首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surprisingly little is known about the reproductive behaviour and breeding biology of most shark species, especially in natural populations. Here, we characterize reproductive patterns and use of a natal nursery at Bimini, Bahamas by lemon sharks, Negaprion brevirostris. We systematically and exhaustively sampled young lemon sharks at Bimini annually from 1995 to 2000 and opportunistically sampled adults over the same period. Out of the 897 young sharks sampled, 119 could be assigned to five sampled mothers using microsatellite genotyping. Reproductive females showed strong philopatry to the nursery, returning to Bimini every two years to give birth. Each of these females may rely entirely on the Bimini nursery for recruitment. The protection of known nursery grounds should therefore figure prominently in conservation efforts for large coastal shark species. The reconstruction of paternal genotypes indicates that litters are sired by multiple males, and females mate with different males nearly every breeding cycle. The ubiquitous polyandry reported here raises the possibility that genetic incompatibility and post-copulatory paternity-biasing mechanisms may operate in viviparous sharks.  相似文献   

2.
We here employ 11 microsatellite markers and recently developed litter reconstruction methods to infer mating system parameters (i.e. polyandry and breeding-site fidelity) at a lemon shark nursery site in Marquesas Key, Florida. Four hundred and eight juvenile or subadult sharks were genotyped over eight complete breeding seasons. Using this information, we were able to infer family structure, as well as fully or partially reconstruct genotypes of 46 mothers and 163 fathers. Multiple litter reconstruction methods were used, and novel simulations helped define apparent bias and precision of at least some mating system parameters. For Marquesas Key, we find that adult female lemon sharks display high levels of polyandry (81% of all litters sampled) and stronger fidelity to the nursery site than do males. Indeed, few male sharks sired offspring from more than one litter during the course of the study. These findings were quite similar to previous results from another lemon shark nursery site (Bimini, Bahamas), suggesting conserved mating system parameters despite significant variation in early life-history traits (i.e. body size and growth) among sites. The finding of at least some site fidelity in females also supports the need for careful conservation of each nursery.  相似文献   

3.
Multiple mating has clear fitness benefits for males, but uncertain benefits and costs for females. We tested for indirect genetic benefits of polyandry in a natural population, by using data from a long-term genetic and demographic study of lemon sharks ( Negaprion brevirostris ) at Bimini, Bahamas. To do so, we followed the fates of individuals from six cohorts (450 age-0 and 254 age-1 fish) in relation to their individual level of genetic variation, and whether they were from polyandrous or monoandrous litters. We find that offspring from polyandrous litters did not have a greater genetic diversity or greater survival than did the offspring of monoandrous litters. We also find no evidence of positive associations between individual offspring genetic diversity metrics and our surrogate measure of fitness (i.e. survival). In fact, age-1 individuals with fewer heterozygous microsatellite loci and more genetically similar parents were more likely to survive to age-2. Thus, polyandry in female lemon sharks does not appear to be adaptive from the perspective of indirect genetic benefits to offspring. It may instead be the result of convenience polyandry, whereby females mate multiply to avoid harassment by males. Our inability to find indirect genetic benefits of polyandry despite detailed pedigree and survival information suggests the need for similar assessments in other natural populations.  相似文献   

4.
Monandry and polyandry as alternative lifestyles in a butterfly   总被引:10,自引:3,他引:7  
Butterflies show considerable variability in female mating frequency, ranging from monandrous species to females mating several timesin their lifetime. Degree of polyandry also varies within species,with some females only mating once and others mating multiply.Previous studies have shown that one reason for female multiplemating is to obtain nutritious male donations that both increasethe longevity of females and result in higher lifetime fecundity.Despite the presence of male nutrient donations, some femalesof the green-veined white butterfly (Pieridae: Pieris napi)never mate more than once. In this study, we examined thisapparent paradox. We assessed to what degree polyandry is undergenetic control by a full-sib analysis, and we also estimatedthe broad sense heritability of female lifetime fecundity in singly mated females. Both polyandry and lifetime fecundityhave a genetic component. However, degree of polyandry appearsto be traded off against reduced longevity when denied theopportunity to mate more than once. It is possible that femaleP. napi display different reproductive strategies, with somefemales relying on male donations to realize their potentialfecundity and others relying on their own resources for egg production. In nature, polyandrous females may be preventedfrom mating multiply due to unfavorable weather. We discussthe possibility that the trade-off between degree of polyandryand life span when singly mated may affect the maintenanceof genetic variability in female mating frequency in this species.Possible reasons for these different reproductive strategiesare discussed.  相似文献   

5.
OMKAR  Geetanjali MISHRA 《昆虫学报》2014,57(10):1180-1187
【目的】尽管一雌多雄在瓢虫科中常见,但各研究中获得的数据不足以解释雌虫多次交配和一雌多雄的一般适应性意义或适合度后果。本研究以温度为胁迫因子,旨在评价一雌多雄的某些益处(如增加的适合度)是否可传递给后代。【方法】本研究检测了黄斑盘瓢虫Coelophora saucia (Mulsant) 3种交配处理中的适合度:一雌一雄(与同一雄虫交配5次,1次/d),先后一雌多雄(与5头不同的雄虫依次交配5次,即每天与新的雄虫交配1次),以及同时一雌多雄(放进5头雄虫,任由雌虫选择雄虫,交配5次,1次/d)。观察了各交配处理不同温度下(25, 27和 30℃)繁殖力、卵的育性、后代发育和存活。【结果】结果表明,经历一雌多雄然后进行交配选择或竞争的雌性的繁殖能力最强,后代能在更广温度范围内最好地适应发育和存活。但先后一雌多雄交配的雌性与一雌一雄交配的雌性的繁殖能力相似。【结论】结果说明,在无交配选择或雄性竞争的条件下,一雌多雄的益处不明显。这可能是由于在依次射精的雄性间存在精子竞争,或由于雌性的隐性选择。据我们所知,本研究中观察发现的无交配选择时不表现一雌多雄的益处的现象,之前在昆虫中未观察到过。  相似文献   

6.
Polyandry facilitates postcopulatory inbreeding avoidance in house mice   总被引:2,自引:0,他引:2  
The avoidance of genetic incompatibilities between parental genotypes has been proposed to account for the evolution of polyandry. An extension of this hypothesis suggests polyandry may provide an opportunity for females to avoid the cost of inbreeding by exploiting postcopulatory mechanisms that bias paternity toward unrelated male genotypes. Here we test the inbreeding avoidance hypothesis in house mice by experimentally manipulating genetic compatibility via matings between siblings and nonsiblings. We observed little difference in reproductive success between females mated to two siblings or females mated to two nonsiblings. Females mated to both a sibling and a nonsibling tended to have a lower litter survival, but only when the first male to mate was a sibling. Microsatellite data revealed that paternity was biased toward nonsiblings when a female mated with both a sibling and a nonsibling. Unlike previous studies of invertebrates, paternity bias toward the sibling male was independent of mating sequence. We provide one of the first empirical demonstrations that polyandry facilitates postcopulatory sexual selection in a vertebrate. We discuss this result in relation to the possibility of selective fertilization of ova based on major histocompatibility complex (MHC) haploid expression of sperm.  相似文献   

7.
DNA microsatellite markers were used to characterize the population genetic structure of the lemon shark, Negaprion brevirostris, in the western Atlantic. This study demonstrates for the first time the usefulness of microsatellites to study population genetic structure and mating systems in the Chondricthyes. Lemon sharks (mostly juveniles) were sampled non-destructively from four locations, Gullivan Bay and Marquesas Key in Florida, Bimini, Bahamas, and Atol das Rocas, Brazil. At least 545 individuals were genotyped at each of four dinucleotide loci. The number of alleles per locus ranged from 19 to 43, and expected heterozygosities ranged from 0.69 to 0.90. Relatively little genetic structure was found in the western Atlantic, with small but significant values for estimators of F(ST) and R(ST) among populations, theta (0.016) and rho (0.026), respectively. No sharp discontinuities were found between the Caribbean sites and Brazil, and most alleles were found at all four sites, indicating that gene flow occurs throughout the western Atlantic with no evidence for distinct stocks.  相似文献   

8.
The mechanisms underlying polyandry and female mate choice in certain taxonomic groups remain widely debated. In elasmobranchs, several species have shown varying rates of polyandry based on genetic studies of multiple paternity (MP). We investigated MP in the finetooth shark, Carcharhinus isodon, in order to directly test the encounter rate hypothesis (ERH), which predicts that MP is a result of the frequency of encounters between mature conspecifics during the breeding season, and should therefore increase when more time is available for copulation and sperm storage. Female finetooth sharks in the northern Gulf of Mexico (GoM) have been found to reproduce with both annual periodicity and biennial periodicity, while finetooth sharks from the northwestern Atlantic Ocean have only been found to reproduce biennially, allowing us to compare mating opportunity to frequency of MP. Our results show high rates of MP with no significant difference in frequency between females in the GoM (83.0%) and Atlantic (88.2%, p = .8718) and varying but nonsignificant rates of MP between females in the GoM reproducing annually (93.0%) and biennially (76.6%, p = .2760). While the ERH is not supported by this study, it remains possible that reproductive periodicity and other physiological factors play a role in determining rates of MP in elasmobranchs, with potential benefits to individuals and populations.  相似文献   

9.
Mating systems are a central component in the evolution of animal life histories and in conservation genetics. The patterns of male reproductive skew and of paternal shares in batches of offspring, for example, affect genetic effective population size. A prominent characteristic of mating systems of sea turtles seem to be a considerable intra- and interspecific variability in the degree of polyandry. Because of the difficulty of observing the mating behaviour of sea turtles directly in the open sea, genetic paternity analysis is particularly useful for gaining insights into this aspect of their reproductive behaviour. We investigated patterns of multiple paternity in clutches of loggerhead sea turtles in the largest Mediterranean rookery using four highly variable microsatellite loci. Furthermore, we tested for a relationship between the number of fathers detected in clutches and body size of females. More than one father was detected in the clutches of 14 out of 15 females, with two clutches revealing the contribution of at least five males. In more than half the cases, the contributions of different fathers to a clutch did not depart from equality. The number of detected fathers significantly increased with increasing female body size. This relationship indicates that males may prefer to mate with large, and therefore productive, females. Our results suggest that polyandry is likely to increase effective population size compared to a population in which females would mate with only one male; male reproductive contributions being equal.  相似文献   

10.
Recently refined evolutionary theories propose that sexual selection and reproductive conflict could be drivers of speciation. Male and female reproductive optima invariably differ because the potential reproductive rate of males almost always exceeds that of females: females are selected to maximize mate 'quality', while males can increase fitness through mate 'quantity'. A dynamic, sexually selected conflict therefore exists in which 'competitive' males are selected to override the preference tactics evolved by 'choosy' females. The wide variation across taxa in mating systems therefore generates variance in the outcome of intrasexual conflict and the strength of sexual selection: monandry constrains reproductive heterozygosity and allows female choice to select and maintain particular (preferred) genes; polyandry promotes reproductive heterozygosity and will more likely override female choice. Two different theories predict how sexual selection might influence speciation. Traditional ideas indicate that increased sexual selection (and hence conflict) generates a greater diversity of male reproductive strategies to be counteracted by female mate preferences, thus providing elevated potentials for speciation as more evolutionary avenues of male-female interaction are created. A less intuitively obvious theory proposes that increased sexual selection and conflict constrains speciation by reducing the opportunities for female mate choice under polyandry. We use a comparative approach to test these theories by investigating whether two general measures of sexual selection and the potential for sexual conflict have influenced speciation. Sexual size dimorphism (across 480 mammalian genera, 105 butterfly genera and 148 spider genera) and degree of polyandry (measured as relative testes size in mammals (72 genera) and mating frequency in female butterflies (54 genera)) showed no associations with the variance in speciosity. Our results therefore show that speciation occurs independently of sexual selection.  相似文献   

11.
Investigating the mating system of a population provides insight into the evolution of reproductive patterns, and can inform conservation management of threatened or endangered species. Combining behavioural and genetic data is necessary to fully understand the mating system and factors affecting male reproductive success, yet behavioural data are often difficult to collect for threatened species. In the present study, we use behavioural data and paternity analyses to characterize the mating system of a high density population of a long-lived, ancient reptile (tuatara, Sphenodon punctatus ). We further investigate the phenotypic traits (including body size, body condition, tail length, and ectoparasite load) that affect male reproductive success. Our behavioural data reflect a seasonally monogamous system with low levels of polyandry and polygyny that are consistent with male mate guarding. Male reproduction is highly skewed (only 25–30% of males are successful), and body size is the primary predictor of male reproductive success. Based on the genetic data, multiple paternity was found in only 8% of clutches, and the results of the paternity analyses showed monandrous clutches from socially polyandrous females. Our behavioural and genetic results revealed complexities in female mating patterns that support the potential for cryptic female choice or sperm competition. This warrants further experimental investigation into the mechanisms underlying reptile fertilization and the disparities between social and genetic polyandry in wild populations.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 161–170.  相似文献   

12.
Behavioural studies have led to the perception that lekking species experience a high male reproductive skew as a consequence of females’ selective mate choice. In addition, observations suggest that females copulate only once and therefore polyandry seems unlikely as females are supposed to choose the best male available. In order to analyse the mating strategy of the Houbara bustard, an endangered lekking species under reinforcement in eastern Morocco, we used microsatellite data to perform paternity analyses. None of our observations followed common expectations under a lek mating system: we found no male reproductive skew suggesting no apparent selective female mate choice and no apparent male benefit from lekking. In contrast, a high level of polyandry (60 % of the nests) was recorded suggesting that sperm competition may operate. In addition, we present another case of conspecific brood parasitism in a lekking species and this was an unexpected alternative strategy for a species presenting high parental cost and low fecundity. The increasing number of studies contradicting common assumptions on lekking species suggests that alternative breeding strategies such as males pursuing an off‐lek mating strategy, female polyandry and even conspecific brood parasitism might be more widespread in lekking species than previously thought.  相似文献   

13.
There is growing interest in the mating systems of sharks and their relatives (Class Chondrichthyes) because these ancient fishes occupy a key position in vertebrate phylogeny and are increasingly in need of conservation due to widespread overexploitation. Based on precious few genetic and field observational studies, current speculation is that polyandrous mating strategies and multiple paternity may be common in sharks as they are in most other vertebrates. Here, we test this hypothesis by examining the genetic mating system of the bonnethead shark, Sphyrna tiburo, using microsatellite DNA profiling of 22 litters (22 mothers, 188 embryos genotyped at four polymorphic loci) obtained from multiple locations along the west coast of Florida. Contrary to expectations based on the ability of female S. tiburo to store sperm, the social nature of this species and the 100% multiple paternity observed in two other coastal shark species, over 81% of sampled bonnethead females produced litters sired by a single male (i.e. genetic monogamy). When multiple paternity occurred in S. tiburo, there was an indication of increased incidence in larger mothers with bigger litters. Our data suggest that sharks may exhibit complex genetic mating systems with a high degree of interspecific variability, and as a result some species may be more susceptible to loss of genetic variation in the face of escalating fishing pressure. Based on these findings, we suggest that knowledge of elasmobranch mating systems should be an important component of conservation and management programmes for these heavily exploited species.  相似文献   

14.
It is generally thought that females can receive more of the material benefits from males by increasing mating frequency and polyandry can lead to greater reproductive success. The cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae), is a highly promiscuous species, in which females or males can readily mate repeatedly with a given partner or multiple partners at a very high frequency. In the present study, the effect of mating frequency (number of matings) and mating pattern (polyandry vs. monogamy) on female reproductive fitness was investigated by measuring fecundity, fertility, and female longevity. The results indicated that increased female mating frequency with the same male did not result in variation in lifetime fecundity, but significantly increased fertility and decreased female longevity. Moreover, five copulations were sufficient to acquire maximal reproductive potential. Female lifetime fecundity also did not differ between polyandrous and monogamous treatments. However, monogamous females exhibited a significant increase in fertility and significant prolongation of longevity compared with polyandrous females, further demonstrating that monogamy is superior to polyandry in this beetle.  相似文献   

15.
E Ringler  M Ringler  R Jehle  W Hödl 《PloS one》2012,7(6):e40237
The adaptive significance of sequential polyandry is a challenging question in evolutionary and behavioral biology. Costs and benefits of different mating patterns are shaped by the spatial distribution of individuals and by genetic parameters such as the pairwise relatedness between potential mating partners. Thus, females should become less choosy as costs of mating and searching for mates increase. We used parentage assignments to investigate spatial and genetic patterns of mating across a natural population of the Neotropical frog Allobates femoralis, a species characterized by male territoriality and care and female iteroparity. There was no correlation between genetic and spatial distances between adult individuals across the population. In 72% of cases, females mated with males available within a radius of 20 m. Mean pairwise relatedness coefficients of successful reproducers did not differ from random mating but had a lower variance than expected by chance, suggesting maximal reproductive output at intermediate genetic divergence. We also found evidence for selection in favor of more heterozygous individuals between the embryo and adult stage. The level of sequential polyandry significantly increased with the number of spatially available males. Females that had more candidate males also produced more adult progeny. We hypothesize that the benefits associated with female multiple mating outweigh the costs of in- and outbreeding depression, and consequently precluded the evolution of 'choosy' mate selection in this species.  相似文献   

16.
To improve understanding of bull shark Carcharhinus leucas reproductive biology, we analysed reproductive traits from 118 bull sharks caught along Reunion Island coasts (Western Indian Ocean), including 16 gravid females. Specific microsatellite loci were used to investigate the frequency of multiple paternity. Males and females reached maturity at c. 234 cm and 257 cm total length (LT), respectively, and litter sizes ranged from 5 to 14 embryos. Analysis of the 16 litters collected in various months of the year indicated that parturition occurs between October and December, with a size at birth c. 60–80 cm LT and that the gestation period is probably c. 12 months. Assuming a 1 year resting period and a period of sperm storage (4–5 months) between mating (in June–September) and fertilisation, the reproductive cycle of bull sharks at Reunion Island would be biennial. At least 56.25% of the litters investigated were polyandrous, sired by 2–5 males. Several males that each sired several litters conceived during the same or distinct mating seasons were detected, suggesting both a seasonal aggregation of sharks to mate and some male fidelity to mating site. Altogether, these findings provide valuable information for both shark risk management and conservation of the species in the Western Indian Ocean.  相似文献   

17.
Females that mate with multiple males (polyandry) may reduce the risk that their eggs are fertilized by a single unsuitable male. About 25 years ago it was hypothesized that bet‐hedging could function as a mechanism favoring the evolution of polyandry, but this idea is controversial because theory indicates that bet‐hedging via polyandry can compensate the costs of mating only in small populations. Nevertheless, populations are often spatially structured, and even in the absence of spatial structure, mate‐choice opportunity can be limited to a few potential partners. We examined the effectiveness of bet‐hedging in such situations with simulations carried out under two scenarios: (1) intrinsic male quality, with offspring survival determined by male phenotype (male's ability to generate viable offspring), and (2) genetic incompatibility (offspring fitness determined nonadditively by parental genotypes). We find higher fixation probabilities for a polyandrous strategy compared to a monandrous strategy if complete reproductive failure due to male effects or parental incompatibility is pervasive in the population. Our results also indicate that bet‐hedging polyandry can delay the extinction of small demes. Our results underscore the potential for bet‐hedging to provide benefits to polyandrous females and have valuable implications for conservation biology.  相似文献   

18.
The evolutionary trajectories of reproductive systems, including both male and female multiple mating and hence polygyny and polyandry, are expected to depend on the additive genetic variances and covariances in and among components of male reproductive success achieved through different reproductive tactics. However, genetic covariances among key components of male reproductive success have not been estimated in wild populations. We used comprehensive paternity data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) to estimate additive genetic variance and covariance in the total number of offspring a male sired per year outside his social pairings (i.e. his total extra‐pair reproductive success achieved through multiple mating) and his liability to sire offspring produced by his socially paired female (i.e. his success in defending within‐pair paternity). Both components of male fitness showed nonzero additive genetic variance, and the estimated genetic covariance was positive, implying that males with high additive genetic value for extra‐pair reproduction also have high additive genetic propensity to sire their socially paired female's offspring. There was consequently no evidence of a genetic or phenotypic trade‐off between male within‐pair paternity success and extra‐pair reproductive success. Such positive genetic covariance might be expected to facilitate ongoing evolution of polygyny and could also shape the ongoing evolution of polyandry through indirect selection.  相似文献   

19.
Although many sharks begin their life confined in nursery habitats, it is unknown how rapidly they disperse away from their natal area once they leave the nursery. We examine this issue in immature lemon sharks ( Negaprion brevirostris ) from the time they leave the nursery (∼ age 3) at a subtropical island (Bimini, Bahamas), through to the onset of sexual maturity (∼ age 12). From 1995 to 2007 we tagged and genotyped a large fraction of the nursery-bound sharks at this location (0–3 years of age, N  = 1776 individuals). From 2003 to 2007 we sampled immature sharks aged from 3 to 11 years ( N  = 150) living around the island and used physical/genetic tag recaptures coupled with kinship analysis to determine whether or not each of these 'large immature sharks' was locally born. We show that many island-born lemon sharks remain close to their natal area for long periods (years) after leaving the nursery; more than half of the sampled sharks up to 135 cm total length (∼6 years old) were locally born. The fraction of locally born sharks gradually declined with increasing shark size, indicating that dispersal is relatively slow and does not primarily occur after sharks reach a threshold size. Local conservation measures (e.g. localized fishery closures, marine protected areas) can therefore help protect island-born lemon sharks even after they leave the nursery habitat.  相似文献   

20.
Females of many animal species are polyandrous, and there is evidence that they can control pre- and post-mating events. There has been a growing interest in consequences of polyandry for male and female reproductive success and offspring fitness, and its evolutionary significance. In several taxa, females exhibit mate choice both before and after mating and can influence the paternity of their offspring, enhancing offspring number and quality, but potentially countering male interests. Studying female mating biology and in particular post-copulatory female control mechanisms thus promises to yield insights into sexual selection and the potential of male-female coevolution. Here, we highlight the red flour beetle Tribolium castaneum (Herbst), a storage pest, as a model system to study polyandry, and review studies addressing the effects of polyandry on male sperm competitive ability and female control of post-mating events. These studies show that the outcome of sperm competition in the red flour beetle is influenced by both male and female traits. Furthermore, recent advances suggest that sexual conflict may have shaped reproductive traits in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号