首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study examined the effects of heat acclimation and subject gender on treadmill exercise in comfortable (20 degrees C, 40% rh), hot-dry (49 degrees C, 20% rh), and hot-wet (35 degrees C, 79% rh) environments while subjects were hypo- or euhydrated. Six male and six female subjects, matched for maximal aerobic power and percent body fat, completed two exercise tests in each environment both before and after a 10-day heat acclimation program. One exercise test was completed during euhydration and one during hypohydration (-5.0% from baseline body weight). In general, no significant (P greater than 0.05) differences were noted between men and women at the completion of exercise for rectal temperature (Tre), mean skin temperature (Tsk), or heat rate (HR) during any of the experimental conditions. Hypohydration generally increased Tre and HR values and decreased sweat rate values while not altering Tsk values. In the hypohydration experiments, heat acclimation significantly reduced Tre (0.19 degrees C) and HR (13 beats X min-1) values in the comfortable environment, but only HR values were reduced in hot-dry (21 beats X min-1) and hot-wet (21 beats X min-1) environments. The present findings indicated that men and women respond in a physiologically similar manner to hypohydration during exercise. They also indicated that for hypohydrated subjects heat acclimation decreased thermoregulatory and cardiovascular strain in a comfortable environment, but only cardiovascular strain decreased in hot environments.  相似文献   

2.
This study examined the effects of hypohydration on plasma volume and red cell volume during rest in a comfortable (20 degrees C, 40% relative humidity) and exercise in a hot-dry (49 degrees C, 20% relative humidity) environment. A group of six male and six female volunteers [matched for maximal O2 uptake (VO2 max)] completed two test sessions following a 10-day heat acclimation program. One test session was completed when subjects were euhydrated and the other when subjects were hypohydrated (-5% from base-line body wt). The test sessions consisted of rest for 30 min in a 20 degrees C antechamber, followed by two 25-min bouts of treadmill walking (approximately 30% of VO2 max) in the heat, interspersed by 10 min of rest. No significant differences were found between the genders for the examined variables. At rest, hypohydration elicited a 5% decrease in plasma volume with less than 1% change in red cell volume. During exercise, plasma volume increased by 4% when subjects were euhydrated and decreased by 4% when subjects were hypohydrated. These percent changes in plasma volume values were significantly (P less than 0.01) different between the euhydration and hypohydration tests. Although red cell volume remained fairly constant during the euhydration test, these values were significantly (P less than 0.01) lower when hypohydrated during exercise. We conclude that hydration level alters vascular fluid shifts during exercise in a hot environment; hemodilution occurs when euhydrated and hemoconcentration when hypohydrated during light intensity exercise for this group of fit men and women.  相似文献   

3.
The effects of graded levels of hypohydration (3, 5, and 7% of body weight) on hormonal responses to exercise in the heat were examined in six heat-acclimated male volunteers. On the day following dehydration, subjects performed light (approximately 25% maximal O2 consumption, 1.03 1 X min-1) exercise in a hot (49 degrees C, 20% relative humidity) environment for four consecutive 25-min intervals interspaced by 10-min rests; blood was obtained before exercise and at approximately 10 min before completion of each exercise period. During euhydration, plasma cortisol (PC) levels manifested significant decrements over time (e.g., time 0, 14.2 micrograms X 100 ml-1 vs. time 2, 8.9 micrograms X 100 ml-1), probably related to its diurnal periodicity. However, during hypohydration, levels of PC were increased and correlated with hypohydration intensity (e.g., time 0, 0, 3, 5, and 7% hypohydration, 14.2, 16.5, 19.8, and 36.2 micrograms X 100 ml-1, respectively). Plasma renin activity (PRA) was increased significantly by hypohydration (e.g., time 0, euhydrated vs. 3%, 3.7 vs. 6.2 units) but was unaffected by exercise in the heat. Plasma aldosterone (ALD) levels were generally increased by exercise in the heat (e.g., time 0 vs. time 4, 3% hypohydration, 12.1 vs. 18.7 ng X 100 ml-1). Regression analysis illustrated that graded intensities of hypohydration were correlated with incremented PRA and ALD through 5% hypohydration. Conversely, PC was incrementally elevated through 7% hypohydration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Sixty male sea otters ( Enhydra lutris ) were tagged on the rear flippers with colored tags. Of these, 46 (77%) were resighted. Movements of 127 km were documented for adults and 187 km for subadults. Adults maintained breeding territories that averaged 40.3 ha ( n = 10, SE = 4.0). They returned to the same territory seasonally for up to seven consecutive years. Territorial males moved from areas of high male abundance to areas of high female abundance on a seasonal basis. During the winter, 74% of adult males left breeding areas and joined concentrations of males located near the ends of the range. Thirty percent of the subadult males were observed in male groups near the extremities of the range. During the summer and fall, the density of adult males (15/1,000 ha) and adult male to independent otter (non-pup) ratio (1:5) in female areas was highest. The number of adult males in areas of female abundance was inversely related to the number of dependent pups, perhaps because when pup numbers are low (late summer and fall) the number of estrous females is high. Subadult males may remain in female areas on a year round basis until their second or third year. However, they were not generally associated with adult females.  相似文献   

5.
Plasma volume (PV) at different levels of hypohydration was determined using radio-iodinated serum albumin-125 in 28 heat acclimated male volunteers in hot dry condition in a climatic chamber. The heat acclimated subjects were hypohydrated to varying degrees i.e. 1%, 2%, 3% and 4% body mass deficit by moderate work in hot conditions in a climatic chamber maintained at 45 degrees C dry bulb temperature and 30% relative humidity. A rehydration study was carried out in only those subjects who were hypohydrated to 3% and 4% body mass and they were brought back to a 2% level of hypohydration by giving a calculated amount of water. A significant decrease in PV was observed at 3% and 4% hypohydration only. The magnitude of the decrease was the same in both the groups and not related to the level of hypohydration. With partial rehydration in the 3% hypohydrated group PV was restored fully, while in the 4% hypohydrated group restoration was incomplete, indicating that at this hypohydration level some of the replenished water that entered in plasma may have moved to the intracellular compartment which may have contributed more at 4% hypohydration. It is suggested that with higher levels of thermal hypohydration significant reduction in the intracellular compartment may result in accentuated physiological strain during work in the heat.  相似文献   

6.
Studies were conducted on 25 healthy male volunteers aged 20-25 years drawn randomly from the tropical regions of India. The subjects initially underwent an 8 day heat acclimatization schedule with 2 hours moderate work in a climatic chamber at 45 degrees C DB and 30% RH. These heat acclimatized subjects were then hypohydrated to varying levels of body weight deficits, i.e. 1.3 +/- 0.03, 2.3 +/- 0.04 and 3.3 +/- 0.04%, by a combination of water restriction and moderate exercise inside the hot chamber. After 2 hours rest in a thermoneutral room (25 +/- 1 degree C) the hypohydrated subjects were tested on a bicycle ergometer at a fixed submaximal work rate (40 W, 40 min) in a hot dry condition (45 degrees C DB, 30% RH, 34 degrees C WBGT). Significant increases in exercise heart rate and oral temperature were observed in hypohydrated subjects as compared to euhydration. Sweat rate increased with 1% and 2% hypohydration as compared to euhydration, but a significant decrease was observed with 3% hypohydration. Na+ & K+ concentrations in arm sweat increased with increase in the level of hypohydration. Oxygen consumption increased significantly only when hypohydration was about 2% or more. It appears that the increased physiological strain observed in tropical subjects working in heat with graded hypohydration is not solely due to reduced sweat rates.  相似文献   

7.
Adaptation of rat knee meniscus to prolonged exercise   总被引:1,自引:0,他引:1  
We have developed methodology to simultaneously measure fluid redistribution among the major compartments during moderate and severe hypohydration. Total body water (TBW) was determined using tritiated water, extracellular fluid volume (ECF) was measured using a single-injection [14C]inulin technique, and plasma volume (PV) was determined by indocyanine green dye dilution. Moderate (10% decrease in body wt) and severe (15%) hypohydration resulted in significant losses in TBW, ECF, and PV. Plasma volume was decreased by approximately 25% in both groups, and other fluid compartments were differentially affected. For example, the moderately dehydrated group maintained PV by shifting fluid from the interstitial fluid volume (ISF) compartment while preserving the intracellular fluid volume (ICF); conversely, the severely dehydrated group maintained PV by redistributing fluid from both the ISF and ICF compartments. The data indicated that the initial response to fluid loss was the movement of fluid from the ISF pool to sustain both PV and ICF. In severely hypohydrated rats, PV was maintained at the expense of ICF. These experiments indicated that PV and ICF were maximally protected, probably to preserve the integrity of the cardiovascular system and to minimize organ injury.  相似文献   

8.
This study examines the relationships between vascular changes and endocrine responses to prolonged exercise in the heat, associated with dehydration and rehydration by fluids of different osmolarity. Five subjects were exposed, in a 34 degrees C environment for 4 h of intermittent exercise on a cycle ergometer at 85 +/- 12 Watts (SD). Fluid regulatory hormones and cortisol were analysed in 3 experimental sessions: one without any fluid supplement (NO FLUID), and two with progressive rehydration, either by spring water (WATER) or isotonic solution (ISO), given after 70 min of exercise. Results were expressed in terms of differences between the mean values observed at the end of the exercise and the first hour values taken as references. Dehydration (NO FLUID) elicited a 4.0 +/- 0.8% (SE) decrease in plasma volume (PV) and an increase in osmolarity (8.4 +/- 3.1 mosmol X l-1). Concomitantly, plasma aldosterone (PA), renin activity (PRA), arginin vasopressin (AVP) and cortisol (PC) levels increased greatly in response to exercise in the heat (PA: 37.2 +/- 10.8 ng. 100 ml-1; PRA: 13.4 +/- 2.5 ng X ml-1 X h-1; AVP: 3.8 +/- 1.3 pg X ml-1; PC: 12.2 +/- 2.7 micrograms X 100 ml-1). Rehydration with water led to decreased osmolarity (-8.2 +/- 2.1 mosmol X l-1) with no significant changes in PV. With ISO, PV increased by 6.0 +/- 1.3% and the decrease in osmolarity was-5.8 +/- 1.8 mosmol X l-1. With both modes of rehydration, the increases in PRA, AVP and cortisol were blunted; only ISO prevented the rise in PA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The purpose of this study was to determinewhether hypohydration reduces skeletal muscle endurance and whetherincreased H+ andPi might contribute to performancedegradation. Ten physically active volunteers (age 21-40 yr)performed supine single-leg, knee-extension exercise to exhaustion in a1.5-T whole body magnetic resonance spectroscopy (MRS) system wheneuhydrated and when hypohydrated (4% body wt).31P spectra were collected at arate of one per second at rest, exercise, and recovery, and weregrouped and averaged to represent 10-s intervals. The desired hydrationlevel was achieved by having the subjects perform 2-3 h ofexercise in a warm room (40°C dry bulb, 20% relative humidity)with or without fluid replacement 3-8 h before the experiment.Time to fatigue was reduced (P < 0.05) by 15% when the subjects were hypohydrated [213 ± 12 vs. 251 ± 15 (SE) s]. Muscle strength was generally notaffected by hypohydration. Muscle pH andPi/-ATP ratio were similarduring exercise and at exhaustion, regardless of hydration state. The time constants for phosphocreatine recovery were also similar betweentrials. In summary, moderate hypohydration reduces muscle endurance,and neither H+ norPi concentration appears to berelated to these reductions.

  相似文献   

10.
The purpose of this investigation was to describe the dynamics of carnitine metabolism during an acute episode of exercise. Twenty-eight subjects (14 male; 14 female) exercised for 40 min on a bicycle ergometer at 55% of their maximal aerobic capacities. Blood samples were obtained at rest, 10, 20, 30, and 40 min of exercise, and 15-min postexercise. Muscle biopsies of the vastus lateralis were performed before and after exercise. Results demonstrated that the percent of acylated plasma carnitine increased significantly (P less than 0.05) across all subjects from 17.3% at rest to 22.3% by 40 min of exercise and continued to increase to 22.8% 15-min postexercise. Total muscle carnitine levels fell significantly (P less than 0.001) across all subjects from 4.21 (1.27) (means +/- SD) mumol/g wet weight at rest to 3.29 (1.27) mumol/g wet weight after exercise. Well-trained males and females had almost identical levels of muscle carnitine [4.35(1.86) and 4.34 (0.64) mumol/g wet weight, respectively]. These levels were somewhat higher but not significantly higher than their moderately trained counterparts [3.86(1.34) and 4.28(1.18) males and females, respectively]. Carnitine palmitoyl transferase (E.C. 2.3.1.21) activity also declined significantly (P less than 0.05) across all subjects after exercise. This study is the first to demonstrate a potential loss of acylated carnitine forms from muscle to plasma during acute exercise, possibly reflecting an increase in carnitine turnover. Alterations in carnitine status may represent another metabolic adaptation to chronic exercise training.  相似文献   

11.
The effect of maximal treadmill exercise on plasma concentrations of vasopressin (AVP); renin activity (PRA); and aldosterone (ALDO) was studied in nine female college basketball players before and after a 5-month basketball season. Pre-season plasma AVP increased (p less than 0.05) from a pre-exercise concentration of 3.8 +/- 0.5 to 15.8 +/- 4.8 pg X ml-1 following exercise. Post-season, the pre-exercise plasma AVP level averaged 1.5 +/- 0.5 pg X ml-1 and increased to 16.7 +/- 5.9 pg X ml-1 after the exercise test. PRA increased (p less than 0.05) from a pre-exercise value of 1.6 +/- 0.6 to 6.8 +/- 1.7 ngAI X ml-1 X hr-1 5 min after the end of exercise during the pre-season test. In the post-season, the pre-exercise PRA was comparable (2.4 +/- 0.6 ngAI X ml- X hr-1), as was the elevation found after maximal exercise (8.3 +/- 1.9 ngAI X ml- X hr-1). Pre-season plasma ALDO increased (p less than 0.05) from 102.9 +/- 30.8 pg X ml-1 in the pre-exercise period to 453.8 +/- 54.8 pg X ml-1 after the exercise test. In the post-season the values were 108.9 +/- 19.4 and 365.9 +/- 64.4 pg X ml-1, respectively. Thus, maximal exercise in females produced significant increases in plasma AVP, renin activity, and ALDO that are comparable to those reported previously for male subjects. Moreover, this response is remarkably reproducible as demonstrated by the results of the two tests performed 5 months apart.  相似文献   

12.
We examined whether enhanced cardiovascular and thermoregulatory responses during exercise after short-term aerobic training in a warm environment were reversed when plasma volume (PV) expansion was reversed by acute isotonic hypohydration. Seven young men performed aerobic training at the 70% peak oxygen consumption rate (Vo(?peak)) at 30°C atmospheric temperature and 50% relative humidity, 30 min/day for 5 days. Before and after training, we performed the thermoregulatory response test while measuring esophageal temperature (T(es)), forearm skin vascular conductance, sweat rate (SR), and PV during 30 min exercise at the metabolic rate equivalent to pretraining 65% Vo(?peak) in euhydration under the same environment as during training in four trials (euhydration and hypohydration, respectively). Hypohydration targeting 3% body mass was attained by combined treatment with low-salt meals to subjects from ~48 h before the test and administration of a diuretic ~4 h before the test. After training, the T(es) thresholds for cutaneous vasodilation and sweating decreased by 0.3 and 0.2°C (P = 0.008 and 0.012, respectively) when PV increased by ~10%. When PV before and after training was reduced to a similar level, ~10% reduction from that in euhydration before training, the training-induced reduction in the threshold for cutaneous vasodilation increased to a level similar to hypohydration before training (P = 0.093) while that for sweating remained significantly lower than that before training (P = 0.004). Thus the enhanced cutaneous vasodilation response after aerobic training in a warm environment was reversed when PV expansion was reversed while the enhanced SR response remained partially.  相似文献   

13.
Experiments were conducted to estimate the flight capabilities of fire ant (Solenopsis invicta Buren) alates. These experiments were designed to: (1) quantify energetic expenditure during fixed flight; (2) characterize metabolic substrates of male and female alates; (3) estimate flight speed of male and female alates; and (4) quantify wingbeat frequency and water loss of females during flight. Flying males (in closed-system respirometry) increased metabolic rate approximately 38.4-fold over resting rate. Females increased metabolic rate approximately 51-fold (closed-system respirometry) and 48-fold (flow-through respirometry) over resting rate. Female alates had a mean respiratory quotient (RQ) of 0.999, indicating reliance on carbohydrates. The mean RQ of males was significantly lower (0.867). The flight speed of females on a circular flight mill averaged approximately 0.7 m s(-1), and increased with temperature but decreased with increasing body mass. The flight speed of males was 43% greater (approximately 1.0 m s(-1)) and increased linearly with temperature and increasing body mass. Female alates lost an average of 1.8 mg water h(-1) during flight. A simple energetics model, combined with previous work on the nutrient content of S. invicta and patterns of CO(2) release observed in this study, indicate that the flight capability of S. invicta female alates is limited to <5 km in the absence of wind.  相似文献   

14.
The resting content and use of myocellular triacylglycerol (MCTG) during 90 min of submaximal exercise [60% of peak oxygen uptake (VO(2 peak))] were studied in 21 eumenorrheic female and 21 male subjects at different training levels [untrained (UT), moderately trained (MT), and endurance trained (END)]. Males and females were matched according to their VO(2 peak) expressed relative to lean body mass, physical activity level, and training history. All subjects ingested the same controlled diet for 8 days, and all females were tested in the midfollicular phase of the menstrual cycle. Resting MCTG, measured with the muscle biopsy technique, averaged 48.4 +/- 4.2, 48.5 +/- 8.4, and 52.2 +/- 5.8 mmol/kg dry wt in UT, MT, and END females, respectively, and 34.1 +/- 4.9, 31.6 +/- 3.3, and 38.4 +/- 3.0 mmol/kg dry wt in UT, MT, and END males, respectively (P < 0.001, females vs. males in all groups). Exercise decreased MCTG content in the female subjects by an average of 25%, regardless of training status, whereas in the male groups MCTG content was unaffected by exercise. The arterial plasma insulin concentration was higher (P < 0.05) and the arterial plasma epinephrine concentration was lower (P < 0.05) in the females than in the males at rest and during exercise. MCTG use was correlated to the resting concentration of MCTG (P < 0.001). We conclude that resting content and use of MCTG during exercise are related to gender and furthermore are independent of training status.  相似文献   

15.
The effect of castration and of administration of charcoal-treated porcine follicular fluid (pFF) containing inhibin-like activity on plasma concentration of gonadotropic hormones was studied in neonatal pigs. Plasma follicle-stimulating hormone (FSH) concentration averaged 25.1 +/- 1.5 ng/ml (mean +/- SEM) in 1-wk-old females and gradually declined to 20.2 +/- 0.7 ng/ml 6 wk later. Ovariectomy did not significantly influence plasma FSH concentration. In males, concentration averaged 8.0 +/- 0.7 ng/ml before castration but rose significantly within 2 days after castration. Injection of luteinizing hormone-releasing hormone (LHRH) did not influence plasma FSH concentrations in intact males, but did in females and in 7-wk-old males castrated at 1 wk. Plasma luteinizing hormone (LH) concentrations in 1-wk-old females (2.2 +/- 0.4 ng/ml) gradually declined and were not influenced by castration. Concentrations of plasma LH in 1-wk-old male piglets (2.8 +/- 0.7 ng/ml) were not significantly influenced by castration within 2 days but were significantly higher 6 wk later. LHRH induced a significant rise in plasma LH concentrations in all animals. Injection of pFF resulted in a decline of plasma FSH concentrations in intact and castrated males and in intact females, but did not influence plasma LH concentrations. These data demonstrate a sex-specific difference in the control of plasma FSH, but not in plasma LH concentration in the neonatal pig. Plasma FSH concentrations, but not plasma LH concentrations, are suppressed by testicular hormones in 1-wk-old piglets. Plasma FSH concentrations can be suppressed in both neonatal male and female pigs by injections of pFF.  相似文献   

16.
Kingston, Janene K., Raymond J. Geor, and Laura JillMcCutcheon. Rate and composition of sweat fluid losses areunaltered by hypohydration during prolonged exercise in horses.J. Appl. Physiol. 83(4):1133-1143, 1997. Rate and ionic composition of sweat fluid losses and partitioning of evaporative heat loss into respiratory and cutaneous components were determined in six horses during three 15-km phases of exercise at ~40% of maximalO2 uptake. Pattern of change insweat rate (SR) and composition was similar during each phase. SRincreased rapidly for the first 20 min of exercise but remained at~24-28ml · m2 · min1during the remainder of each phase. Similarly, the concentrations of Naand Cl in sweat increased until 30 min of exercise but were unchangedthereafter. Sweat osmolality and concentrations of Na and Cl werepositively correlated with SR. Sweat K concentration decreased duringexercise but was not correlated with SR. Fluid losses were 33.8 ± 1.5 liters, resulting in decreases of ~21% in plasma volume and~11% in total body water. The ~6% hypohydration was notassociated with an alteration in SR, sweat composition, or heatstorage. Respiratory and cutaneous evaporative heat loss represented~23 and 70%, respectively, of the total heat dissipated, and thepartitioning of heat loss was similar in each exercise phase. Weconclude that SR and the relative proportions of respiratory andcutaneous evaporative heat loss are unchanged in horses during prolonged low-intensity exercise despite moderate hypohydration.

  相似文献   

17.
The mechanical efficiency of the leg extensor musculature of men and women was examined with a special "sledge ergometer". The subjects (ten males and ten females) performed pure positive work, pure negative work and a combination of negative and positive work (stretch-shortening cycle). The mechanical efficiency of pure positive work was on average 19.8 +/- 1.2% for female subjects and 17.4 +/- 1.2% for male subjects (t = 4.12, P less than 0.001), although the work intensity was equal in both groups. The mechanical efficiency of pure negative work was slightly lower in women than in men (59.3 +/- 14.4% vs 75.6 +/- 29.3%). The mechanical efficiency of positive work (eta +) in a stretch-shortening cycle exercise was 38.1 +/- 6.8% in men and 35.5 +/- 6.9% in women. The utilization of prestretch was better for female subjects at low prestretch levels, whereas males showed greater potentiation of elastic energy at higher prestretch levels. Regarding absolute Wel (work due to elasticity) values, male subjects showed greater (P less than 0.001) values than females (189 +/- 44 J vs 115 +/- 36 J, respectively). Fundamental differences in neuromuscular functions in men and women might cause the differences in the results obtained.  相似文献   

18.
Male and female strategies were compared for wild–living populations of coypu (Myocastor coypus Molina) censused during two years in marshlands of central–west France. In a habitat composed of a canal network bisecting pasture fields typically 0–5 ha in size, coypu movements were largely restricted to stretches of open water, though males explored further from water than females. Adults occupied home ranges with a mean size of 3–82 ha or 1. 19 km of canal, males on average moving faster over a larger area and using a greater length of canal than females. Movements within partially shared ranges were most positively coordinated between male–female pairs, while male–male interactions were less frequent. Juvenile coypus were largely absent from the late winter population. Synchronization of litters in March–April resulted in a peak of juveniles in early summer. The sex ratio of juveniles and sub–adults reversed from a male bias in summer to a female bias in autumn. Population densities peaked in November at 4 ha, with a significant female bias (1M: 1–6F). In the same month, a neighbouring population at lower density (1 ha-l after treatment with rodenticide) was significantly male biased (2–7M:lF) and may therefore have been acting as a sink for males dispersing from the high density population. Transients comprised 63% of the population. Females were resident longer than males, 22% of females remaining at least 5 months against 6% of males. Dispersal was recorded only for males aged 6 months or older. The general result, of exploratory behaviour amongst males contrasting with the establishment of longer term home ranges by females, is discussed in terms of male reproductive success and the capacity for females to influence nutrient supply to their litters.  相似文献   

19.
The purpose of this investigation was to evaluate the influence of lean body mass (LBM) and body weight (BW) on the thermoregulatory responses and endurance performance of male and female athletes in warm, humid environments. Ten (5 males, 5 females) healthy, moderately trained athletes with varying physiques performed a self-paced 30-min run on a motorized treadmill in warm (30 degrees C), humid (60% relative humidity) conditions, with the aim of running the greatest distance possible. Males completed one trial, while females completed two trials, one in each of the follicular (Fol) and luteal (Lut) phases of the menstrual cycle in a randomized fashion. There were no significant differences among groups for distance run (males, 5.2 +/- 0.4 km; Fol, 4.9 +/- 0.1 km; Lut, 4.7 +/- 0.1 km). However, following analysis of covariance accounting for LBM and BW, the distances run were significantly different. The adjusted means for distance run after accounting for LBM were 3.4 km for males (P < 0.05), 5.9 km for Fol, and 5.6 km for Lut. Adjusted means accounting for BW resulted in run distances of 6.5 km for males (P < 0.05), 4.2 km for Fol, and 4.0 km for Lut. Thermoregulatory responses such as rectal and skin temperatures were similar among groups. Avenues of heat loss and gain were altered relative to the menstrual cycle phase. The results suggest that one reason for the disparity in performance between male and female athletes over similar race distances might in part be related to unequal body characteristics and in particular to differences in LBM.  相似文献   

20.
Five women were studied during exercise and passive heating to determine whether PV dynamics were affected by the menstrual cycle. The exercise bout (80% VO2 peak) on a modified cycle ergometer and the passive heat stress were done in a hot environment (Ta = 50 degrees C, Pw = 1.61 kPa) during the follicular and luteal phase. Esophageal temperature (Tes) was measured continuously. Blood samples were drawn after each 0.2 degree C increase in Tes and VO2 was measured at that time. Initial PV was estimated at rest during the follicular phase. PV changes from rest were calculated at each Tes from Hb and Hct. During passive heating, PV decreased by a mean volume of 156 (+/- 80) ml to 2.83 (+/- 0.09) l in the follicular phase. During the luteal phase, there was a larger volume reduction (300 +/- 100 ml) during passive heating, and the final PV was lower than in the follicular phase and averaged 2.47 +/- 0.18 l. During exercise, PV decreased 463 (+/- 90) ml to 2.50 (+/- 0.11) l in the follicular and 381 (+/- 70) ml to 2.50 (+/- 0.23) l in the luteal phase. These data indicate that there is a menstrual cycle effect on PV dynamics during passive heating such that more fluid is shifted out of the vasculature during the luteal phase. During severe exercise there is a greater fluid loss during the follicular phase, yet the final PV is not different between phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号