phosphorylated proteins that associate with PLC-gamma2 after stimulation by a collagen-related peptide (CRP) were characterized using glutathione S-transferase fusion proteins of PLC-gamma2 Src homology (SH) domains and by immunoprecipitation of endogenous PLC-gamma2. The majority of the tyrosine-phosphorylated proteins that associate with PLC-gamma2 bind to its C-terminal SH2 domain. These were found to include PLC-gamma2, Syk, SH2-domain-containing leucocyte protein of 76 kDa (SLP-76), Lyn, linker for activation of T cells (LAT) and the FcR gamma-chain. Direct association was detected between PLC-gamma2 and SLP-76, and between PLC-gamma2 and LAT upon CRP stimulation of platelets by far-Western blotting. FcR gamma-chain and Lyn were found to co-immunoprecipitate with PLC-gamma2 as well as with unidentified 110-kDa and 75-kDa phosphoproteins. The absence of an in vivo association between Syk and PLC-gamma2 in platelets is in contrast with that for PLC-gamma1 and Syk in B cells. The in vivo function of PLC-gamma2 SH2 domains was examined through measurement of Ca2+ increases in mouse megakaryocytes that had been microinjected with recombinant proteins. This revealed that the C-terminal SH2 domain is involved in the regulation of PLC-gamma2. These data indicate that the C-terminal SH2 domain of PLC-gamma2 is important for PLC-gamma2 regulation through possible interactions with SLP-76, Syk, Lyn, LAT and the FcR gamma-chain.  相似文献   

18.
Lactosylceramide [LacCer; β-Gal-(1-4)-β-Glc-(1-1)-Cer] has been shown to contain very long fatty acids that specifically modulate neutrophil properties. The interactions between LacCer and proteins and their role in cell signaling processes were assessed by synthesizing two molecular species of azide-photoactivable tritium-labeled LacCer having acyl chains of different lengths. The lengths of the two acyl chains corresponded to those of a short/medium and very long fatty acid, comparable to the lengths of stearic and lignoceric acids, respectively. These derivatives, designated C18-[3H]LacCer-(N3) and C24-[3H]LacCer-(N3), were incorporated into the lipid rafts of plasma membranes of neutrophilic differentiated HL-60 (D-HL-60) cells. C24-[3H]LacCer-(N3), but not C18-[3H]LacCer-(N3), induced the phosphorylation of Lyn and promoted phagocytosis. Incorporation of C24-[3H]LacCer-(N3) into plasma membranes, followed by illumination, resulted in the formation of several tritium-labeled LacCer-protein complexes, including the LacCer-Lyn complex, into plasma membrane lipid rafts. Administration of C18-[3H]LacCer-(N3) to cells, however, did not result in the formation of the LacCer-Lyn complex. These results suggest that LacCer derivatives mimic the biological properties of natural LacCer species and can be utilized as tools to study LacCer-protein interactions, and confirm a specific direct interaction between LacCer species containing very long fatty acids, and Lyn protein, associated with the cytoplasmic layer via myristic/palmitic chains.  相似文献   

19.
A facile method for the formation of covalent bonds between protein molecules is zero-length cross-linking. This method enables the formation of cross-links without use of any chemical reagents. Here, the cross-linking is performed for lysozyme, peroxidase (a glycoprotein) and between lysozyme–peroxidase by the method of Simons et al. [B.L. Simons, M.C. King, T. Cyr, M.A. Hefford, H. Kaplan, Covalent cross-linking of protein without chemical reagents, Protein Sci. 2002, 11, 1558–1564]. Approximately one-third of the total lysozyme becomes cross-linked and the dimer form was the major product for both enzymes. This modification induced some changes in the kinetic properties of the dimer peroxidase, as evident by two-fold increasing of Vmax compared to the monomer but the enzymatic activity of cross-linked lysozyme dimer was the same as monomer. The activity of lysozyme dimer remained constant up to 10 min at 80 °C, while peroxidase activity of both monomer and dimer began to decrease after heating. The structural changes of the enzymes were investigated by circular dichroism and intrinsic fluorescence techniques. Near UV result showed lysozyme possess a compact structure in the dimer form but disruption of tertiary structure of peroxidase dimer was observed. Also conformational changes were detected and discussed by intrinsic fluorescence experiments. Effect of several metals in the formation of lysozyme dimer showed that Co2+ is the most effective one but its effect was marginal. At the end formation of heterogeneous dimer, peroxidase–lysozyme, was achieved using this method.  相似文献   

20.
Thrombin stimulation of platelets triggers Tyr phosphorylation of several signaling proteins, most of which remain unidentified. In this study, we demonstrate for the first time that hematopoietic lineage cell-specific protein 1 (HS1) undergoes a transient Tyr phosphorylation in human platelets stimulated with thrombin. The protein is synergistically phosphorylated by Syk and Lyn tyrosine kinases according to a sequential phosphorylation mechanism. By means of specific inhibitors (PP2, SU6656, and piceatannol) and phosphopeptide-specific antibodies, as well as by coimmunoprecipitation and binding competition experiments, we show that Syk acts as the primary kinase that phosphorylates HS1 at Tyr397 and that Syk phosphorylation is required for HS1 interaction with the Lyn SH2 domain. Upon docking to Syk-phosphorylated HS1, Lyn catalyzes the secondary phosphorylation of the protein at Tyr222. Once the secondary Tyr phosphorylation of HS1 is accomplished the protein dissociates from Lyn and undergoes a dephosphorylation process. HS1 Tyr phosphorylation does not occur when thrombin-induced actin assembly is inhibited by cytochalasin D even under conditions in which Syk and Lyn are still active. Immunofluorescence microscopic analysis shows that the agonist promotes HS1 migration to the plasma membrane and that the inhibition of Lyn-mediated secondary phosphorylation of HS1 abrogates the subcellular translocation of the protein. All together these results indicate that HS1 Tyr phosphorylation catalyzed by Syk and Lyn plays a crucial role in the translocation of the protein to the membrane and is involved in the cytoskeleton rearrangement triggered by thrombin in human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号