首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To analyze the expression pattern of genes of cAMP responsive element binding protein (CREB), we performed in situ hybridization for the whole central nervous system (CNS) of the pond snail Lymnaea stagnalis. The CREB1 (activator) and CREB2 (repressor) homologues have already been cloned in L. stagnalis, and they are referred to as LymCREB1 and LymCREB2. Using the frozen sections and the whole mount preparations of the CNS, we mapped the distribution of LymCREB1 and LymCREB2 mRNA containing neurons. The present findings showed that the LymCREB1 mRNA containing neurons are a relatively few, whereas LymCREB2 mRNA is contained ubiquitously in the whole CNS of L. stagnalis.  相似文献   

3.
Summary This study describes the neural basis of respiratory behavior in a pulmonate mollusc, Lymnaea stagnalis. We describe and identify muscles of the respiratory orifice (pneumostome) and mantle cavity as well as relevant motor neurons innervating these muscles. All of these identified motor neurons are active during spontaneously occurring respiratory behavior and a sporadically occurring synaptic input, termed Input 3, controls the activities of these motor neurons. This spontaneous input can also be recorded from isolated brain preparations, suggesting that the respiratory motor program is generated centrally. However, evidence is also presented that in semi-intact preparations the role of peripheral feedback is important for the initiation and termination of respiratory behavior in Lymnaea.  相似文献   

4.
Nicotinamide-adenine-dinucleotide-phosphate-diaphorase (NADPH-d) histochemistry has been applied in the present study to determine the distribution of putative nitric oxide (nitric oxide synthase)-producing cells during embryonic and early postembryonic development in the pond snail, Lymnaea stagnalis L., with special reference to the nervous system. The first NADPH-d-positive structures appear as early as 18% of development (E18, trochophore stage) and correspond to the pair of protonephridia. These structures later show disintegration, although after metamorphosis (E26=75%) staining of their individually spreading cells can be observed until hatching. Peripheral sensory neurons in the foot, mantle edge and lips, and their afferents projecting to the central nervous system reveal NADPH-d activity in the postmetamorphosis period (E25–E27=E60%–E80%) of embryogenesis. After hatching (P1–P3), a number of stained sensory cells appear in the pharynx and esophagus. Some NADPH-d positive neuronal perikarya occur in the pedal and pleural ganglia, and a few weakly stained cells in the cerebral and buccal ganglia of juvenile snails. At the same time, a continuous bundle of reactive fibers is formed in the neuropil both through and through around the circumesophageal ganglion ring. The localization of NADPH-d activity in the developing nervous system of Lymnaea suggests that nitric oxide participates mainly in sensory processes. However, its role in specific intraganglionic integrative events cannot be excluded following embryonic metamorphosis.  相似文献   

5.
6.
Octopamine is released by the intrinsic OC interneurons in the paired buccal ganglia and serves both as a neurotransmitter and a neuromodulator in the central feeding network of the pond snail Lymnaea stagnalis. The identified B1 buccal motoneuron receives excitatory inputs from the OC interneurons and is more excitable in the presence of 10 microM octopamine in the bath. This modulatory effect of octopamine on the B1 motoneuron was studied using the two electrode voltage clamp method. In normal physiological saline depolarising voltage steps from the holding potential of -80 mV evoke a transient inward current, presumably carried by Na(+) ions. The peak values of this inward current are increased in the presence of 10 microM octopamine in the bath. In contrast, both the transient (IA) and delayed (IK) outward currents are unaffected by octopamine application. Replacing the normal saline with a Na(+)-free bathing solution containing K(+) channel blockers (50 mM TEACl, 4 mM 4AP) revealed the presence of an additional inward current of the B1 neurons, carried by Ca(2+). Octopamine (10 microM) in the bath decreased the amplitudes of this current. These results suggest that the membrane mechanisms which underlie the modulatory effect of octopamine on the B1 motoneuron include selective changes of the Na(+)- and Ca(2+)-channels.  相似文献   

7.
8.
We investigated the distribution and projection patterns of central and peripheral glutamate-like immunoreactive (GLU-LIR) neurons in the adult and developing nervous system of Lymnaea. Altogether, 50-60 GLU-LIR neurons are present in the adult central nervous system. GLU-LIR labeling is shown in the interganglionic bundle system and at the varicosities in neuropil of the central ganglia. In the periphery, the foot, lip, and tentacle contain numerous GLU-LIR bipolar sensory neurons. In the juvenile Lymnaea, GLU-LIR elements at the periphery display a pattern of distribution similar to that seen in adults, whereas labeled neurons increase in number in the different ganglia of the central nervous system from juvenile stage P1 up to adulthood. During embryogenesis, GLU-LIR innervation can be detected first at the 50% stage of embryonic development (the E50% stage) in the neuropil of the cerebral and pedal ganglia, followed by the emergence of labeled pedal nerve roots at the E75% stage. Before hatching, at the E90% stage, a few GLU-LIR sensory cells can be found in the caudal foot region. Our findings indicate a wide range of occurrence and a broad role for glutamate in the gastropod nervous system; hence they provide a basis for future studies on glutamatergic events in networks underlying different behaviors.  相似文献   

9.
10.
Determinants of macrophyte palatability to the pond snail Lymnaea stagnalis   总被引:4,自引:0,他引:4  
Summary 1. This study aimed to identify the chemical and structural determinants of macrophyte palatability to the pond snail Lymnaea stagnalis . Eleven macrophyte species were investigated, and one of them ( Potamogeton lucens ) was collected at four sites, on two different dates in the year, to study palatability determinants at an intra-specific level.
2. Plant palatability to L. stagnalis was determined through non-choice feeding assays. Dry matter content (DMC), total phenolic content and protein content were measured for each macrophyte species. These parameters, and soluble carbohydrate content, were also measured for each sample of P. lucens .
3. The palatability of macrophytes was positively related to their protein content (between species only) and negatively related to their DMC (both between species and within P. lucens ). No simple relationship was found between the palatability of macrophytes and their phenolic content, but highly palatable macrophytes consistently exhibited a low phenolic content.
4. These results emphasise that macrophyte palatability is a multifactorial attribute, potentially depending on both structural and chemical traits. Because some of these traits were correlated, further investigations are required to assess their respective influence on macrophyte palatability.  相似文献   

11.
The attachment of the body of the snail Lymnaea stagnalis to the shell was studied by histochemistry and light and electron microscopy. Muscles of the body wall insert into the connective tissue by way of long thin projections of sarcolemma. The muscle cells end under the basement membrane of a specialised area of the epidermis, the adhesive epithelium. The cells of this epithelium are filled with microfilaments and possess characteristic knob-like microvilli. The epithelium is attached to the shell by way of an adhesive substance containing proteins and mucopolysaccharides.This research was made possible by a grant from the Netherlands Organization for Pure Research (Z.W.O.)  相似文献   

12.
Summary VD1 and RPD2 are two giant neuropeptidergic neurons in the central nervous system (CNS) of the pond snail Lymnaea stagnalis. We wished to determine whether other central neurons in the CNS of L. stagnalis express the VD1/RPD2 gene. To this end, in situ hybridization with the cDNA probe of the VD1/RPD2 gene and immunocytochemistry with antisera specific to VD1 and RPD2 (the 1-antiserum, Mab4H5 and ALMA 6) and to R15 (the 1 and 16-mer antisera) were performed on alternate tissue sections. A VD1/RPD2 neuronal system comprising three classes of neurons (A1–A3) was found. All neurons of the system express the gene. Division into classes is based on immunocytochemical characteristics. Class A1 neurons (VD1 and RPD2) immunoreact with the 1-antiserum, Mab4H5 and ALMA 6. Class A2 neurons (1–5 small and 1–5 medium sized neurons in the visceral and right parietal ganglion, and two clusters of small neurons and 5 medium-sized neurons in the cerebral ganglia) immunoreact with the 1-antiserum and Mab4H5, but not with ALMA 6. Class A3 neurons (3–4 medium-sized neurons and a cluster of 4–5 small neurons located in the pedal ganglion) immunoreact with the 1-antiserum only. All neurons of the system are immunonegative to the R15 antisera. The observations suggest that the neurons of the VD1/RPD2 system produce different sets of neuropeptides. A group of approximately 15 neurons (class B), scattered in the ganglia, immunostained with one or more of the antisera, but did not react with the cDNA probe in in situ hybridization.  相似文献   

13.
The osphradium of molluscs is assumed to be a sensory organ. The present investigation in Lymnaea stagnalis has established two ultrastructurally different types of dendrites in the sensory epithelium. Cells immunoreactive to leucine-enkephalin and FMRFamide send processes to the sensory epithelium. These neurons of the osphradial ganglion are thus considered to be part of the sensory system, as are methionine-enkephalin-immunoreactive cells in the mantle wall in the vicinity of the osphradium. The complexity of the osphradial ganglion is further demonstrated by serotonin-immunoreactive neurons innervating the muscular coat around the osphradial canal and methionine-enkephalin-immunoreactive cells sending projections to the central nervous system.  相似文献   

14.
15.
Ultrastructural characteristics of muscle fibers and neuromuscular contacts were investigated during two stages of embryogenesis of the pulmonate snail Lymnaea stagnalis. The first muscle cells appear as early as during metamorphosis (50-55% of embryonic development), whereas previously, in the trochophore/veliger stages (25-45%), muscular elements cannot be detected at all. The first muscle fibers contain large amounts of free numbers, a well-developed rER system and only a few irregularly arranged contractile elements. The nucleus is densely packed with heterochromatine material. At 75% adult-like postmetamorphic stage, the frequency of muscle fibers increases significantly, but, bundles of muscle fibers cannot yet be observed. Furthermore the muscle cells are characterized by large numbers of free ribosomes and numerous rER elements. Fine axon bundles and single axon processes, both accompanied by glial elements, can already be found at this time. Axon varicosities with different vesicle and/or granule contents form membrane contacts with muscle fibers, but without revealing membrane specialization on the pre- or postsynaptic side. The late development of the muscle system and neuromuscular contacts during Lymnaea embryogenesis correlates well with the maturation of different forms of behavior of adult, free-living life, and also with the peripheral appearance of chemically identified components of the embryonic nervous system of central origin.  相似文献   

16.
17.
Summary Three neuronal systems of the pond snail Lymnaea stagnalis were immunocytochemically investigated at the ultrastructural level with the unlabeled peroxidase-antiperoxidase technique. Preliminary electrophysiological and cell-filling investigations have shown that a cluster of neurons which reacts positively with an antiserum against the molluscan cardio-active peptide FMRFamide, sends axons to the penis retractor muscle. In this muscle anti-FMRF-amide (aFM) positive axons form neuro-muscular synapses with (smooth) muscle fibers. The morphological observations suggest the aFM immunoreactive system to be involved in peptidergic neurotransmission. In the right parietal ganglion a large neuron (LYAC) is penetrated by aFM positive axons which form synapse-like structures (SLS) with the LYAC. The assumption that the SLS represent the morphological basis for peptidergic transmission is sustained by the observation that iontophoretical application of synthetic FMRFamide depolarizes the LYAC. The axons of a group of pedal anti-vasopressin (aVP) positive cells run in close vicinity to the cerebral ovulation (neuro-)-hormone producing cell system (CDC system) Synapses or SLS between the two systems were not observed. The fact that (bath) application of arg-vasopressin induces bursting in the CDC, may indicate that the vasopressin-like substance of the aVP cells is released non-synaptically.  相似文献   

18.
Macrophagelike hemocytes of the pond snail Lymnaea stagnalis were stimulated in vitro with various particulate agents (latex, Escherichia coli, Staphylococcus saprophyticus, zymosan) and with phorbol myristate acetate in order to determine whether these blood cells show biochemical reactions reminiscent of a respiratory burst. Phagocytic stimulation of the hemocytes resulted in a superoxide dismutase-sensitive reduction of nitroblue tetrazolium, which is indicative of the generation of superoxide anions. Moreover, the hemocytes also produced hydrogen peroxide, and they showed a sodium azide-sensitive diaminobenzidine reaction. The hemocytes displayed a luminol-dependent chemiluminescence that differed for each stimulus used. Zymosan elicited a relatively high dose-dependent response. The chemiluminescence was (partly) inhibited by superoxide dismutase, azide, and cyanide. These data indicate the possible involvement of toxic oxygen intermediates in phagocytic defense reactions of L. stagnalis hemocytes.  相似文献   

19.
20.
5-HT (serotonin) is a ubiquitous neurotransmitter that produces ciliary beating in gastropods when applied topically, but ciliary beating caused by gastropod serotonergic neurons has been described in only three neuron pairs. We extend these results to the North American Lymnaea stagnalis appressa, which is a different species from the European Lymnaea stagnalis. We describe a non-serotonergic neuron pair, PeV1, which accelerates pedal sole mucociliary transport and a serotonergic neuron pair, PeD7, which slows mucociliary transport. We compare and discuss development and identified neurons in L. s. appressa and in L. stagnalis, which have homologs to L. s. appressa PeD7 and PeV1 neurons. In addition to PeD7 and PeV1 neurons, we test neurons immunoreactive to Tritonia pedal peptide antibodies with negative results for mucociliary transport. In characterizing PeD7 and PeV1 neurons, we find that PeV1 does not excite PeD7. In semi-intact preparations, a strong increase in PeD7 neuron activity occurs during tactile stimulation, but V1 neurons are inhibited during tactile stimulation. Following tactile stimulation, PeV1 neurons show strong activity. This suggests a distinct difference in function of the two neuron pairs, which both have their axons overlying pedal sole ciliary cells. Application of 5-HT to the pedal sole initiates mucociliary transport in 1.4–1.9 s with a time course similar to that seen when stimulating a PeV1 neuron. This result appears to be through a 5-HT1A-like receptor on the pedal sole. We describe a possible external source of 5-HT on the pedal sole from 5-HT immunoreactive granules that are released with mucus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号