首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Recent studies indicate that mammalian chromosomes contain discrete cis-acting loci that control replication timing, mitotic condensation, and stability of entire chromosomes. Disruption of the large non-coding RNA gene ASAR6 results in late replication, an under-condensed appearance during mitosis, and structural instability of human chromosome 6. Similarly, disruption of the mouse Xist gene in adult somatic cells results in a late replication and instability phenotype on the X chromosome. ASAR6 shares many characteristics with Xist, including random mono-allelic expression and asynchronous replication timing. Additional "chromosome engineering" studies indicate that certain chromosome rearrangements affecting many different chromosomes display this abnormal replication and instability phenotype. These observations suggest that all mammalian chromosomes contain "inactivation/stability centers" that control proper replication, condensation, and stability of individual chromosomes. Therefore, mammalian chromosomes contain four types of cis-acting elements, origins, telomeres, centromeres, and "inactivation/stability centers", all functioning to ensure proper replication, condensation, segregation, and stability of individual chromosomes.  相似文献   

2.
We describe an in situ technique for studying the chromatin binding of proteins in the fission yeast Schizosaccharomyces pombe. After tagging the protein of interest with green fluorescent protein (GFP), chromatin-associated protein is detected by GFP fluorescence following cell permeabilization and washing with a non-ionic detergent. Cell morphology and nuclear structure are preserved in this procedure, allowing structures such as the mitotic spindle to be detected by indirect immunofluorescence. Cell cycle changes in the chromatin association of proteins can therefore be determined from individual cells in asynchronous cultures. We have applied this method to the DNA replication factor mcm4/cdc21, and find that chromatin association occurs during anaphase B, significantly earlier than is the case in budding yeast. Binding of mcm4 to chromatin requires orc1 and cdc18 (homologous to Cdc6 in budding yeast). Release of mcm4 from chromatin occurs during S phase and requires DNA replication. Upon overexpressing cdc18, we show that mcm4 is required for re-replication of the genome in the absence of mitosis and is associated with chromatin in cells undergoing re-replication.  相似文献   

3.
In eukaryotic cells, replication of genomic DNA initiates from multiple replication origins distributed on multiple chromosomes. To ensure that each origin is activated precisely only once during each S phase, a system has evolved which features periodic assembly and disassembly of essential pre-replication complexes (pre-RCs) at replication origins. The pre-RC assembly reaction involves the loading of a presumptive replicative helicase, the MCM2-7 complexes, onto chromatin by the origin recognition complex (ORC) and two essential factors, CDC6 and Cdt1. The eukaryotic cell cycle is driven by the periodic activation and inactivation of cyclin-dependent kinases (Cdks) and assembly of pre-RCs can only occur during the low Cdk activity period from late mitosis through G1 phase, with inappropriate re-assembly suppressed during S, G2, and M phases. It was originally suggested that inhibition of Cdt1 function after S phase in vertebrate cells is due to geminin binding and that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance induces re-replication. However, recent progress has revealed that Cdt1 activity is more strictly regulated by two other mechanisms in addition to geminin: (1) functional and SCFSkp2-mediated proteolytic regulation through phosphorylation by Cdks; and (2) replication-coupled proteolysis mediated by the Cullin4-DDB1Cdt2 ubiquitin ligase and PCNA, an eukaryotic sliding clamp stimulating replicative DNA polymerases. The tight regulation implies that Cdt1 control is especially critical for the regulation of DNA replication in mammalian cells. Indeed, Cdt1 overexpression evokes chromosomal damage even without re-replication. Furthermore, deregulated Cdt1 induces chromosomal instability in normal human cells. Since Cdt1 is overexpressed in cancer cells, this could be a new molecular mechanism leading to carcinogenesis. In this review, recent insights into Cdt1 function and regulation in mammalian cells are discussed.  相似文献   

4.
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics.  相似文献   

5.
6.
DNA replication in eukaryotes initiates from discrete genomic regions, termed origins, according to a strict and often tissue-specific temporal program. However, the genetic program that controls activation of replication origins has still not been fully elucidated in mammalian cells. Previously, we measured replication timing at the sequence level along human chromosomes 11q and 21q. In the present study, we sought to obtain a greater understanding of the relationship between replication timing programs and human chromosomes by analysis of the timing of replication of a single human chromosome 11 that had been transferred into the Chinese hamster ovary (CHO) cell line by chromosome engineering. Timing of replication was compared for three 11q chromosomal regions in the transformed CHO cell line (CHO(h11)) and the original human fibroblast cell line, namely, the R/G-band boundary at 11q13.5/q14.1, the centromere and the distal telomere. We found that the pattern of replication timing in and around the R/G band boundary at 11q13.5/q14.1 was similar in CHO(h11) cells and fibroblasts. The 11q centromeric region, which replicates late in human fibroblasts, replicated in the second half of S phase in CHO(h11) cells. By contrast, however, the telomeric region at 11q25, which is late replicating in fibroblasts (and in several other human cell lines), replicated in the first half of S phase or in very early S phase in CHO(h11) cells. Our observations suggest that the replication timing programs of the R/G-band boundary and the centromeric region of human chromosome 11q are maintained in CHO(h11) cells, whereas that for the telomeric region is altered. The replication timing program of telomeric regions on human chromosomes might be regulated by specific mechanisms that differ from those for other chromosomal regions.  相似文献   

7.
To maintain genomic stability, reinitiation of eukaryotic DNA replication within a single cell cycle is blocked by multiple mechanisms that inactivate or remove replication proteins after G1 phase. Consistent with the prevailing notion that these mechanisms are redundant, we previously showed that simultaneous deregulation of three replication proteins, ORC, Cdc6, and Mcm2-7, was necessary to cause detectable bulk re-replication in G2/M phase in Saccharomyces cerevisiae. In this study, we used microarray comparative genomic hybridization (CGH) to provide a more comprehensive and detailed analysis of re-replication. This genome-wide analysis suggests that reinitiation in G2/M phase primarily occurs at a subset of both active and latent origins, but is independent of chromosomal determinants that specify the use and timing of these origins in S phase. We demonstrate that re-replication can be induced within S phase, but differs in amount and location from re-replication in G2/M phase, illustrating the dynamic nature of DNA replication controls. Finally, we show that very limited re-replication can be detected by microarray CGH when only two replication proteins are deregulated, suggesting that the mechanisms blocking re-replication are not redundant. Therefore we propose that eukaryotic re-replication at levels below current detection limits may be more prevalent and a greater source of genomic instability than previously appreciated.  相似文献   

8.
In the metazoan replication timing program, clusters of replication origins located in different subchromosomal domains fire at different times during S phase. We have used Xenopus laevis egg extracts to drive an accelerated replication timing program in mammalian nuclei. Although replicative stress caused checkpoint-induced slowing of the timing program, inhibition of checkpoint kinases in an unperturbed S phase did not accelerate it. Lowering cyclin-dependent kinase (Cdk) activity slowed both replication rate and progression through the timing program, whereas raising Cdk activity increased them. Surprisingly, modest alteration of Cdk activity changed the amount of DNA synthesized during different stages of the timing program. This was associated with a change in the number of active replication factories, whereas the distribution of origins within active factories remained relatively normal. The ability of Cdks to differentially effect replication initiation, factory activation, and progression through the timing program provides new insights into the way that chromosomal DNA replication is organized during S phase.  相似文献   

9.
The faithful inheritance of chromosomes during cell division requires their precise replication and segregation. Numerous mechanisms ensure that each of these fundamental cell cycle events is performed with a high degree of fidelity. The fidelity of chromosomal replication is maintained in part by re-replication controls that ensure there are no more than two copies of every genomic segment to distribute to the two daughter cells. This control is enforced by inhibiting replication initiation proteins from reinitiating replication origins within a single cell cycle. Here we show in Saccharomyces cerevisiae that re-replication control is important for the fidelity of chromosome segregation. In particular, we demonstrate that transient re-replication of centromeric DNA due to disruption of re-replication control greatly induces aneuploidy of the re-replicated chromosome. Some of this aneuploidy arises from missegregation of both sister chromatids to one daughter cell. Aneuploidy can also arise from the generation of an extra sister chromatid via homologous recombination, suggesting that centromeric re-replication can trigger breakage and repair events that expand chromosome number without causing chromosomal rearrangements. Thus, we have identified a potential new non-mitotic source of aneuploidy that can arise from a defect in re-replication control. Given the emerging connections between the deregulation of replication initiation proteins and oncogenesis, this finding may be relevant to the aneuploidy that is prevalent in cancer.  相似文献   

10.
A major challenge each human cell-division cycle is to ensure that DNA replication origins do not initiate more than once, a phenomenon known as re-replication. Acute deregulation of replication control ultimately causes extensive DNA damage, cell-cycle checkpoint activation and cell death whereas moderate deregulation promotes genome instability and tumorigenesis. In the absence of detectable increases in cellular DNA content however, it has been difficult to directly demonstrate re-replication or to determine if the ability to re-replicate is restricted to a particular cell-cycle phase. Using an adaptation of DNA fiber spreading we report the direct detection of re-replication on single DNA molecules from human chromosomes. Using this method we demonstrate substantial re-replication within 1 h of S phase entry in cells overproducing the replication factor, Cdt1. Moreover, a comparison of the HeLa cancer cell line to untransformed fibroblasts suggests that HeLa cells produce replication signals consistent with low-level re-replication in otherwise unperturbed cell cycles. Re-replication after depletion of the Cdt1 inhibitor, geminin, in an untransformed fibroblast cell line is undetectable by standard assays but readily quantifiable by DNA fiber spreading analysis. Direct evaluation of re-replicated DNA molecules will promote increased understanding of events that promote or perturb genome stability.  相似文献   

11.
The sex chromosomes of the opossum, Didelphys virginiana, are the only elements that exhibit C-banding. In contrast, the sex chromosomes as well as the autosomes bear specific G-Bands. However, unlike other mammalian species different types of G-banding are observed if the chromosomes are pretreated with trypsin and SSC solution The SSC-pretreated chromosomes show discrete bands only when stained with Giemsa at certain pH values. An asynchronous pattern of terminal DNA replication is observed among the three C-banding regions of the X-chromosome. The inter- and intrapositive G-banding areas of the chromosomes are not always late in DNA replication in comparison to those negatively stained G-banding areas.  相似文献   

12.
13.
Establishing how mammalian chromosome replication is regulated and how groups of replication origins are organized into replication bands will significantly increase our understanding of chromosome organization. Replication time bands in mammalian chromosomes show overall congruency with structural R- and G-banding patterns as revealed by different chromosome banding techniques. Thus, chromosome bands reflect variations in the longitudinal structure and function of the chromosome, but little is known about the structural basis of the metaphase chromosome banding pattern. At the microscopic level, both structural R and G bands and replication bands occupy discrete domains along chromosomes, suggesting separation by distinct boundaries. The purpose of this study was to determine replication timing differences encompassing a boundary between differentially replicating chromosomal bands. Using competitive PCR on replicated DNA from flow-sorted cell cycle fractions, we have analyzed the replication timing of markers spanning roughly 5 Mb of human chromosome 13q14.3/q21.1. This is only the second report of high-resolution analysis of replication timing differences across an R/G-band boundary. In contrast to previous work, however, we find that band boundaries are defined by a gradient in replication timing rather than by a sharp boundary separating R and G bands into functionally distinct chromatin compartments. These findings indicate that topographical band boundaries are not defined by specific sequences or structures.  相似文献   

14.
RecA protein of Escherichia coli and chromosome partitioning   总被引:5,自引:0,他引:5  
Escherichia coli cells deficient in RecA protein frequently contain an abnormal number of chromosomes after completion of ongoing rounds of DNA replication. This suggests that RecA protein may be required for correct timing of initiation of DNA replication; however, we show here that initiation of DNA replication is properly timed in recA mutants. We also find that more than 10% of recA mutant cells contain no DNA. These anucleate cells appear to arise from partitioning of all the DNA into one daughter cell and no DNA into the other daughter cell. Based on these and previously published results, we propose that RecA protein is required for equal partitioning of chromosomes into the two daughter cells.  相似文献   

15.
In yeast, the Mad2 protein is required for the M phase arrest induced by microtubule inhibitors, but the protein is not essential under normal culture conditions. We tested whether the Mad2 protein participates in regulating the timing of anaphase onset in mammalian cells in the absence of microtubule drugs. When microinjected into living prophase or prometaphase PtK1 cells, anti-Mad2 antibody induced the onset of anaphase prematurely during prometaphase, before the chromosomes had assembled at the metaphase plate. Anti-Mad2 antibody-injected cells completed all aspects of anaphase including chromatid movement to the spindle poles and pole–pole separation. Identical results were obtained when primary human keratinocytes were injected with anti-Mad2 antibody. These studies suggest that Mad2 protein function is essential for the timing of anaphase onset in somatic cells at each mitosis. Thus, in mammalian somatic cells, the spindle checkpoint appears to be a component of the timing mechanism for normal mitosis, blocking anaphase onset until all chromosomes are aligned at the metaphase plate.  相似文献   

16.
Macronuclear development in Euplotes crassus begins with polytenization of micronuclear chromosomes and is accompanied by highly precise excision of DNA sequences known as internal eliminated sequences and transposon-like elements (Tecs). Quantitation of radiolabeled-precursor incorporation into DNA indicates that DNA synthesis during formation of polytene chromosomes is not continuous and occurs during two distinct periods. We demonstrate that the timing of Tec excision coincides with these replication periods and that excision can occur during both periods even at a single locus. We also show that Tec and internal eliminated sequence excisions are coincident in the second replication period, thus providing further evidence for similarity in their excision mechanism. Inhibition of DNA synthesis with hydroxyurea diminishes Tec element excision, indicating that replication is an important aspect of the excision process.  相似文献   

17.
Eukaryotic cells must inhibit re-initiation of DNA replication at each of the thousands of origins in their genome because re-initiation can generate genomic alterations with extraordinary frequency. To minimize the probability of re-initiation from so many origins, cells use a battery of regulatory mechanisms that reduce the activity of replication initiation proteins. Given the global nature of these mechanisms, it has been presumed that all origins are inhibited identically. However, origins re-initiate with diverse efficiencies when these mechanisms are disabled, and this diversity cannot be explained by differences in the efficiency or timing of origin initiation during normal S phase replication. This observation raises the possibility of an additional layer of replication control that can differentially regulate re-initiation at distinct origins. We have identified novel genetic elements that are necessary for preferential re-initiation of two origins and sufficient to confer preferential re-initiation on heterologous origins when the control of re-initiation is partially deregulated. The elements do not enhance the S phase timing or efficiency of adjacent origins and thus are specifically acting as re-initiation promoters (RIPs). We have mapped the two RIPs to ∼60 bp AT rich sequences that act in a distance- and sequence-dependent manner. During the induction of re-replication, Mcm2-7 reassociates both with origins that preferentially re-initiate and origins that do not, suggesting that the RIP elements can overcome a block to re-initiation imposed after Mcm2-7 associates with origins. Our findings identify a local level of control in the block to re-initiation. This local control creates a complex genomic landscape of re-replication potential that is revealed when global mechanisms preventing re-replication are compromised. Hence, if re-replication does contribute to genomic alterations, as has been speculated for cancer cells, some regions of the genome may be more susceptible to these alterations than others.  相似文献   

18.
Ultraviolet (UV) radiation-induced DNA lesions can be efficiently repaired by nucleotide excision repair (NER). However, NER is less effective during replication of UV-damaged chromosomes. In contrast, translesion DNA synthesis (TLS) and homologous recombination (HR) are capable of dealing with lesions in replicating DNA. The core HR protein in mammalian cells is the strand exchange protein RAD51, which is aided by numerous proteins, including RAD54. We used RAD54 as a cellular marker for HR to study the response of mammalian embryonic stem (ES) cells to UV irradiation. In contrast to yeast, ES cells lacking RAD54 are not UV sensitive. Here we show that the requirement for mammalian RAD54 is masked by active NER. By genetically inactivating NER and HR through disruption of the Xpa and Rad54 genes, respectively, we demonstrate the contribution of HR to chromosomal integrity upon UV irradiation. We demonstrate using chromosome fiber analysis at the individual replication fork level, that HR activity is important for the restart of DNA replication after induction of DNA damage by UV-light in NER-deficient cells. Furthermore, our data reveal RAD54-dependent and -independent contributions of HR to the cellular sensitivity to UV-light, and they uncover that RAD54 can compensate for the loss of TLS polymerase η with regard to UV-light sensitivity. In conclusion, we show that HR is important for the progression of UV-stalled replication forks in ES cells, and that protection of the fork is an interplay between HR and TLS.  相似文献   

19.
S Pichler  S Piatti    K Nasmyth 《The EMBO journal》1997,16(19):5988-5997
The Anaphase Promoting Complex (APC) is required for anaphase progression and B-type cyclin proteolysis. The recent finding that inactivation of the APC allows 'over-replication' of DNA has led to the proposal that the APC might also be required for preventing reduplication of chromosomes during G2 and M phases. In this report we re-investigate the phenotype of apc mutant cells and find that they do not re-replicate their DNA during the period taken for wild-type cells to traverse G2 and M phases. apc mutants do, however, gradually increase their DNA content after long periods of cell cycle arrest. Such DNA synthesis occurs almost exclusively in the cytoplasm and neither occurs in cells lacking mitochondrial DNA nor depends on Cdc6, a protein which is essential for the initiation of chromosomal but not mitochondrial DNA replication. ARS1, a chromosomal replication origin, is not re-fired in cells deprived of APC function, confirming that the 'over-replicated' DNA in apc mutant cells is of mitochondrial origin. Furthermore, we find that APC function is required to promote but not to prevent re-replication in ndc10 mutant cells. We therefore propose that the APC is not involved in preventing re-duplication of chromosomes during G2 and M phases.  相似文献   

20.
It is generally believed that DNA replication in most eukaryotes proceeds according to a precise program in which there is a defined temporal order by which each chromosomal region is duplicated. However, the regularity of this program at the level of individual chromosomes, in terms of both the relative timing and the size of the DNA domain, has not been addressed. Here, the replication of chromosome VI from synchronized budding yeast was studied at a resolution of ∼ 1 kb with DNA combing and fluorescence microscopy. Contrary to what would be expected from cells following a rigorous temporal program, no two molecules exhibited the same replication pattern. Moreover, a direct evaluation of the extent to which the replication of distant chromosomal segments was coordinated indicates that the overwhelming majority of these segments were replicated independently. Importantly, averaging the patterns of all the fibers examined recapitulates the ensemble-averaged patterns obtained from population studies of the replication of chromosome VI. Thus, rather than an absolutely defined temporal order of replication, replication timing appears to be essentially probabilistic within individual cells, exhibiting only temporal tendencies within extended domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号