首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of the gene of glutamyl endopeptidase from Bacillus intermedius (gseBi) cloned on the plasmid pV has been studied in Bacillus subtilis recombinant strains with mutations of the regulatory proteins involved in sporogenesis and spore germination. It has been established that inactivation of the regulatory protein Spo0A involved in sporulation initiation resulted in a decrease in the expression of the gseBi gene by 65% on average. A mutation in the gene of the sensor histidine kinase kinA had no effect on the biosynthesis of the enzyme. Inactivation of Ger proteins regulating bacterial spore germination resulted in a 1.5–5-fold decrease in glutamyl endopeptidase activity. It has been concluded that expression of the B. intermedius glutamyl endopeptidase gene from plasmid pV in recombinant cells of B. subtilis is under impaired control by the regulatory system of Spo0F/Spo0A phosphorelay, which participates in sporulation initiation. The regulatory Ger proteins responsible for spore germination also affect expression of the gene of this enzyme.  相似文献   

2.
We studied the biosynthesis of bacillus intermedius glutamyl endopeptidase in the recombinant bacillus subtilis strain AJ73 58.21 during the stationary growth phase. We optimized the composition of the culture medium to favor effective enzyme production during the stationary growth phase and found that the nutritional requirements for glutamyl endopeptidase synthesis were different in the stationary phase and the growth retardation phase. Proteinase accumulation was activated by complex organic substrates (casein and gelatin). During the final stages of the culture growth, the enzyme production was stimulated by Ca2+, Mn2+, and Co2+ and inhibited by Zn2+, Fe2+, and Cu2+. The synthesis of glutamyl endopeptidase in the late stationary phase was not inhibited by glucose, unlike that in the trophophase during proliferation. We conclude that the regulatory mechanisms of proteinase synthesis during vegetative growth and sporulation are different.Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 39–47.Original Russian Text Copyright © 2005 by Chastukhina, Sharipova, Gabdrakhmanova, Balaban, Kostrov, Rudenskaya, Leshchinskaya.  相似文献   

3.
The recombinant strain of Bacillus subtilis bearing B. intermedius glutamyl endopeptidase gene in multicopy plasmid Δ58.21 secretes the enzyme to the medium at the phase of slowing of growth and the stationary growth phase with accumulation maxima at 24 and 48 h. Enzyme samples were isolated from the culture liquid after 24 and 48 h of culturing of and were purified up to homogeneity by ion exchange chromatography on carboxymethyl cellulose and HPLC on a MonoS column. The molecular weight of the corresponding proteins was 29 kDa. Both preparations had identical structure, but differed in affinity to the specific substrate Z-Glu-pNA. The effects of Ca2+ ions and specific low-molecular and protein inhibitors on the activity of the enzyme corresponding to various growth phases has been studied.  相似文献   

4.
The regulatory link between biosynthesis of Bacillus intermedius subtilisin-like serine proteinase and nitrogen metabolism in B. intermedius cells was determined. The level of the enzyme biosynthesis by the recombinant strain of Bacillus subtilis in the medium containing ammonium ions was three- to fivefold less than that in the medium with poorly utilized sodium nitrate. Accumulation of glutamyl endopeptidase in a culture liquid of this microorganism did not depend on the source of nitrogen present in the medium. During cultivation in the rich medium, the productivity of subtilisin-like proteinase in the recombinant B. subtilis strain carrying a mutation in the NrgB sensor protein was demonstrated to increase threefold compared to that of the control strain. In the minimal culture medium, mutation in the nrgB gene abolished the effect of a nitrogen source on the level of the subtilisin-like proteinase gene expression. At the same time, this mutation did not affect glutamyl endopeptidase biosynthesis. Thus, expression of the gene coding for subtilisin-like proteinase from B.intermedius is suggested to be positively regulated by the regulatory system of nitrogen metabolism.  相似文献   

5.
In this study global changes in gene expression were monitored in Bacillus subtilis cells entering stationary growth phase owing to starvation for glucose. Gene expression was analysed in growing and starving cells at different time points by full-genome mRNA profiling using DNA macroarrays. During the transition to stationary phase we observed extensive reprogramming of gene expression, with ~1000 genes being strongly repressed and ~900 strongly up-regulated in a time-dependent manner. The genes involved in the response to glucose starvation can be assigned to two main classes: (i) general stress/starvation genes which respond to various stress or starvation stimuli, and (ii) genes that respond specifically to starvation for glucose. The first class includes members of the B-dependent general stress regulon, as well as 90 vegetative genes, which are strongly down regulated in the course of the stringent response. Among the genes in the second class, we observed a decrease in the expression of genes encoding proteins required for glucose uptake, glycolysis and the tricarboxylic acid cycle. Conversely, many carbohydrate utilisation systems that depend on phosphotransferase systems (PTS) or ABC transporters were activated. The expression of genes required for utilisation or generation of acetate indicates that acetate constitutes an important energy source for B. subtilis during periods of glucose starvation. Finally, genome wide mRNA profiling data can be used to predict new metabolic pathways in B. subtilis. Thus, our data suggest that glucose-starved cells are able to degrade branched-chain fatty acids to pyruvate and succinate via propionyl-CoA using the methylcitrate pathway. This pathway appears to link lipid degradation to gluconeogenesis in glucose-starved cells.This revised version was published online in May 2005 with corrections to the list of authors  相似文献   

6.
Nattokinase producing bacterium, B. subtilis YF38, was isolated from douchi, using the fibrin plate method. The gene encoding this enzyme was cloned by polymerase chain reaction (PCR). Cytoplasmic expression of this enzyme in E. coli resulted in inactive inclusion bodies. But with the help of two different signal peptides, the native signal peptide of nattokinase and the signal peptide of PelB, active nattokinase was successfully expressed in E. coli with periplasmic secretion, and the nattokinase in culture medium displayed high fibrinolytic activity. The fibrinolytic activity of the expressed enzyme in the culture was determined to reach 260 urokinase units per micro-liter when the recombinant strain was induced by 0.7 mmol l−1 isopropyl-β-D- thiogalactopyranoside (IPTG) at 20°C for 20 h, resulting 49.3 mg active enzyme per liter culture. The characteristic of this recombinant nattokinase is comparable to the native nattokinase from B. subtilis YF38. Secretory expression of nattokinase in E. coli would facilitate the development of this enzyme into a therapeutic product for the control and prevention of thrombosis diseases.  相似文献   

7.
The level of biosynthesis of secreted guanyl-specific ribonucleases (RNases) of Bacillus intermedius (binases) and Bacillus circulans (RNases Bci) by recombinant B. subtilis strains increases under nitrogen starvation. The promoter of the binase gene carries the sequences homologous to the recognition sites of the regulatory protein TnrA, which regulates gene expression under growth limitation by nitrogen. Using the B. subtilis strain defective in protein TnrA, it has been shown that the regulatory protein TnrA is involved in the regulation of expression of the binase gene and the gene of RNase Bci. The TnrA regulation of expression of the RNase Bci gene is indirect, probably by means of the regulatory protein PucR. Thus, it has been established that at least two regulatory mechanisms activate the expression of the genes encoding the secreted RNases of spore-forming bacteria: a system of proteins homologous to the B. subtilis PhoP-PhoR, and regulation by a protein similar to the B. subtilis TnrA regulatory protein.  相似文献   

8.
Log phase Bacillus subtilis cells lacking the mscL gene encoding the mechanosensitive (MS) channel of large conductance are sensitive to an osmotic downshock ≥0.5 M. However, B. subtilis mscL cells develop osmotic downshock resistance in late log and early stationary phase growth that is partially dependent on three likely MS channel proteins of small conductance (MscS), YfkC, YhdY, and YkuT. Bacillus subtilis MS proteins were fused with green fluorescent protein (GFP) at their C termini; at least the MscL-, YfkC-, and YkuT-GFP fusions were functional and overexpression of YkuT-GFP, or YkuT alone abolished log phase mscL cells’ osmotic downshock sensitivity. Western blot analysis found high levels of MscL-GFP in early exponential phase cells with levels subsequently decreasing greatly. MscS-GFP proteins were present in exponential phase cells, but again disappeared almost completely in stationary phase cells and these proteins were not detected in spores. Western blot analyses further showed that MS-GFP proteins were associated with the plasma membrane, as expected. Fluorescence microscopy confirmed the localization of MscL-GFP and YhdY-GFP to the plasma membrane, with non-uniform distribution of these proteins along this membrane consistent with but by no means proving that these proteins are present in a helical array.  相似文献   

9.
Biochemical properties of Bacillus intermedius subtilisin-like proteinase (AprBi) secreted by a B. subtilis recombinant strain in the early and late stationary phases of growth have been determined. Protein structure was analyzed and its stability estimated. It was noted that the enzyme corresponding to different phases of bacterial growth retains activity in the presence of reducing and oxidizing agents (C2H5OH and H2O2). Different effects of bivalent metal ions on activity of two proteinase fractions were found. Calcium ions more efficiently activate proteinase secreted in the late stationary phase. Unlike the first enzyme fraction, the second forms catalytically active dimers.  相似文献   

10.
Bacillus subtilis has various cell wall hydrolases, however, the functions and hydrolase activities of some enzymes are still unknown. B. subtilis CwlK (YcdD) exhibits high sequence similarity with the peptidoglycan hydrolytic l,d-endopeptidase (PLY500) of Listeria monocytogenes phage and CwlK has the VanY motif which is a d-alanyl-d-alanine carboxypeptidase (Pfam: http://www.sanger.ac.uk/Software/Pfam/). The β-galactosidase activity observed on cwlK-lacZ fusion indicated that the cwlK gene was expressed during the vegetative growth phase, and Western blotting suggested that CwlK seems to be localized in the membrane. Truncated CwlK fused with a histidine-tag (h-ΔCwlK) was produced in Escherichia coli and purified on a nickel column. The h-ΔCwlK protein hydrolyzed the peptidoglycan of B. subtilis, and the optimal pH, temperature and NaCl concentration for h-ΔCwlK were pH 6.5, 37°C, and 0 M, respectively. Interestingly, h-ΔCwlK could hydrolyze the linkage of l-alanine-d-glutamic acid in the stem of the peptidoglycan, however, this enzyme could not hydrolyze the linkage of d-alanine-d-alanine, suggesting that CwlK is an l,d-endopeptidase not a d,d-carboxypeptidase. CwlK could not hydrolyze polyglutamate from B. natto or peptidoglycan of Staphylococcus aureus. This is the first report describing the characterization of an l,d-endopeptidase in B. subtilis and also the first report in bacteria of the characterization of a PLY500 family protein encoded in chromosomal DNA. Tatsuya Fukushima and Yang Yao contributed equally to this work.  相似文献   

11.
Okigbo RN 《Mycopathologia》2005,159(2):307-314
The potential of isolates of Bacillus subtilis from yam farm soil to control rot of yam in storage barns was investigated. Yam tubers inoculated in vivo with B. subtilis showed no rot while those inoculated with Aspergillus niger, Botryodiploidia theobromae or Penicillium oxalicum showed considerable rot. The set of yams in which B. subtilis and the fungi were simultaneously inoculated produced rot whereas those in which B. subtilis was inoculated a day before the fungi was inoculated were totally reduced or free of rot. Many fewer fungi were isolated from the surface of tubers treated with B. subtilis than from the untreated (control) and there was high recovery of B. subtilis (99–100%) throughout the period of storage. Rot build up was faster in uninoculated control tubers or those inoculated with a spoilage fungus, while those treated with the antagonist were totally reduced or free of rot. The culture filtrate of B. subtilis prevented spore germination in some spoilage fungi. The importance of this study in relation to farmers in developing countries is discussed.  相似文献   

12.
Twenty-two Bacillus cereus strains were screened for phospholipase C (PLC, EC 3.1.4.3) activity using p-nitrophenyl phosphorylcholine as a substrate. Two strains (B. cereus SBUG 318 and SBUG 516) showed high activity at elevated temperatures (>70°C) at acidic pH (pH 3.5–6) and were selected for cloning and functional expression using Bacillus subtilis. The genes were amplified from B. cereus DNA using primers based on a known PLC sequence and cloned into the expression vector pMSE3 followed by transformation into B. subtilis WB800. On the amino acid level, one protein (PLC318) was identical to a PLC described from B. cereus, whereas PLC516 contained an amino acid substitution (E173D). PLC production using the recombinant strains was performed by an acetoin-controlled expression system. For PLC516, 13.7 U g−1 wet cell weight was determined in the culture supernatant after 30 h cultivation time. Three purification steps resulted in pure PLC516 with a specific activity of 13,190 U mg−1 protein.  相似文献   

13.
The MADS box genes participate in different steps of vegetative and reproductive plant development, including the most important phases of the reproductive process. Here we describe the isolation and characterisation of two Asparagus officinalis MADS box genes, AOM3 and AOM4. The deduced AOM3 protein shows the highest degree of similarity with ZAG3 and ZAG5 of maize, OsMADS6 of rice and AGL6 of Arabidopsis thaliana. The deduced AOM4 protein shows the highest degree of similarity with AOM1 of asparagus, the SEP proteins of Arabidopsis and the rice proteins OsMADS8, OsMADS45 and OsMADS7. The high level of identity between AOM1 and AOM4 made impossible the preparation of probes specific for one single gene, so the hybridisation signal previously described for AOM1 is probably due to the expression of both genes. The expression profile of AOM3 and AOM1/AOM4 during flower development is identical, and similar to that of the SEP genes. Asparagus genes, however, are expressed not only in flower organs, but also in the different meristem present on the apical region of the shoot during the flowering season: the apical meristem and the three lateral meristems emerging from the leaf axillary region that will give rise to flowers and lateral inflorescences during flowering season, and to phylloclades and branches during the subsequent vegetative phase. The expression of AOM3 and AOM1/AOM4 in these meristems appears to be correlated with the reproductive function of the apex as the hybridisation signal disappears when the apex switches to vegetative function.  相似文献   

14.
15.
A site-directed modification at position P1 of the processing site of Bacillus intermedius glutamyl endopeptidase was carried out. Variants of the protease gene were obtained that correspond to the protein with an Ala, Asn, Ser, or Glu residue at this position substituted for the Lys residue. The residue in the P1 position of the processing site was shown to affect substantially the production of the active enzyme; however, none of the mutations leads to the complete termination of active protein production by cells.  相似文献   

16.
Production of 2,3-butanediol by Bacillus subtilis takes place in late-log or stationary phase, depending on the expression of bdhA gene encoding acetoin reductase, which converts acetoin to 2,3-butanediol. The present work focuses on the development of a strain of B. subtilis for enhanced production of 2,3-butanediol in early log phase of growth cycle. For this, the bdhA gene was expressed under the control of P alsSD promoter of AlsSD operon for acetoin fermentation which served the substrate for 2,3-butanediol production. Addition of acetic acid in the medium induced the production of 2,3-butanediol by 2-fold. Two-step aerobic–anaerobic fermentation further enhanced 2,3-butanediol production by 4-fold in comparison to the control parental strain. Thus, addition of acetic acid and low dissolved oxygen in the medium are involved in activation of bdhA gene expression from P alsSD promoter in early log phase. Under the conditions tested in this work, the maximum production of 2,3-butanediol, 2.1 g/l from 10 g/l glucose, was obtained at 24 h. Furthermore, under the optimized microaerophilic condition, the production of 2,3-butanediol improved up to 6.1 g/l and overall productivity increased by 6.7-fold to 0.4 g/l h in the engineered strain compared to that in the parental control.  相似文献   

17.
The growth of the recombinant Bacillus subtilis strain AJ73 carrying the Bacillus intermedius 3-19 glutamyl endopeptidase gene on a multicopy plasmid and the effect of some nutrients on the efficiency of extracellular glutamyl endopeptidase production in the stationary growth phase were studied. In this phase, the concentration of glutamyl endopeptidase in the culture liquid peaked at the 48th and 78th hours of cultivation and depended on the composition of the cultivation medium. Unlike the synthesis of glutamyl endopeptidase in the trophophase (i.e., during vegetative growth), which was suppressed by glucose, the synthesis of this enzyme during sporulation was resistant to glucose present in the cultivation medium. A multifactorial experimental design allowed optimal proportions between the concentrations of major nutrients (peptone and inorganic phosphate) to be determined. Inorganic phosphate and ammonium ions augmented the production of glutamyl endopeptidase by 30–150%, and complex organic substrates, such as casein and gelatin, enhanced the production of glutamyl endopeptidase by 50–100%. During sporulation, the production of glutamyl endopeptidase was stimulated by some bivalent cations (Ca2+, Mg2+, and Co2+) and inhibited by others (Zn2+, Fe2+, and Cu2+). The inference is drawn that the regulatory mechanisms of glutamyl endopeptidase synthesis during vegetative growth and sporulation are different.  相似文献   

18.
The srfA operon is required for the nonribosomal biosynthesis of the cyclic lipopeptide, surfactin. The srfA operon is composed of the four genes, srfAA, srfAB, srfAC, and srfAD, encoding the surfactin synthetase subunits, plus the sfp gene that encodes phosphopantetheinyl transferase. In the present study, 32 kb of the srfA operon was amplified from Bacillus subtilis C9 using a long and accurate PCR (LA-PCR), and ligated into a pIndigoBAC536 vector. The ligated plasmid was then transformed into Escherichia coli DH10B. The transformant ET2 showed positive signals to all the probes for each open reading frame (ORF) region of the srfA operon in southern hybridization, and a reduced surface tension in a culture broth. Even though the surface-active compound extracted from the E. coli transformant exhibited a different R f value of 0.52 from B. subtilis C9 or authentic surfactin (R f = 0.63) in a thin layer chromatography (TLC) analysis, the transformant exhibited a much higher surface-tension-reducing activity than the wild-type strain E. coli DH10B. Thus, it would appear that an intermediate metabolite of surfactin was expressed in the E. coli transformant harboring the srfA operon.  相似文献   

19.
Four Na+/H+ antiporters, Mrp, TetA(L), NhaC, and MleN have so far been described in Bacillus subtilis 168. We identified an additional Na+/H+ antiporter, YvgP, from B. subtilis that exhibits homology to the cation: proton antiporter-1 (CPA-1) family. The yvgP-dependent complementation observed in a Na+(Ca2+)/H+ antiporter-defective Escherichia coli mutant (KNabc) suggested that YvgP effluxed Na+ and Li+. In addition, effects of yvgP expression on a K+ uptake-defective mutant of E. coli indicated that YvgP also supported K+ efflux. In a fluorescence-based assay of everted membrane vesicles prepared from E. coli KNabc transformants, YvgP-dependent Na+ (K+, Li+, Rb+)/H+ antiport activity was demonstrated. Na+ (K+, Li+)/H+ activity was higher at pH 8.5 than at pH 7.5. Mg2+, Ca2+ and Mn2+ did not serve as substrates but they inhibited YvgP antiport activities. Studies of yvgP expression in B. subtilis, using a reporter gene fusion, showed a significant constitutive level of expression that was highest in stationary phase, increasing as stationary phase progressed. In addition, the expression level was significantly increased in the presence of added K+ and Na+.  相似文献   

20.
A Sebacinales species was recovered from a clone library made from a pooled rhizosphere sample of Nicotiana attenuata plants from 14 native populations. Axenic cultures of the related species, Piriformospora indica and Sebacina vermifera, were used to examine their effects on plant performance. Inoculation of N. attenuata seeds with either fungus species stimulated seed germination and increased growth and stalk elongation. S. vermifera inoculated plants flowered earlier, produced more flowers and matured more seed capsules than did non-inoculated plants. Jasmonate treatment during rosette-stage growth, which slows growth and elicits herbivore resistance traits, erased differences in vegetative, but not reproductive performance resulting from S. vermifera inoculation. Total nitrogen and phosphorous contents did not differ between inoculated and control plants, suggesting that the performance benefits of fungal inoculation did not result from improvements in nutritional status. Since the expression of trypsin proteinase inhibitors (TPI), defensive proteins which confer resistance to attack from Manduca sexta larvae, incur significant growth and fitness costs for the plant, we examined the effect of S. vermifera inoculation on herbivore resistance and TPI activity. After 10 days of feeding on S. vermifera-inoculated plants, larval mass was 46% higher and TPI activity was 48% lower than that on non-inoculated plants. These results suggest that Sebacina spp. may interfere with defense signaling and allow plants to increase growth rates at the expense of herbivore resistance mediated by TPIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号