共查询到20条相似文献,搜索用时 15 毫秒
1.
Early and late effects of alloxan diabetes and subsequent treatment with insulin on the temperature kinetics properties of
succinate oxidase (SO) activity in rat kidney mitochondria were examined. In diabetic animals SO activity increased significantly
and the increase was more pronounced at the late stage. Insulin treatment partially restored SO activity. However, the effect
was temperature-dependent. In diabetic animals the energy of activation in the low temperature range (EL) increased significantly while that in the high temperature range (EH) decreased. The latter seems to be responsible for improving catalytic efficiency in the diabetic state. Insulin treatment
normalized EH only in the 1-month diabetic group. The phase transition temperature (Tt), decreased in diabetic animals. Insulin treatment
caused an increase beyond the control value in Tt in 1-month diabetic animals. The results suggest that insulin status-dependent
modulation of SO activity is a complex process. 相似文献
2.
Abstract: The effect of alloxan diabetes on the activity of monoamine oxidase was studied in three regions of the rat brain at various time intervals after the onset of diabetes. It was observed that monoamine oxidase activity was decreased at early time intervals after diabetes, followed by a recovery in all three regions of the brain. A reversal of the effect was observed with insulin administration to the diabetic rats. 相似文献
3.
Differential screening of a cDNA library prepared from mRNA of the hippocampus of estrogen-stimulated ovariectomized female rats led to the identification of a single estrogen-induced clone. Analysis of the sequence identified this cDNA as the gene coding for subunit III of the enzyme cytochrome c oxidase. Cytochrome c oxidase subunit III mRNA levels significantly increased as early as 3 h following the administration of a single dose of hormone. This effect was visible in the hippocampus and in the hypothalamus, but not in the other brain areas examined. Because subunit III of the cytochrome c oxidase is of mitochondrial origin, the mechanism involved in the estrogenic effect is still unknown. The observation that the activity of cytochrome c oxidase can also be induced by estrogens in the hippocampus indicates that this induction may be secondary to the increased expression of the other subunits of cytochrome c oxidase or to the general increase of neuronal activity. 相似文献
4.
Cortical Cytochrome Oxidase Activity Is Reduced in Alzheimer's Disease 总被引:16,自引:5,他引:16
Abstract: A defect in energy metabolism may play a role in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease. In the present study, we examined the activities of the enzymes that catalyze oxidative phosphorylation in frontal, temporal, parietal, and occipital cortex from Alzheimer's disease patients and age-matched controls. Complex I and complex II–III activities showed a small decrease in occipital cortex, but were unaffected in the other cortical areas. The most consistent change was a significant decrease of cytochrome oxidase (complex IV) activity of 25–30% in the four cortical regions examined. These results provide further evidence of a cytochrome oxidase defect in Alzheimer's disease postmortem brain tissue. A deficiency in this key energy-metabolizing enzyme could lead to a reduction in energy stores and thereby contribute to the neurodegenerative process. 相似文献
5.
Effect of thyroidectomy (Tx) and subsequent treatment with 3,5,3′-triiodo-l-thyronine (T3) or replacement therapy (TR) with T3 + l-thyroxine (T4) on the temperature kinetics properties of FoF1 adenosine triphosphatase (ATPase, ATP synthase, H+-translocating ATP synthase EC 3.6.3.14)
and succinate oxidase (SO) and on the lipid/phospholipid makeup of rat kidney mitochondria were examined. Tx lowered ATPase
activity, which T3 treatment restored. SO activity was unchanged in Tx but decreased further by T3 treatment. TR restored both activities. The energies of ATPase activation in the high and low temperature ranges (E
H and E
L) increased in the Tx and T3 animals with decrease in phase transition temperature (Tt). TR restored E
H and E
L but not Tt to euthyroid levels. E
H and E
L of SO decreased in Tx animals. T3 and TR restored E
H whereas E
L was restored only in the TR group; Tt increased in both groups. Total phospholipid and cholesterol contents decreased significantly in Tx and T3-treated animals. In Tx animals, sphingomyelin (SPM) and phosphatidylcholine (PC) components decreased, while phosphatidylserine
(PS) and diphosphatidylglycerol components increased. T3 and TR treatments caused decreases in SPM, phosphatidylinositol and PS. PC and phosphatidylethanolamine (PE) increased in the T3 group. TR resulted in increased lysophospolipids and PE. Changes in kinetic parameters of the two enzymes were differently correlated
with specific phospholipid components. Both T3 and TR regimens were unable to restore normal membrane structure-function relationships. 相似文献
6.
Abstract: The effect of agents that change the respiratory state of the mitochondrion on tyramine oxidation was investigated. Neither uncoupler nor ADP and Pt in the presence of substrate produced any change in the rate of tyramine oxidation, as judged by direct measurement of tyramine oxidation or by H2 O2 production. We conclude that previously reported depression of monoamine oxidase activity by stimulated respiration was due to oxygen depletion. 相似文献
7.
NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot techniques. Kinetic studies using cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P450c (P450IA1) as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. Our results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue. 相似文献
8.
9.
Jeffrey J. Regan Benjamin E. Ramirez Jay R. Winkler Harry B. Gray Bo G. Malmström 《Journal of bioenergetics and biomembranes》1998,30(1):35-39
Warburg showed in 1929 that the photochemical action spectrum for CO dissociation from cytochrome c oxidase is that of a heme protein. Keilin had shown that cytochrome a does not react with oxygen, so he did not accept Warburg's view until 1939, when he discovered cytochrome a
3. The dinuclear cytochrome a
3-CuB unit was found by EPR in 1967, whereas the dinuclear nature of the CuA site was not universally accepted until oxidase crystal structures were published in 1995. There are negative redox interactions between cytochrome a and the other redox sites in the oxidase, so that the reduction potential of a particular site depends on the redox states of the other sites. Calculated electron-tunneling pathways for internal electron transfer in the oxidase indicate that the coupling-limited rates are 9×105 (Cu A a) and 7×106 s–1 (a a
3); these calculations are in reasonable agreement with experimental rates, after corrections are made for driving force and reorganization energy. The best CuA-a pathway starts from the ligand His204 and not from the bridging sulfur of Cys196, and an efficient a-a
3 path involves the heme ligands His378 and His376 as well as the intervening Phe377 residue. All direct paths from CuA to a
3 are poor, indicating that direct CuA a
3 electron transfer is much slower than the CuA a reaction. The pathways model suggests a means for gating the electron flow in redox-linked proton pumps. 相似文献
10.
Stephen J. Kish Frank Mastrogiacomo Mark Guttman Yoshiaki Furukawa Jan-Willem Taanman Slobodan Dozic Massimo Pandolfo Jacques Lamarche Linda DiStefano & Li-Jan Chang 《Journal of neurochemistry》1999,72(2):700-707
Abstract : Controversy exists as to the clinical importance, cause, and disease specificity of the cytochrome oxidase (CO) activity reduction observed in some patients with Alzheimer's disease (AD). Although it is assumed that the enzyme is present in normal amount in AD, no direct measurements of specific CO protein subunits have been conducted. We measured protein levels of CO subunits encoded by mitochondrial (COX I, COX II) and nuclear (COX IV, COX VIc) DNA in autopsied brain of patients with AD whom we previously reported had decreased cerebral cortical CO activity. To assess disease specificity, groups of patients with spinocerebellar ataxia type I and Friedreich's ataxia were also included. As compared with the controls, mean protein concentrations of all four CO subunits were significantly decreased (-19 to -47%) in temporal and parietal cortices in the AD group but were not significantly reduced (-12 to -17%) in occipital cortex. The magnitude of the reduction in protein levels of the CO subunits encoded by mitochondrial DNA (-42 to -47%) generally exceeded that encoded by nuclear DNA (-19 to -43%). In the spinocerebellar ataxia disorders, COX I and COX II levels were significantly decreased in cerebellar cortex (-22 to -32%) but were normal or close to normal in cerebral cortex, an area relatively unaffected by neurodegeneration. We conclude that protein levels of mitochondrial- and nuclear-encoded CO subunits are moderately reduced in degenerating but not in relatively spared brain areas in AD and that the decrease is not specific to this disorder. The simplest explanation for our findings is that CO is decreased in human brain disorders as a secondary event in brain areas having reduced neuronal activity or neuronal/synaptic elements consequent to the primary neurodegenerative process. 相似文献
11.
Paula Clemente Susana Peralta Alberto Cruz-Bermudez Lucía Echevarría Flavia Fontanesi Antoni Barrientos Miguel A. Fernandez-Moreno Rafael Garesse 《The Journal of biological chemistry》2013,288(12):8321-8331
Cytochrome c oxidase (COX) or complex IV of the mitochondrial respiratory chain plays a fundamental role in energy production of aerobic cells. In humans, COX deficiency is the most frequent cause of mitochondrial encephalomyopathies. Human COX is composed of 13 subunits of dual genetic origin, whose assembly requires an increasing number of nuclear-encoded accessory proteins known as assembly factors. Here, we have identified and characterized human CCDC56, an 11.7-kDa mitochondrial transmembrane protein, as a new factor essential for COX biogenesis. CCDC56 shares sequence similarity with the yeast COX assembly factor Coa3 and was termed hCOA3. hCOA3-silenced cells display a severe COX functional alteration owing to a decreased stability of newly synthesized COX1 and an impairment in the holoenzyme assembly process. We show that hCOA3 physically interacts with both the mitochondrial translation machinery and COX structural subunits. We conclude that hCOA3 stabilizes COX1 co-translationally and promotes its assembly with COX partner subunits. Finally, our results identify hCOA3 as a new candidate when screening for genes responsible for mitochondrial diseases associated with COX deficiency. 相似文献
12.
Evidence is available showing that the coupling efficiency of the proton pump in cytochrome c oxidase of mitochondria can under certain conditions decrease significantly below the maximum attainable value. The view is developed that slips in the proton pump of cytochrome c oxidase represent an intrinsic switch mechanism which regulates the relative contribution of energy transfer and respiratory protection against oxygen toxicity by the oxidase. 相似文献
13.
Jarmuszkiewicz W Sluse FE Hryniewiecka L Sluse-Goffart CM 《Journal of bioenergetics and biomembranes》2002,34(1):31-40
The steady-state activity of the two quinol-oxidizing pathways of Acanthamoeba castellanii mitochondria, the phosphorylating cytochrome pathway (i.e. the benzohydroxamate(BHAM)-resistant respiration in state 3) and the alternative oxidase (i.e. the KCN-resistant respiration), is shown to be fixed by ubiquinone (Q) pool redox state independently of the reducing substrate (succinate or exogenous reduced nicotinamide adenine dinucleotide (NADH)), indicating that the active Q pool is homogenous. For both pathways, activity increases with the Q reduction level (up to 80%). However, the cytochrome pathway respiration partially inhibited (about 50%) by myxothiazol decreases when the Q reduction level increases above 80%. The decrease can be explained by the Q cycle mechanism of complex III. It is also shown that BHAM has an influence on the relationship between the rate of ADP phosphorylation and the Q reduction level when alternative oxidase is active, and that KCN has an influence on the relationship between the alternative oxidase activity and the Q reduction level. These unexpected effects of BHAM and KCN observed at a given Q reduction level are likely due to functional connections between the two pathways activities or to protein–protein interaction. 相似文献
14.
以温室中培养的龙井43茶树2年生扦插苗为实验材料,采用分光光度计法测定了正常茶树叶片中多酚氧化酶(PPO)活性变化的日节律,以及茉莉酸甲酯(MeJA)处理和机械损伤诱导不同叶位叶片PPO活性的时序变化.结果表明:正常茶树叶片中PPO活性高峰出现在4:00;MeJA处理茶树30 h后,其叶片PPO活性与对照间呈现显著差异,于处理后174 h达到最高峰;半定量RT-PCR检测结果发现,MeJA诱导茶树叶片PPO基因表达量最高峰出现在处理后126 h,比生化测定结果提前了48 h.机械损伤可诱导处理叶及其下叶位叶片PPO活性迅速升高,表现出一定系统性;机械损伤叶片与系统诱导叶片间PPO活性随时间变化的趋势基本平行,但机械损伤叶片中PPO活性始终高于系统诱导叶片.本研究证明,MeJA和机械损伤均可诱导茶树叶片中PPO活性的显著增强,进一步证实茉莉酸(JA)信号转导途径在茶树的直接防御反应中具有重要作用. 相似文献
15.
Hindupur K. Anandatheerthavarada Joseph F. Williams Lynn Wecker 《Journal of neurochemistry》1993,60(5):1941-1944
Abstract: The objective of these studies was to determine whether chronic administration of nicotine altered the cytochrome P450 (P450) monooxygenase system in rat brain. Male Sprague-Dawley rats received injections of nicotine bitartrate (1.76 mg/kg, s.c, twice daily for 10 days), and total cytochrome P450 content, the activity of N ADPH-cytochrome c reductase, and the activities and relative abundance of P4502B1 and P4502B2 (P4502B1/2) were determined in microsomal fractions from rat brain. The content of P450 increased significantly (p < 0.02) in all brain regions examined from nicotine-injected rats: the largest increase (208% of control) was in frontal cortex and the smallest increase (122% of control) in cerebellum. The activity of NADPH-cytochrome c reductase was unaltered by nicotine administration. Benzyloxyresorufin O-dealkylase (BROD) and pentoxyresorufin O-dealkylase (PROD) activities, mediated by P4502B1/2, increased significantly (p < 0.02) following nicotine administration; the largest increase (213-227% of control) was in frontal cortex. Western blots of microsomal proteins indicated that the increase in enzymatic activity was associated with an increase in content of P4502B1/2 immunoreactive proteins. In contrast to brain, total P450 content, activities of NADPH-cytochrome c reductase, BROD, and PROD, and levels of P4502B1 /2 immunoreactive proteins in liver were unaffected by chronic nicotine administration. Results indicate that chronic nicotine administration regulates the expression of P4502B1/2 in brain and that at the dose schedule used this effect occurs without a demonstrable effect on the hepatic P450 monooxygenase system. 相似文献
16.
Deamination of 5-Hydroxytryptamine by Both Forms of Monoamine Oxidase in the Rat Brain 总被引:5,自引:3,他引:5
Abstract: K m and V max values of monoamine oxidase (MAO) A and B towards 5-hydroxytryptamine were determined for rat brain homogenates after the in vitro inhibition of one of the two forms by the selective inhibitors clorgyline and l -deprenyl. K m values of 178 and 1170μ m , and V max values of 0.73 and 0.09 nmol·mg protein−1 ·min−1 towards 5-hydroxytryptamine were found for MAO-A and -B, respectively. The K 1 for 5-hydroxytryptamine as a competitive inhibitor of β-phenethylamine oxidation by MAO-B was found to be 1400 μm. The significance of these findings is discussed. 相似文献
17.
Nguyen T. Buu 《Journal of neurochemistry》1985,45(2):470-476
An increase of free 3,4-dihydroxyphenylethylamine (DA, dopamine) in the rat brain such as is found following 3,4-dihydroxyphenylalanine (L-DOPA) administration or an intraventricular injection of free dopamine did not result in DA sulfate formation, despite the presence of phenolsulfotransferase activity in various regions of the brain and the high affinity of DA for this enzyme. However, when rats were pretreated with pargyline, a monoamine oxidase inhibitor, the same treatment with L-DOPA or free DA led to active synthesis of DA sulfate. The increase in DA sulfate was significantly correlated with the degree of monoamine oxidase inhibition and directly proportional to free DA concentrations in the hypothalamus (r = 0.86), striatum (r = 0.54), and brainstem (r = 0.89). The highest ratio of DA sulfate to free DA was found in the hypothalamus, suggesting that sulfoconjugation is most active in this region. Prior treatment of rats with 6-hydroxydopamine did not decrease DA sulfate concentrations, indicating that sulfoconjugation occurs most likely in extraneuronal tissues not destroyed by the neurotoxin. The results are compatible with the notion that phenolsulfotransferase may be highly compartmentalized and that inhibition of monoamine oxidase allows the newly generated free DA to become accessible to the sulfoconjugating enzyme, resulting in increase in DA sulfation. 相似文献
18.
Hypothyroidism of mild intensity was obtained with prenatal and neonatal submission of Long-Evans rats to an iodide-rich diet. Chronic daily administration of methimazole to iodide-supplemented Long-Evans pups or to iodine-deprived Charles-River rats through the first 29–30 days of age provoked severe hypothyroidism. Monoamine oxidase type A (MAO-A) and not type B (MAO-B) activity was consistently, although slightly (by approximately 20%), increased in the hypothyroid brain. Triiodothyronine (T3)-induced hyperthyroidism did not affect MAO activity. Replacement therapy with T3 did not normalize MAO-A activity in hypothyroidism. Methimazole displayed a competitive and reversible in vitro inhibition of MAO-A but not MAO-B activity. Although this effect was obtained at concentrations far higher than those estimated to reach the brain after a single injection of the goiterogen, the occurrence of accumulation processes in the metabolism-deficient hypothyroid neonate rs cannot be excluded. Thus, MAO-A activity might be either directly depressed during the goiterogenic treatment, or increased as the result of some kind of rebound effect after interruption of methimazole administration. 相似文献
19.
Buratta M Piccotti L Giannini S Gresele P Roberti R Corazzi L 《The Journal of membrane biology》2006,212(3):199-210
In brain mitochondria, phosphate- and Ca2+-dependent cytocrome c (cyt c) release reveals pools that interact differently with the inner membrane. Detachment of the phosphate-dependent pool did
not influence the pool released by Ca2+. Cyt c pools were also detected in a system of cyt c reconstituted in cardiolipin (CL) liposomes. Gradual binding of cyt c (1 nmol) to CL/2–[12-(7-nitrobenz- 2-oxa-1,3-diazol-4-yl)amino]dodecanoyl-1-hexadecan oyl-sn-glycero-3-phosphocholine (NBDC12-HPC) liposomes (10 nmol) produced NBD fluorescence quenching up to 0.4 nmol of added protein. Additional bound cyt c did not produce quenching, suggesting that cyt c-CL interactions originate distinct cyt c pools. Cyt c was removed from CL/NBDC12-HPC liposomes by either phosphate or Ca2+, but only Ca2+ produced fluorescence dequenching and leakage of encapsulated 8-aminonaphthalene-1,3,6-trisulfonic acid/p-xylene-bis-pyridinium bromide. In mitochondria, complex IV activity and mitochondrial membrane potential (Δψm) were not affected by the release of the phosphate-dependent cyt c pool. Conversely, removal of cyt c by Ca2+ caused inhibition of complex IV activity and impairment of Δψm. In a reconstituted system of mitochondria, nuclei and supernatant, cyt c detached from the inner membrane was released outside mitochondria and triggered events leading to DNA fragmentation. These
events were prevented by enriching mitochondria with exogenous CL or by sequestering released cyt c with anti-cyt c antibody. 相似文献
20.
The activity of the cyanide-resistant alternative oxidase (pathway) of Yarrowia lipolytica mitochondria was studied as a function of the activity of the major, cyanide-sensitive, cytochrome pathway. The contribution of the alternative oxidase to the total respiration of mitochondria was evaluated by measuring the rate of oxygen consumption in the presence of cyanide (an inhibitor of the cytochrome pathway). The potential activity of the cytochrome pathway was evaluated spectrophotometrically, by measuring the oxidation rate of cytochrome c by ferricyanide, which accepts electrons from complex III (cytochrome c) of this pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was accompanied by oxygen consumption due to the transfer of electrons through the alternative pathway. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation in the cytochrome pathway) completely inhibited the consumption of oxygen by the mitochondria. Under these conditions, the inhibition of the alternative pathway by benzohydroxamic acid failed to affect the transfer of electrons from cytochrome c to ferricyanide. Benzohydroxamic acid did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These findings indicate that the alternative pathway is unable to compete with the cytochrome respiratory chain for electrons. The alternative pathway transfers only electrons that are superfluous for the cytochrome chain. 相似文献