首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A selenium-dependent bacterium, Bacillus sp., failed to grow on selenium-free media. However, it is able to grow at high concentrations of sodium selenite containing media up to 3% (w/v). It accumulated extraordinary high quantities of selenium, 432 ppm/mL. The bacterium generated the transformation of inorganic selenium into volatile selenium form(s) into the atmosphere. The biological release of volatile selenium basically depended on several factors: incubation temperature, pH, incubation periods, and substrate concentration. Maximal quantity of the volatile selenium form was obtained at 30 degrees C, pH 7, and 1% (w/v) sodium selenite.  相似文献   

2.
3.
A microorganism capable of degrading diethylphthalate as a sole carbon source was isolated from garden soil and tentatively identified asMicrococcus sp. Monoethylphthalate and phthalic acid were shown to be the intermediates by thin-layer chromatography and spectrophotometric and mass spectral analysis. The strain degraded diethylphthalate mainly through monoethylphthalate and phthalic acid as was evidenced by oxygen uptake and enzymatic studies. Ethanol also supported the growth of this organism. It appeared that the entire molecule was metabolized byMicrococcus sp.  相似文献   

4.
Reduced expression of the 56-kDa human selenium binding protein-1 (hSP56) has been reported in many types of human malignancies, including prostate, lung, ovarian, thyroid and colorectal cancers. hSP56 also has been implicated in selenium-dependent cell growth inhibition. However, the molecular basis of hSP56’s function has not been elucidated. In the present study, we identified von Hippel-Lindau protein (pVHL)-interacting deubiquitinating enzyme 1 (VDU1) as a protein partner of hSP56 using a yeast two-hybrid screen. The interaction between hSP56 and VDU1 was confirmed by yeast two-hybrid analysis and in vitro binding experiments. hSP56 and VDU1 co-localized in the perinuclear region of LNCaP human prostate cancer cells. The full-length VDU1 specifically interacted with a selenium-replete form of hSP56. We also demonstrate stable incorporation of selenium into hSP56, in a mode distinct from conventional selenocysteine-containing selenoproteins. These findings suggest that hSP56 may play a role in ubiquitination/deubiquitination-mediated protein degradation pathways in a selenium-dependent manner.  相似文献   

5.
Metabolism of -methylmalic acid by a soil bacterium   总被引:1,自引:0,他引:1  
  相似文献   

6.
Selenium-dependent glutathione peroxidase (Se-GSH-Px, GSH-H2O2 oxidoreductase EC 1.11.1.9) is the best characterized selenoprotein in higher animals, but the mechanism whereby selenium becomes incorporated into the enzyme protein remains under investigation. To elucidate the mechanism of insertion of selenium into Ge-GSH-Px further, we have systematically analyzed and compared the results of Western blot, in vitro translation immunoprecipitation, and Northern blot experiments conducted with liver proteins and RNAs obtained from rats fed on selenium-deficient and selenium-supplemented diets. The anti-serum employed in this study was raised against an electrophoretically pure Se-GSH-Px preparation obtained from rat livers by a simplified purification procedure involving separation by high performance liquid chromatography on a hydrophobic interaction column. Different forms of Se-GSH-Px, including apo-protein, cross-reacted with this antiserum and Western blot analysis found no Se-GSH-Px protein present in livers from rats fed on selenium-deficient diets. By contrast, a distinct protein band corresponding to purified Se-GSH-Px was detected in livers from selenium-supplemented animals, a result consistent with the finding that the Se-GSH-Px activity was reduced to undetectable levels in livers of selenium-deficient rats. The in vitro translation experiments, however, indicated not only that mRNA for Se-GSH-Px was present during selenium deficiency but also that its translation products contained 2-3-fold as much immunoprecipitable protein as the products of poly(A) RNA from livers of selenium-supplemented rats. This result suggests that the Se-GSH-Px mRNA may be increased in the selenium-deficient state. Elevated levels of Se-GSH-Px mRNA were directly demonstrated in Northern blot experiments employing cDNA clone pGPX1211 as a probe. A similar increase in Se-GSH-Px mRNA was observed in such other tissues as kidney, testis, brain, and lung tissue, in selenium-deficient states. The present data support the co-translational mechanism for the incorporation of selenium into Se-GSH-Px in rat liver.  相似文献   

7.
Monofluoro- and monochlorobenzoates did not support the growth of Pseudomonas PN-1, either aerobically or anaerobically (nitrate respiration), when supplied as sole sources of carbon and energy. Anaerobic growth yields on nonfluorinated substrates were increased by p-fluorobenzoate (pFBz) with a utilization of pFBz and release of F-. Cell suspensions grown on p-hydroxybenzoate (pOHBz), either aerobically or anaerobically, only degraded o-fluorobenzoate (oFBz) and pFBz of the monohalogenated benzoates tested. Both compounds were catabolized anaerobically, but not aerobically, with a release of F-. oFBz was immediately attacked, by cells grown anaerobically on pOHBz, whereas pFBz was only degraded after a lag phase; chloramphenicol inhibited the breakdown of pFBz, but not oFBz, thereby indicating the need for additional enzyme(s) to attack pFBz. o-Chlorobenzoate (oClBz) inhibited the anaerobic, but not aerobic, oxidation of pOHBz and stopped anaerobic growth on pOHBz. A mutant was isolated which metabolized pOHBz in the presence of oClBz but it was defective in its anaerobic metabolism of benzoate (Bz). Comparative studies, of the mutant and Pseudomonas PN-1, indicated that the mutation involved a metabolic site common to Bz, oClBz and the monofluorobenzoates. The dependence of the oxidation rate of Bz and oFBz on their concentrations at a millimolar level, in the mutant but not Pseudomonas PN-1, suggested a defect at the permease level: the uptake of 14C-labelled Bz by the mutant was also concentration-dependent. The response of the organism to the inhibitory effect of oClBz on pOHBz catabolism is discussed with respect to its significance in the perturbation of natural degradative processes by unnatural chemicals in the environment.Non-common abbreviations Bz benzoate - pOHBz p-hydroxybenzoate - oFBz o-fluorobenzoate - mFBz m-fluorobenzoate - pFBz p-fluorobenzoate - oClBz o-chlorobenzoate  相似文献   

8.
9.
Abstract The metabolism of the methylated osmolytes glycine betaine (GB) and dimethylsulfoniopropionate (DMSP) was studied in a bacterium (strain MD 14–50) isolated from a colony of the cyanobacterium Trichodesmium . MD 14–50 when grown on DMSP cleaved dimethylsulfide (DMS) from DMSP and oxidized acrylate. In contrast to DMSP, GB was metabolized by sequential N-demethylations. Low concentrations (100 μM) of DMSP or GB allowed the growth of MD 14–50 on glucose at higher salinities than in their absence. At elevated salinities, DMSP was accumulated intracellularly with less catabolism and DMS production. Thus, DMSP and GB were catabolized by different mechanisms but functioned interchangeably as osmolytes.  相似文献   

10.
The metabolism of the novel facultatively anaerobic thermophilic bacterium Oceanithermus profundus was studied during growth on maltose, acetate, pyruvate, and hydrogen. The utilization of carbohydrates was shown to proceed via the glycolytic pathway. Under microaerobic growth conditions, the metabolism of O. profundus grown on maltose depended on the substrate concentration. At an initial maltose concentration of 1.4 mM, O. profundus carried out oxygen respiration, and in the presence of 3.5 mM maltose, facilitated fermentation occurred, with the formation of acetate and ethanol and limited involvement of oxygen. The use of pyruvate and acetate occurs via the TCA cycle. In cells grown on acetate, the activity of glyoxylate pathway enzymes was revealed. Depending on the energy-yielding process providing for growth (oxygen respiration or nitrate reduction), cells contained cytochromes a and c or b, respectively. The results obtained demonstrate the plasticity of the metabolism of O. profundus, which thus appears to be well-adjusted to the rapidly changing conditions in deep-sea hydrothermal vents.  相似文献   

11.
In order to develop a biological process for removal of selenium from industrial wastewater, Bacillus sp. strain SF-1 was isolated from selenium-contaminated sediment. The bacterium reduces selenate to selenite and subsequently to nontoxic insoluble elemental selenium using lactate as an electron donor and selenate as an electron acceptor in an anaerobic condition. Elemental selenium transformed from soluble selenium was deposited both inside and outside of the cells. Since the selenate reduction rate of the strain SF-1 was higher than the selenite reduction rate, selenite was transiently accumulated. In an experiment of the repeated soluble selenium reduction by strain SF-1, 0.5 mM of selenate was sequentially treatable with a cycle of one day. Thus, our sequential system for removal of soluble selenium is very useful.  相似文献   

12.
还原亚硒酸盐产生红色单质硒光合细菌菌株的筛选与鉴定   总被引:4,自引:0,他引:4  
从实验室保藏的光合细菌中筛选出一株对亚硒酸钠还原效率较高的菌株S3,其亚硒酸钠还原产物通过透射电子显微镜及EDX(Electron-Dispersive X-ray)分析确定为红色单质硒。菌株S3的形态学特征、生理生化特征及光合色素扫描结果与固氮红细菌(Rhodobacter azotoformans)的特征基本一致;16S rDNA序列(GenBank登录号为DQ402051)在系统发育树中与固氮红细菌同属一个类群,序列同源性为99%。根据上述结果将菌株S3鉴定为固氮红细菌。初步研究了该菌株还原亚硒酸钠的特性,首次报道固氮红细菌具有还原亚硒酸盐产生红色单质硒的能力,为今后利用微生物方法治理环境中硒污染、利用微生物方法获得活性红色单质硒以及对微生物还原亚硒酸盐产生红色单质硒的机理研究奠定了良好的基础。  相似文献   

13.
Fensulfothion (O,O-diethyl O-[4-(methylsulfinyl)phenyl]phosphorothioate), an organophosphorus pesticide used to control the golden nematode Heterodera rostochiensis, is used as a source of carbon by microorganisms isolated from soils treated with the pesticide. Two of the microbial isolates, Pseudomonas alcaligenes C1 and Alcaligenes sp. strain NC3, used more than 80% of the pesticide in 120 h in culture when supplemented as a source of carbon. P. alcaligenes C1, which showed maximal growth on fensulfothion, degraded the compound to p-methylsulfinyl phenol and diethyl phosphorothioic acid. The phenolic metabolite could be identified by conventional spectral analysis, whereas the spectral patterns of the phosphorus-containing metabolite suggested that the compound was complexed with some cellular molecules. However, utilization of the phosphoric acid ester and ethanol by P. alcaligenes C1 suggested that the microbe attacks fensulfothion by an initial hydrolysis of the compound and subsequent utilization of the phosphoric acid ester. The pathway of degradation of fensulfothion by P. alcaligenes is of great value in the detoxification of the pesticide residues and also in the environmentally stable phosphoric acid esters.  相似文献   

14.
Setaria cervi a bovine filarial parasite secretes selenium glutathione peroxidase during in vitro cultivation. A significant amount of enzyme activity was detected in the somatic extract of different developmental stages of the parasite. Among different stages, microfilariae showed a higher level of selenium glutathione peroxidase activity followed by males then females. However, when the activity was compared in excretory secretory products of these stages males showed higher activity than microfilariae and female worms. The enzyme was purified from female somatic extract using a combination of glutathione agarose and gel filtration chromatography, which migrated as a single band of molecular mass approximately = 20 kDa. Selenium content of purified enzyme was estimated by atomic absorption spectroscopy and found to be 3.5 ng selenium/microg of protein. Further, inhibition of enzyme activity by potassium cyanide suggested the presence of selenium at the active site of enzyme. This is the first report of identification of selenium glutathione peroxidase from any filarial parasite.  相似文献   

15.
Fensulfothion (O,O-diethyl O-[4-(methylsulfinyl)phenyl]phosphorothioate), an organophosphorus pesticide used to control the golden nematode Heterodera rostochiensis, is used as a source of carbon by microorganisms isolated from soils treated with the pesticide. Two of the microbial isolates, Pseudomonas alcaligenes C1 and Alcaligenes sp. strain NC3, used more than 80% of the pesticide in 120 h in culture when supplemented as a source of carbon. P. alcaligenes C1, which showed maximal growth on fensulfothion, degraded the compound to p-methylsulfinyl phenol and diethyl phosphorothioic acid. The phenolic metabolite could be identified by conventional spectral analysis, whereas the spectral patterns of the phosphorus-containing metabolite suggested that the compound was complexed with some cellular molecules. However, utilization of the phosphoric acid ester and ethanol by P. alcaligenes C1 suggested that the microbe attacks fensulfothion by an initial hydrolysis of the compound and subsequent utilization of the phosphoric acid ester. The pathway of degradation of fensulfothion by P. alcaligenes is of great value in the detoxification of the pesticide residues and also in the environmentally stable phosphoric acid esters.  相似文献   

16.
Sodium selenosulfate has been extensively used as a precursor of selenide ions in the preparation of nano Se-containing compounds. Its biological properties remain completely unknown. Sodium selenosulfate and sodium selenite were added to the medium of HepG2 cells and administered intraperitoneally at a dose of 0.1 mg Se/kg body weight to selenium-deficient mice, respectively. Both of the selenium compounds could increase the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) in a dose-dependent manner in cells and efficiently restore selenium retention and activities of GPx and TrxR in mice. All of the variables were in correlation with the Se supply. There was no distinction in elevating activities of GPx and TrxR between selenosulfate and selenite in vitro. After a 2-d supply of selenosulfate, the activity of GPx in the liver was 65% (p < 0.001) and Se accumulations in the liver, kidney and blood were 64%, 86%, and 65%, respectively, of those treated with selenite (allp < 0.01). With the 7-d selenosulfate supplementation, the activity of GPx in the kidney and activities of TrxR in the liver and kidney were 88%, 75%, and 78%, respectively, of those treated with selenite (allp < 0.01); Se retentions in the liver and kidney were 85% and 93%, respectively of those supplemented with selenite (bothp < 0.01). These facts indicated that selenosulfate could be absorbed and utilized in the biological system. No difference in vitro demonstrated that selenosulfate could be absorbed and generate reduced selenide as efficiently as selenite. The differences between the two compounds in vivo were the result of other factors that affected selenosulfate utilization in tissues.  相似文献   

17.
Selenomonas ruminantium 0078A was grown in a glucose-limited chemostat over a dilution rate range of 0.049-0-137/h. Fermentation products were acetate, propionate, succinate, lactate and C02; traces of ethanol were also detected. Succinate accounted for up to 52% of the substrate glucose carbon. When dilution rate was increased without a concomitant increase in glucose supply per unit time there were changes in the fermentation pattern which were not apparent when both dilution rate and glucose supply were simultaneously increased; the molar proportion of acetate increased at the expense of propionate.  相似文献   

18.
19.
20.
Growth, bacteriochlorophyll a content, electron transport chain (ETC), and activities of the tricarboxylic acid (TCA) cycle enzymes were studied in R and M phase variants of Rhodobacter sphaeroides cells grown anaerobically in the light and aerobically in the dark. Under all cultivation conditions tested, bacteriochlorophyll a content was 2–3 times lower in the cells of the M variant compared to the R variant, which therefore was predominant in the cultures grown in the light. In both variants, activity of all TCA cycle enzymes was higher for the cells grown in the dark under aerobic conditions. When grown aerobically in the dark, the R variant, unlike the M variant, did not contain cytochrome aa 3, acting as cytochrome c oxidase, in its ETC. An additional point of coupling the electron transfer to the generation of the proton gradient at the cytochrome aa 3 level provided for more efficient oxidation of organic substrates, resulting in predominance of the M variant in the cultures grown in the dark under aerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号