首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gymnemic acids are triterpene glycosides that selectively suppress taste responses to various sweet substances in humans but not in mice. This sweet-suppressing effect of gymnemic acids is diminished by rinsing the tongue with γ-cyclodextrin (γ-CD). However, little is known about the molecular mechanisms underlying the sweet-suppressing effect of gymnemic acids and the interaction between gymnemic acids versus sweet taste receptor and/or γ-CD. To investigate whether gymnemic acids directly interact with human (h) sweet receptor hT1R2 + hT1R3, we used the sweet receptor T1R2 + T1R3 assay in transiently transfected HEK293 cells. Similar to previous studies in humans and mice, gymnemic acids (100 μg/ml) inhibited the [Ca2+]i responses to sweet compounds in HEK293 cells heterologously expressing hT1R2 + hT1R3 but not in those expressing the mouse (m) sweet receptor mT1R2 + mT1R3. The effect of gymnemic acids rapidly disappeared after rinsing the HEK293 cells with γ-CD. Using mixed species pairings of human and mouse sweet receptor subunits and chimeras, we determined that the transmembrane domain of hT1R3 was mainly required for the sweet-suppressing effect of gymnemic acids. Directed mutagenesis in the transmembrane domain of hT1R3 revealed that the interaction site for gymnemic acids shared the amino acid residues that determined the sensitivity to another sweet antagonist, lactisole. Glucuronic acid, which is the common structure of gymnemic acids, also reduced sensitivity to sweet compounds. In our models, gymnemic acids were predicted to dock to a binding pocket within the transmembrane domain of hT1R3.  相似文献   

2.
The interaction between long-chain and medium-chain lipids during intestinal absorption was examined using several model systems. A decrease in steady-state triolein (LCT) output in thoracic duct lymph after addition of trioctanoin (MCT) to the duodenal infusion confirmed previous studies in unanesthetized rats which demonstrated inhibition of steady-state LCT uptake from the small intestinal lumen by MCT. In slices of everted rat jejunum octanoic acid reduced incorporation into triglyceride and initial uptake of (14)C-labeled oleic acid from micellar solutions. Inhibition of uptake did not occur at 0 degrees C, when triglyceride synthesis was blocked. Incubation of slices at low pH (5.8) or in the presence of dimethyl sulfoxide also reduced uptake of oleic acid and its incorporation into triglyceride. However, when everted sacs of jejunum were similarly incubated, octanoate, dimethyl sulfoxide, or low pH caused no inhibition of oleic acid uptake or esterification. The results indicate that the significance of kinetic data describing intestinal fatty acid absorption which were obtained from experiments conducted in vitro is highly questionable, and that suitable models for in vivo uptake kinetics have yet to be developed. However, analysis of the in vitro kinetic data suggests that the intestinal mucosal membrane does not function as a simple lipid interface with respect to fatty acid absorption.  相似文献   

3.
The enterohepatic circulation and the inability of upper small intestine to actively absorb bile acid are physiological adaptations for maintaining adequate bile acid concentrations in the intestinal lumen for use in lipid digestion and absorption. Certain lipids inhibit bile acid absorption suggesting a possible role of lipids in this scheme. Using isolated intestinal villi preparations of hamster ileum, experiments were conducted to assess the degree of inhibition of bile acid absorption by lipids of various classes and to determine the possible mechanism of inhibition. At an initial bile acid concentration of 10.0 mM, triolein significantly reduced villus uptake of taurocholic acid by 50% and cholic acid by 38%. This inhibition was similar to the degree of inhibition produced by oleic acid (58 and 48%, respectively). Likewise, representative medium-chain and short-chain triglycerides inhibited taurocholic acid uptake by 35 and 39%, respectively. Results show that triglycerides as well as oleic acid inhibit ileal bile acid uptake. Neither oleic acid nor triolein altered bile acid uptake when micelles were absent from incubation solutions. Furthermore, lipids did not alter absorption of a nonmicelle-forming bile acid, taurodehydrocholic acid. These data imply that dietary lipids in general may inhibit intestinal bile acid absorption. Oleic acid significantly reduced the intermicellar bile acid concentration from 8.9 +/- 0.2 mM to 3.9 +/- 0.2 mM while tributyrin, tricaprylin, and triolein had no effect. Results from these studies suggest that the mechanism of inhibition appears to be an enhancement of micelle formation. We speculate that this mechanism may be an additional mechanism for maintaining adequate luminal bile acid concentrations and may be the pathophysiologic mechanism contributing to bile acid malabsorption in cystic fibrosis.  相似文献   

4.
The effect of cholestane-3,5alpha,6-triol (CT) on the intestinal absorption of cholesterol and oleic acid, as well as the absorption of labeled CT, was studied in lymph ductcannulated rats. Intragastric administration of 50 mg of CT in an emulsion with cholesterol-7alpha-(3)H and oleic acid-1-(14)C resulted in 50% inhibition of sterol transfer into lymph but only 8% depression of fatty acid absorption over an 8 hr period. The absorption of labeled CT into lymph was only 2-3% compared with 50% absorption of cholesterol when each was fed alone. 10% of the fed CT was recovered in the intestinal mucosa, and of this, one-half was associated with the brush border fraction. In rats fed CT 6 days prior to cholesterol and fatty acid administration, there was no effect on fatty acid absorption, while cholesterol absorption was reduced by almost 30%. When the intestinal mucosa from these animals were investigated by electron microscopy, it appeared that CT feeding resulted in numerous enlarged mitochondria and a marked increase in length of the microvilli. If animals were allowed to recover for 6 days from the CT prefeeding regime, the intestinal mucosa appeared normal, and the absorption of cholesterol approached that in controls. A possible mechanism for CT inhibition of cholesterol absorption was shown to be competition for the enzyme cholesterol esterase which esterifies cholesterol prior to entrance into the lymphatic system. CT itself is poorly esterified and poorly absorbed, but it is effective in inhibiting esterification of cholesterol in vitro.  相似文献   

5.
The uptake of 2 mM 14C-glucose by H. diminuta during 1-min incubations was inhibited by addition of 10 mM sodium taurocholate (NaTC) to the incubation media. Preincubation in 10 mM NaTC for 30 min did not increase the inhibition, suggesting that the inhibition was competitive. This was confirmed with a standard Lineweaver-Burk experiment. Addition of 0.35 mM oleic acid to the NaTC micelles did not alter the level of inhibition. Sodium glycocholate (NaGC) did not inhibit the uptake of glucose by H. diminuta. The uptake of glucose by H. microstoma was also inhibited by NaTC, and was not affected by NaGC. H. diminuta absorbed 3.62 mumoles of oleic acid/g dry wt during 15-min incubations in mixed micelles of 10 mM NaTC and 0.35 mM oleic acid. The total uptake was determined as the sum of the ethanol extractable and nonextractable 3H-oleic acid. In 15 mM NaTC, the uptake of oleic acid was reduced by 50%; at 30 mM NaTC the uptake of oleic acid decreased by half again. Substituting NaGC for NaTC, the greatest uptake of oleic acid, 2.63 mumoles/g dry wt, was from mixed micelles of 15 mM NaGC and 0.35 mM oleic acid. Lesser amounts of oleic acid were absorbed from mixed micelles at 5 or 30 mM NaGC. H. microstoma exhibited a similar pattern of oleic acid uptake from mixed micelles with NaTC and NaGC. At all bile salt concentrations tested, H. microstoma absorbed more oleic acid than H. diminuta and incorporated more oleic acid into the nonextractable pool. The possible roles of bile salts in the absorption of oleic acid as indicated by the results herein are discussed.  相似文献   

6.
Using the experimental model of the everted sac prepared from rat jejuna, kinetic studies on [14C]oleic acid uptake from bile salt micelles were conducted in the presence and absence of phosphatidylcholine. The concentration of oleic acid was varied between 0.625 and 5 mM. At every level of fatty acid concentration studied the addition of 2 mM phosphatidylcholine produced a significant inhibition of fatty acid uptake. It was further noted that the intact phospholipid molecule was required for this effect as lysophosphatidylcholine produced little, if any, inhibition of [14C]oleic acid uptake. The effect of varying the concentration of phosphatidylcholine on fatty acid uptake was also studied. The degree of inhibition was noted to be correlated grossly with media concentrations of this phospholipid although the decrease of fatty acid uptake was not strictly proportional to concentration of this material in the medium. Studies were also performed analyzing in vitro absorption of [14C]oleic acid and [3H]cholesterol simultaneously from mixed micelles composed of sodium taurocholate, oleic acid, monoolein and cholesterol. Control medium contained no phospholipid while experimental medium contained either diester or diether phosphatidylcholine, 2 mM. Both types of phosphatidylcholine caused significant inhibition of fatty acid and cholesterol uptake. In vivo absorption studies were also performed using the isolated jejunal segment technique. A mixed micellar solution containing [3H]cholesterol and [14C]oleic acid was used as the test dose. Phospholipid in the test dose for controls was supplied as lysophosphatidylcholine and for experimentals it was in the form of diether phosphatidylcholine. Significantly less radioactively labeled cholesterol and fatty acid was absorbed by experimentals as compared to controls over a 10-min period. It is concluded that the intact molecule of phosphatidylcholine inhibits intestinal uptake of cholesterol and fatty acid from mixed micellar solutions under both in vitro and in vivo conditions.  相似文献   

7.
The effect of micro-organisms contaminating the upper intestinal contents of malnourished children on intestinal absorption of 3-0 methyl-alpha-D-glucopyranose (3-M.G.) and oleic acid was studied in rats in vivo. Oleci acid absorption was unaffected by non-pathogenic E. coli but decreased by E. coli 0111, Salmonella paratyphi B., Shigella sonnei and Candida sp. This effect was probably explained by intestinal secretion diluting the test solution leading to a decreased diffusion gradient for solubilised fatty acid. Inhibition of sugar absorption occurred with bacterial suspensions of Staphylococcus aureus, Streptococcus faecalis, E. coli and Candida sp. and cell-free preparations of Staphylococcus aureus, Streptococcus faecalis, a non-pathogenic E. coli, Proteus sp., Klebsiella sp., Pseudomonas sp. and Candida sp. These effects were not explained by dilution of the test solution. This indicates that numerous micro-organisms and, in some instances, their cell-free preparations can interfere with intestinal active sugar transport. These findings may be relevant to the production of malabsorption in malnourished children who have a wide variety of micro-organisms contaminating their upper intestinal contents.  相似文献   

8.
In this study, we investigated in rats if hydroxycitric acid (HCA) reduces the postprandial glucose response by affecting gastric emptying or intestinal glucose absorption. We compared the effect of regulator HCA (310 mg/kg) and vehicle (control) on the glucose response after an intragastric or intraduodenal glucose load to investigate the role of altered gastric emptying. Steele's one-compartment model was used to investigate the effect of HCA on systemic glucose appearance after an intraduodenal glucose load, using [U-(13)C]-labeled glucose and d-[6,6-(2)H(2)]-labeled glucose. Because an effect on postabsorptive glucose clearance could not be excluded, the effect of HCA on the appearance of enterally administered glucose in small intestinal tissue, liver, and portal and systemic circulation was determined by [U-(14)C]glucose infusion. Data show that HCA treatment delays the intestinal absorption of enterally administered glucose at the level of the small intestinal mucosa in rats. HCA strongly attenuated postprandial blood glucose levels after both intragastric (P < 0.01) and intraduodenal (P < 0.001) glucose administration, excluding a major effect of HCA on gastric emptying. HCA delayed the systemic appearance of exogenous glucose but did not affect the total fraction of glucose absorbed over the study period of 150 min. HCA treatment decreased concentrations of [U-(14)C]glucose in small intestinal tissue at 15 min after [U-(14)C]glucose administration (P < 0.05), in accordance with the concept that HCA delays the enteral absorption of glucose. These data support a possible role for HCA as food supplement in lowering postprandial glucose profiles.  相似文献   

9.
R H Gallavan  C C Chou 《Prostaglandins》1986,31(6):1069-1076
The effects of mefenamic acid on the food-induced changes in intestinal carbohydrate metabolism were determined in an attempt to elucidate the mechanism(s) by which inhibition of prostaglandin synthesis enhances the postprandial increases in intestinal blood flow and oxygen consumption. The data show that when the luminal perfusate was changed from saline to a nutrient/bile solution, there was an increase in carbohydrate utilization, which was offset by absorption of glucose from the lumen. Intravenous administration of mefenamic acid significantly increased both carbohydrate absorption and metabolism when food was placed in the lumen. Changes in carbohydrate absorption and metabolism have been shown to play and important role in determining the magnitude of glucose induced changes in intestinal blood flow and oxygen consumption. Therefore, it is possible that the ability of mefenamic acid to enhance significantly the food-induced increases in blood flow and oxygen consumption may be due in part to its effects on intestinal carbohydrate absorption and utilization.  相似文献   

10.
1. Intragastric administration of ethanol (75 mmol/kg body wt.) at 1 h before glucose refeeding of 24 h-starved rats inhibited hepatic glycogen deposition (by 69%) and synthesis (by approx. 70%), but was without significant effect on muscle glycogen deposition and synthesis. 2. Treatment of ethanol-administered rats with methylpyrazole (an inhibitor of alcohol dehydrogenase) did not significantly diminish the inhibitory effect of ethanol on hepatic glycogen deposition after glucose refeeding, suggesting that the inhibition was not dependent on ethanol metabolism. 3. Ethanol delayed and diminished intestinal glucose absorption, at least in part by delaying gastric emptying. 4. At a lower dose (10 mmol/kg body wt.), ethanol inhibited hepatic glycogen repletion and synthesis without compromising intestinal glucose absorption. Ethanol inhibited glycogen deposition (by 40%) in hepatocytes from starved rats provided with glucose + lactate + pyruvate as substrates, consistent with it having a direct effect to diminish hepatic glycogen synthesis by inhibition of gluconeogenic flux at a site(s) between phosphoenolpyruvate and triose phosphate in the pathway. 5. It is concluded that ethanol acutely impairs hepatic glycogen repletion by inhibition at at least two distinct sites, namely (a) intestinal glucose absorption and (b) hepatic gluconeogenic flux.  相似文献   

11.
The effect of a high concentration (1%, w/w) of ascorbic acid in a Cu-adequate (150 μmol/kg) purified diet was studied in rats. After 6 wk, ascorbic acid had significantly reduced Cu concentrations in muscle and bone. The estimated whole body content of Cu in rats fed ascorbic acid was reduced by 20%. Within 1 d after oral administration of64Cu, the recovery of the dose in feces was increased in rats fed ascorbic acid, suggesting that the vitamin depresses intestinal absorption of Cu. After intraperitoneal (ip) administration of64Cu, the rate of loss of the dose from the body was decreased in rats fed ascorbic acid. This study suggests that the ascorbic acid induces a decreased efficiency of intestinal Cu absorption, which in turn triggers mechanisms to preserve Cu in the body stores. This is supported by the observation that the feeding of a Cu-deficient diet (5 μmol/kg) had similar effects, although more pronounced.  相似文献   

12.
The effects of mefenamic acid on the food-induced changes in intestinal carbohydrate metabolism were determined in an attempt to elucidate the mechanism(s) by which inhibition of prostaglandin synthesis enhances the postprandial increases in intestinal blood flow and oxygen consumption. The data show that when the luminal perfusate was was changed from saline to a nutrient/bile solution, there was an increase in carbohydrate utilization, which was offset by absorption of glucose from the lumen. Intravenous administration of mefenamic acid significantly increased both carbohydrate absorption and metabolism when food was placed in the lumen. Changes in carbohydrate absorption and metabolism have been shown to play an important role in determining the magnitude of glucose induced changes in intestinal blood flow and oxygen consumption. Therefore, it is possible that the ability of mefenamic acid to enhance significantly the food-induced increases in blood flow and oxygen consumption may be due in part to its effects on intestinal carbohydrate absorption and utilization.  相似文献   

13.
Previously we have shown that arachidonic acid (AA) plus zinc or cyclo (his-pro) (CHP) plus zinc improve clinical signs of diabetes in streptozotocin-induced diabetic rats. Since streptozotocin destroys pancreatic beta-cells, we hypothesize that the effect of either AA or CHP, plus zinc on glucose metabolism is via mobilization of intracellular zinc which in turn stimulates glucose uptake by peripheral tissues. We now report the relationship between zinc and AA and between zinc and CHP in controlling zinc influx and efflux across hindlimb muscle cells isolated from three-month old rats. Although CHP increased muscle zinc influx in a dose-dependent manner, AA was not effective. However, AA was more effective in stimulating zinc efflux than CHP. We have previously demonstrated that AA stimulates intestinal zinc uptake and absorption, and now present evidence that CHP also influences intestinal zinc transport. These results suggest that both AA and CHP affect glucose uptake in muscle cells via stimulating intestinal zinc absorption and muscle cell zinc flux.  相似文献   

14.
Gymnema sylvestre is an important medicinal plant that bears bioactive compound namely gymnemic acids. The present work deals with the optimization of a cell suspension culture system of Gymnema sylvestre for the production of biomass and gymnemic acid, which has anti‐diabetic properties. We investigated the effect of inoculum densities (2.5–20.0 g/L), the strength of the Murashige and Skoog (MS) medium (0.25–2.0), carbon source (sucrose, glucose, fructose, maltose), and the concentration of the sucrose (1–8% w/v) to determine their effects on biomass accumulation and production of gymnemic acid. Overall, 10 g/L of inoculum density, full‐strength MS medium supplemented with 2,4‐dichlorophenoxy acetic acid (2.0 mg/L) and Kinetin (0.1 mg/L), and 3% w/v sucrose was found best for the accumulation of biomass and gymnemic acid content (9.95 mg/g dry weight). The results of the current study will be useful for bioprocess and biochemical engineers for large‐scale production of gymnemic acid in cell culture.  相似文献   

15.
Effect of ethanol on intestinal lipid absorption in the rat   总被引:2,自引:0,他引:2  
The effect of ethanol infusion on intestinal lipid absorption was studied in rats with a duodenal cannula. Rats were infused with ethanol overnight and ethanol was included in a trioleoylglycerol emulsion infusion given for 3 hr the next day. These rats were compared to control animals infused with glucose (isocalorically). The ethanol-infused rats had a greatly impaired lipid absorptive capacity. The monoacylglycerol and free fatty acid contents in the intestinal lumen in the ethanol-infused rats were 4- and 7-fold greater, respectively, than controls. The inhibition of absorption was not due to an effect of ethanol on lipolytic activity. The lipase content of the ethanol-infused rats was greater than controls and the separate infusion of monoacylglycerol and fatty acids demonstrated impaired absorption of these end products of lipolysis as compared to controls. To observe if these changes were due to an effect of ethanol on the enterocyte brush border membrane, the membrane lipids were analyzed. The phosphatidylcholine, lysophosphatidylcholine, and phosphatidylethanolanine content was reduced but not the neutral lipids, sphingomyelin, or phosphatidylserine. The uptake of fatty acid into intestinal rings was also shown to be impaired by ethanol infusion. Lastly, the specific activity of the neutral lipids remaining in the intestinal lumen after [3H]glycerol-labeled trioleoylglycerol-infusion was similar to controls even though the mass was much greater. It is concluded that ethanol impairs neutral lipid absorption due to an effect on the enterocyte brush border membrane and by increasing the efflux of low specific activity lipid from the enterocyte back out into the intestinal lumen. A potential pathway for this efflux is the recently described increased porosity of the apical junctional complex in response to ethanol infusion.  相似文献   

16.
During feeding experiments with [omega-14C]oleic acid and [omega-14c]nervonic acid to adult rats, 14C-labelled C26, C28 and C30 fatty acids were recovered from the intestinal mucosa, liver, plasma, kidney and stools. The structures of these fatty acids were determined by g.l.c., radio-g.l.c. and mass spectrometry. The Schmidt and Ginger degradation methods indicated that most of the 14C found in these extra-long fatty acids remained in the omega position. These radioactive extra-long fatty acids were found mainly in the polar lipids of rats killed 3 or 15 h after being fed on labelled oleic acid or nervonic acid. Rats killed 63 h later yielded only traces of these extra-long fatty acids. When the rats were given antibiotics or received the same radioactive fatty acids by intravenous injection, the labelled extra-long fatty acids could not be detected in any of the tissues. We conclude that they were probably synthesized by elongation of oleic acid and nervonic acid by intestinal micro-organisms (probably yeasts) and then absorbed by the intestinal mucosa.  相似文献   

17.
Oleanolic acid glycosides from several medicinal foodstuffs were found to show potent inhibitory activity on the increase of serum glucose levels in oral glucose-loaded rats. By examination of the structure-activity relationships, the 3-O-glucuronide moiety and the 28-carboxyl group in oleanolic acid glycosides were required to exert the hypoglycemic activity. Oleanolic acid glycosides were found to have neither insulin-like nor insulin-releasing activity, but they inhibited gastric emptying and glucose-uptake in the small intestine. Investigation of the mode of action revealed that the inhibition of gastric emptying was mediated by capsaicin-sensitive sensory nerves and the central nervous system. Furthermore, oleanolic acid glycosides were suggested to suppress the gastric emptying by stimulating the release and/or production of dopamine to act through dopamine2 receptors, which in turn causes the release of prostaglandins.  相似文献   

18.
Non-ionic surfactant–polyoxyethylene sorbitan monooleate (Tween-80) and oleic acid are food and pharmaceutical ingredients for oral and parenteral delivery and generally regarded as safe (GRAS). They have the potential as an intestinal absorption enhancer for the development of oral drug delivery systems. However, their safety in terms of mucosal integrity has yet to be evaluated. Therefore, the purpose of the present work was to study the tissue damaging effects of Tween-80, oleic acid and of their mixed micellar formulation (oleic acid + Tween-80). This was investigated at 2 h and 24 h after rectal delivery and compared with the topical effect of polyoxyethylene 9 lauryl ether (Polydocanol). The same experiment was carried out on three species with distinct feeding habits: the common carp, Cyprinus carpio (L.); the African catfish, Clarias gariepinus (Burchell); and the rainbow trout, Oncorhynchus mykiss (Walb.). Based on the findings of this study it was concluded that Tween-80 (4%), or its mixed micelle with oleic acid (0.6%) can be considered as a safe formulation, inducing only a moderate alteration of the intestinal mucosa, comparable to the effect of an isotonic saline. By contrast, in the three species, the same dose of Polydocanol, or of its mixed micelle with oleic acid, induced severe tissue damage of the intestinal mucosa, still present after 24 h. Mixed micelles of oleic acid with Tween-80 were also demonstrated as increasing the intestinal absorption of the salmon gonadotropin releasing hormone analogue (sGnRH-a) in catfish, C. gariepinus , and consequently stimulating GtH II secretion. This effect was compared with the action of other drugs considered as intestinal absorption enhancers.  相似文献   

19.
Intestinal absorption of most nutrients is enhanced in diabetic rats. We wished to test the hypothesis that manipulation of dietary fatty acids will modify enhanced uptake of glucose in rats with established streptozotocin-diabetes. Chow-fed control rats or animals with one week of streptozotocin-diabetes were continued on chow or were fed ad libitum for three weeks with semisynthetic isocaloric diets containing a high content of either essential polyunsaturated or non-essential saturated fatty acids. The jejunal and ileal in vitro uptake of varying concentrations of glucose was much higher in diabetic than control rats fed chow or the saturated fatty acid diet. In contrast, the enhanced uptake of this sugar was reduced or normalized in diabetic rats fed the polyunsaturated fatty acid diet. Feeding the polyunsaturated fatty acid diet was associated with increased brush-border membrane activity of alkaline phosphatase in diabetic jejunum and ileum, but neither the saturated fatty acid diet nor the polyunsaturated fatty acid diet altered brush-border membrane cholesterol or phospholipids in control or in diabetic rats. Mucosal surface area was similar in diabetic rats fed the saturated fatty acid diet or the polyunsaturated fatty acid diet. Thus, (1) feeding the polyunsaturated fatty acid diet diminishes the enhanced jejunal and ileal uptake of glucose in diabetic rats, and (2) the influence of the polyunsaturated fatty acid diet on uptake in diabetic rats was not explained by alterations in intestinal morphology or brush-border membrane content of cholesterol or phospholipids. This study suggests that manipulation of dietary lipids may play a role in the normalization of the enhanced intestinal glucose uptake in rats with established diabetes.  相似文献   

20.
Isocaloric modification in the ratio of dietary polyunsaturated-to-saturated fatty acids influences intestinal uptake of actively and passively transported nutrients. This study was undertaken to determine which dietary fatty acid was responsible for these alterations in absorption. Adult female rats were fed isocaloric semisynthetic diets high in palmitic and stearic acids (SFA), oleic acid (OA), linoleic acid (LA), or linolenic acid (LNA). An in vitro technique was used to measure the uptake of varying concentrations of glucose as well as a series of fatty acids and cholesterol. Jejunal uptake of 40 mM glucose was highest in rats fed SFA and lowest in those fed LA; ileal glucose uptake was similar in OA, LA, and LNA, but was lowest in SFA. Jejunal uptake of medium-chain fatty acids (8:0-12:0) was higher in OA than in other diet groups; ileal uptake of medium-chain fatty acids was unaffected by diet. Jejunal and ileal uptake of 18:2 was higher in LNA than in SFA or OA; the uptake of the other long-chain saturated or unsaturated fatty acids was unchanged by diet. The ileal but not the jejunal uptake of cholesterol was increased in LA as compared with SFA or OA, and reduced in LNA as compared with LA. These transport changes were not explained by differences in the animals' food consumption, body weight gain, intestinal mass, or mucosal surface area. We postulate that these diet-induced transport alterations may be mediated via changes in brush border membrane phospholipid fatty acyl composition. Thus, intestinal transport of nutrients may be varied by isocaloric changes in the dietary content of individual fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号