首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ADP on the activity of the plasma membrane (PM) H+‐ATPase of red beet ( Beta vulgaris L.) parenchyma discs was evaluated by analyzing the effect of increasing concentrations of ADP on the kinetics of the reaction. When the PM H+‐ATPase activity was assayed at pH 6.3, ADP behaved as a simple competitive inhibitor. When the activity was assayed at pH 7.1, ADP not only increased the apparent Km for MgATP but also decreased the Vmax of the reaction. When the C‐terminal domain of the PM H+‐ATPase was cleaved by controlled trypsin treatment or displaced by addition of lysophosphatidylcholine, only the competitive component of inhibition by ADP of the activity assayed at pH 7.1 was evident. The results are discussed in relation to the physiological relevance of the activation of the PM H+‐ATPase by displacement of the autoinhibitory C‐terminal domain.  相似文献   

2.
The H+/PPi stoichiometry of the mitochondrial H+‐PPiase from pea ( Pisum sativum L.) stem was determined by two kinetic approaches, and compared with the H+/substrate stoichiometries of the mitochondrial H+‐ATPase, and the vacuolar H+‐PPiase and H+‐ATPase. Using sub‐mitochondrial particles or preparations enriched in vacuolar membranes, the rates of substrate‐dependent H+‐transport were evaluated: by a mathematical model, describing the time‐course of H+‐gradient (ΔpH) formation; or by determining the rate of H+‐leakage following H+‐pumping inhibition by EDTA at the steady‐state ΔpH. When the H+‐transport rates were divided by those of PPi or ATP hydrolysis, measured under identical conditions, apparent stoichiometries of ca 2 were determined for the mitochondrial H+‐PPiase and H+‐ATPase, and for the vacuolar H+‐ATPase. The stoichiometry of the vacuolar H+‐PPiase was found to be ca 1. From these results, it is suggested that the mitochondrial H+‐PPiase may, in theory, function as a primary H+‐pump poised towards synthesis of PPi and, therefore, acting in parallel with the main H+‐ATPase.  相似文献   

3.
The cell and subcellular localization of plasma membrane P‐type H+‐ATPase in root apices from Zea mays L. (maize) seedlings was investigated by immunofluorescence microscopy. H+‐ATPase was highly abundant in cells of epidermal and endodermal tissues as well as in phloem companion cells. Strong immunodecoration was also observed in a subset of xylem parenchyma cells forming a connection between the endodermis and metaxylem. Evidence that these cells are equipped for active membrane transport raises the potential that they play a special role in xylem loading. Significant amounts of H+‐ATPase were also observed in outer cortical cells. Progressively less H+‐ATPase was seen in cortical cells further away from the root‐soil interface. The H+‐ATPase was asymmetrically localized within both epidermal and outer cortical cells, with higher levels detected on cell surfaces closest to the root‐soil interface. This asymmetric localization of H+‐ATPase is consistent with the hypothesis that transport systems for uptake of nutrients from the soil are selectively targeted to cell surfaces most exposed to nutrients.  相似文献   

4.
Erythrosin b, a potent inhibitor of the Ca2+‐ATPases and the Ca2+‐release channel (BCC1) in mechanosensitive tissue of Bryonia dioica Jacq., effectively suppresses a tendril's reaction to touch, suggesting that Ca2+‐transporters are involved in signal transduction in this organ. The Ca2+‐ATPase located in the endoplasmic reticulum (ER) represents a multiregulated enzyme that is stimulated by calmodulin (CaM), KCl and lysophospholipids. Limited proteolysis of ER‐membranes by trypsin results in an irreversible activation of the Ca2+‐ATPase and loss of the CaM sensitivity, presumably through removal of an autoinhibitory domain where CaM binds. Mild trypsination mimics the effects of CaM on Vmax and the affinity for Ca2+ and ATP. Irrespective of a trypsin treatment, the enzyme can be additionally stimulated by KCl and lysolipids, indicating that the sites of interaction for these effectors are not located in the domain removed by the protease. CaM‐stimulated ATPase activity was purified from microsomal and ER fractions using a combination of CaM‐affinity and anion‐exchange chromatography. The isolated polypeptide was enzymatically active, showed a calcium‐dependent mobility‐shift in SDS‐PAGE from 109 kDa in the absence of Ca2+ to 104 kDa in the presence of 10 m M CaCl2 and could be radiolabeled with [35S]‐CaM. The characteristics of the purified enzyme remained closely similar to those of the ER‐bound Ca2+‐transporting activity, including the enzymatic data, CaM stimulation, and the sensitivity towards a range of inhibitors.  相似文献   

5.
In February to March, wild brown trout Salmo trutta were captured by electrofishing in a natural watercourse (tributaries of the River Lille Aa, Denmark), individually tagged (Passive Integrated Transponders), and released. Representatives of the tagged brown trout were recaptured on the release sites in April by electrofishing and eventually caught in downstream smolt traps ('migrants') placed in the main river or by electrofishing ('residents') on the initial sites in June. Upon each capture, smolt appearance and body size were evaluated, and a non‐lethal gill biopsy was taken and used for Na+,K+‐ATPase analysis. Based on repetitive gill enzyme analysis in individual fish, a retrospective analysis of the rate of development in individual brown trout ultimately classified as migrants or residents was performed. Two months prior to migration, a bimodal morphological and physiological (gill Na+,K+‐ATPase) development concurred and was related to the subsequent differentiation into resident and migratory fractions of each population. This differentiation was unrelated to growth rate and body size of individual fish but skewed in favour of migratory females. Individuals destined to become migrants developed a smolt‐like appearance before the onset of migration and had higher rate of change of gill Na+,K+‐ATPase activity than fish remaining residents. The rate of change of gill Na+,K+‐ATPase activity was independent of the distance migrated to the trap (3–28 km). Thus in bimodal wild brown trout populations a major increase in enzyme activity takes place before migration is initiated and is a characteristic of migratory individuals only.  相似文献   

6.
The phytohormone abscisic acid (ABA) inhibits blue light‐induced apoplastic acidification of guard cells. The signal transduction pathway of ABA, mediating this response, was studied using ABA‐insensitive ( abi ) mutants of Arabidopsis thaliana . Apoplastic acidification was monitored with a flat tipped pH‐electrode placed on epidermal strips, in which only guard cells were viable. Blue light‐induced apoplastic acidification was reduced by vanadate and diethylstilbestrol (DES), indicating involvement of plasma membrane‐bound H+‐ATPases. In wild type epidermal strips, ABA reduced blue light‐induced acidification to 63%. The inhibition did not result from an increased cytoplasmic free Ca2+ concentration in guard cells, since factors that increase the Ca2+ concentration stimulated apoplastic acidification. Apoplastic acidification was not inhibited by ABA in abi1 and abi2 mutants. In abi1 epidermal strips ABA had no effect on the acidification rate, while it stimulated apoplastic acidification in abi2 . The ABA response in both mutants could be partially restored with protein kinase and phosphatase inhibitors. The abi1 guard cells became ABA responsive in the presence of okadaic acid, a protein phosphatase inhibitor. In abi2 guard cells the wild type ABA response was partially restored by K‐252a, a protein kinase inhibitor. Apoplastic inhibition is thus mediated through the protein phosphatases encoded by ABI1 and ABI2 . The results with protein kinase and protein phosphatase inhibitors indicate that ABI1 and ABI2 are involved in separate signal transduction pathways.  相似文献   

7.
Mitogen‐activated‐protein (MAP) kinases are components of signal transduction pathways which respond to a variety of stimuli in different organisms. In quiescent mammalian cells, the reactivation of cell division induced by different mitogenic signals is mediated by the rapid phosphorylation and activation of MAP kinases. We have investigated whether a similar situation occurs in plants, arresting tobacco ( Nicotiana tabacum L.) cells in the G1 phase of the cell cycle by phosphate starvation, and then inducing them to re‐enter the cell cycle by refeeding with phosphate. The transient activation of a kinase activity with the characteristics of a MAP kinase was observed during the first hour after refeeding, when the cells were still in G1. Using myelin basic protein (MBP) as substrate, an increase in this phosphorylating activity, with a molecular mass of approximately 45 kDa, was detected in cell extracts between 35 and 55 min after induction, in in‐gel phosphorylation assays and after immunoprecipitation with anti‐MAP kinase antibodies. The specificity of the antibodies against recombinant tobacco MAP kinases suggested that the MAP kinase p45ntf4 was responsible for the observed activity. These data provide experimental evidence for the activation in vivo of a plant MAP kinase, possibly mediating the reactivation of cell division in G1‐arrested cells.  相似文献   

8.
A protein kinase (PK‐II), phosphorylating casein, was purified from ripening mango, Mangifera indica L., fruit tissue. The purification procedure consisted of ammonium sulphate fractionation and sequential anion exchange‐, dye‐ligand, and gel filtration chromatography. The enzyme was purified over 500‐fold to near homogeneity with a recovery of 4%. The purified enzyme had a specific activity of ca 1 µmol mg−1 protein min−1 with ATP as phosphoryl donor. SDS‐PAGE results indicated a monomeric enzyme with molecular mass of 35 kDa. The protein kinase phosphorylated the acidic substrates casein and phosvitin, but had a very low activity with histones and protamine sulphate. The optimum pH and temperature for catalysis were determined to be 9.6 and 35°C, respectively. Mn2+ could not substitute for the Mg2+ needed for activity and Ca2+ had a slight stimulatory effect. Phospholipids, cAMP, calmodulin and the calmodulin inhibitor, calmidazolium, did not have any significant effect on activity, but the enzyme was inhibited by heparin and the specific inhibitor, CKI‐7, ( N ‐[2‐aminoethyl]‐5‐chloroisoquinoline‐8‐sulphonamide). Autoradiographic studies revealed the ability of the protein kinase to autophosphorylate as well as the presence of endogenous protein substrates in the crude extract. Initial velocity studies with casein as substrate and product inhibition studies with ADP indicated a Km (ATP) and Km (casein) of 14 µ M and 0.18 mg ml−1, respectively, with a Ki (ADP) of 3.2 µM. The enzyme can be classified as a casein kinase I type of protein kinase (EC 2.7.10).  相似文献   

9.
The control of ion concentration in the cytosol and the accumulation of ions in vacuoles are thought to be key factors in salt tolerance. These processes depend on the establishment in vacuolar membranes of an electrochemical H+ gradient generated by two distinct H+-translocating enzymes: a H+-PPase and a H+-ATPase. H+-lrans locating activities were characterized in tonoplast-enriched membrane fractions isolated by sucrose gradient centrifugation from sunflower ( Helianthus annuus L.) roots exposed for 3 days to different NaCl regimes. The 15/32% sucrose interface was enriched in membrane vesicles possessing a vacuolar-type H+-ATPase and a H+-PPase, as indicated by inhibitor sensitivity, pH optimum, substrate specificity, ion effects kinetic data and immunolabelling with specific antibodies. Mild and severe stress did not alter the pH profile, ion dependence, apparent Km nor the amount of antigenic protein of either enzyme. Saline treatments slightly increased K+-stimulaied PPase activity with no change in ATPase activity, while both PPi-dependent and NO3-sensitive ATP-dependent H+ transport activities were strongly stimulated. These results are discussed in terms of an adaptative mechanism of the moderately tolerant sunflower plants to salt stress.  相似文献   

10.
Protein kinases in plants have not been examined in detail, but protein phosphorylation has been shown to be essential for regulating plant growth via the signal transduction system. A Ca2+- and phospholipid-dependent protein kinase, possibly involved in the intracellular signal transduction system from rice leaves, was partially purified by sequential chromatography on DE52, Phenyl Superose and Superose 12. This protein kinase phosphorylated the substrate, histone III-S, in the presence of Ca2+ and phosphatidylserine. The apparent molecular mass of the Ca2+- and phosphatidylserine-dependent protein kinase (Ca2+/PS PK), determined by phosphorylation in SDS-polyacrylamide gel containing histone III-S, was 50 kDa. The protein kinase differed from Ca2+-dependent protein kinase (CDPK) in rice leaves in that Ca2+/PS PK showed phospholipid dependency and the molecular mass of Ca2+/PS PK exceeded that of CDPK. Investigations were carried out on changes in Ca2+/PS PK and CDPK activity in the cytosolic and membrane fractions during germination. The maximum activity of Ca2+/PS PK in the cytosolic fraction was observed before imbibition and that of CDPK in the membrane fraction was noted at 6 days following imbibition. Protein kinases are likely to regulate plant growth through protein phosphorylation.  相似文献   

11.
The plasma membrane H+-ATPase (EC 3.6.1.35) was purified by washing red beet ( Beta vulgaris L.) plasma membranes with sodium deoxycholate and separating the ATPase, solubilized with lysophosphatidylcholine, by centrifugation in a glycerol gradient. The purified H+-ATPase had a sedimentation coefficient of about 8S. In the absence of exogenous protein substrates, the purified ATPase preparation did not present protein kinase activity. Compared with the H+-ATPase in the plasma membrane, the purified ATPase presented a higher affinity for adenosine 5'-triphosphate (ATP) and a lower sensitivity to the inhibitors vanadate and inorganic phosphate. These changes in the kinetics of the ATPase could also be observed by treating the membranes with lysophosphatidylcholine, without purifying the enzyme. These results can be explained assuming that lysophosphatidylcholine interacts with the ATPase altering its kinetics probably by stimulating the transformation from the inhibitor-binding conformation E2 into the ATP-binding conformation E1.  相似文献   

12.
Abstract: A putative consensus domain for binding of 14-3-3 proteins to the plasma membrane (PM) H+-ATPase was identified in the highly-conserved sequence RSR(p)SWSF [where (p)S is Ser776 of the maize isoform MHA2], localized in the cytosolic stretch connecting transmembrane segments 8 and 9. A 15 amino acid biotinylated phosphopeptide comprising this motif: i) bound a recombinant 14-3-3 protein, ii) inhibited fusicoccin-induced stimulation of the PM H+-ATPase activity both in PM isolated from germinating radish ( Raphanus sativus L.) seedlings and in ER isolated from Saccharomyces cerevisiae expressing AHA1 (an isoform of Arabidopsis thaliana PM H+-ATPase), and iii) inhibited fusicoccin binding to PM isolated from germinating radish seedlings. The corresponding non-phosphorylated peptide was inactive in all the performed assays. Together, these results suggest that the cytosolic strand connecting transmembrane segments 8 and 9 of the PM H+-ATPase is a 14-3-3 binding site which might cooperate with the C-terminal domain of the'enzyme in generating a stable association between the H+-ATPase and 14-3-3 protein.  相似文献   

13.
A combination of fluorescein‐isothiocyanate (FITC), coumarin‐benzothiazol (BTC), and chlorotetracycline (CTC) fluorescence was used to simultaneously monitor apoplastic pH, apoplastic free Ca2+, and plasma membrane‐bound Ca2+. As early boron deficiency reactions supposedly include alterations of plasma membrane‐bound transport processes besides rapid effects on cell wall physical properties, the corresponding changes were followed in leaves and roots of Vicia faba L. cv. Troy.
Boron deficiency did not alter the apoplastic pH, but it reduced plasma membrane‐bound Ca2+ in roots at 4 h and leaves at 3 days after starting the deficiency treatment. The decrease in plasma membrane‐bound Ca2+ coincided with an increase in apoplastic free Ca2+ and K+, and occurred before the first visible symptoms were noticed.
It is proposed that less Ca2+ is bound to the plasma membrane due to a reduction of specific Ca2+‐binding sites (borate esters with vic ‐diols or polyhydroxy‐carboxylates) before plasma membrane integrity deteriorates.  相似文献   

14.
Abstract: Phosphorylation of myelin basic protein (MBP) in rat or rabbit brain myelin was markedly stimulated by Ca2+, and this reaction was not essentially augmented by exogenous phosphatidylserine or calmodulin or both. Solubilization of myelin with 0.4% Triton X-100 plus 4 m M EGTA, with or without further fractionation, showed that Ca2+-dependent phosphorylation of MBP required phosphatidylserine, but not calmodulin. DEAE-cellulose chromatography of solubilized myelin revealed a pronounced peak of protein kinase activity stimulated by a combination of Ca2+ and phosphatidylserine; a protein kinase stimulated by Ca2+ plus calmodulin was not detected. These findings clearly indicate an involvement of phospholipid-sensitive Ca2+-dependent protein kinase in phosphorylation of brain MBP, although a possible role for the calmodulin-sensitive species of Ca2+-dependent protein kinase in this reaction could not be excluded or established. Phosphorylation of MBP in solubilized rat myelin catalyzed by the phospholipid-sensitive enzyme was inhibited by adriamycin, palmitoylcarnitine, trifluoperazine, melittin, polymyxin B, and N -(6-aminohexyl)-5-chloro-l-naphthalenesulfonamide (W–7).  相似文献   

15.
Membrane-associated protein kinase activities in developing apple fruit   总被引:1,自引:0,他引:1  
Fruit development is a process involving various signals and gene expression. Protein phosphorylation catalysed by protein kinases is known to play a key role in eukaryotic cell signalling and so may be involved in the regulation of fruit development. Using the method of exogenous substrate phosphorylation, the activity of calcium-dependent and calmodulin-independent protein kinase (CDPK) that was stimulated by phosphatidylserine, and the myelin basic protein (MBP)-phosphorylating activity that could be due to a calcium-independent mitogen-activated protein kinase-like (MAPK-like) activity in the developing apple fruits were identified. The CDPK activity was shown to be predominantly localized in the plasma membrane, whereas in the presence of phosphatidylserine, the high activity of CDPK was detected in both plasma membrane and endomembranes. The MAPK-like activity was predominantly associated with endomembranes. The assays of bivalent cation requirement showed that Mn2+ could replace Mg2+ in the incubation system for the protein kinase activities and stimulate CDPK activity more than Mg2+. Heat treatment abolished CDPK but stimulated MAPK-like activity. The activities of the phosphatidylserine-stimulated CDPK and of the MAPK-like were fruit developmental stage-specific with higher activities of both enzymes in the early and middle developmental stages in comparison with the late developmental stage. These data suggest that the detected protein kinases may play an important role in the fruit development.  相似文献   

16.
The plasma membrane H+-ATPase from the fission yeast Schizosaccharomyces pombe does not support growth of H+-ATPase-depleted cells of the budding yeast Saccharomyces cerevisiae , even after deletion of the enzyme's carboxy terminus. Functional chimerical H+-ATPase proteins in which appropriate regions of the S. pombe enzyme were replaced with their S. cerevisiae counterparts were generated by in vivo gene recombination. Site-directed mutagenesis of the H+-ATPase chimeras showed that a single amino acid replacement, tyrosine residue 596 by alanine, resulted in functional expression of the S. pombe H+-ATPase. The reverse Ala-598 →Tyr substitution was introduced into the S. cerevisiae enzyme to better understand the role of this alanine residue. However, no obvious effect on ATPase activity could be detected. The S. cerevisiae cells expressing the S. pombe H+-ATPase substituted with alanine were enlarged and grew more slowly than wild-type cells. ATPase activity showed a more alkaline pH optimum, lower K m values for MgATP and decreased V max compared with wild-type S. cerevisiae activity. None of these kinetic parameters was found to be modified in glucose-starved cells, indicating that the S. pombe H+-ATPase remained fully active. Interestingly, regulation of ATPase activity by glucose was restored to a chimera in which the S. cerevisiae sequence spans most of the catalytic site.  相似文献   

17.
Abstract A protein kinase from Dictyostelium discoideum which phosphorylates the synthetic peptide, calmodulin-dependent protein kinase substrate (CDPKS, amino acid sequence: PLRRTLSVAA) and is stimulated by Ca2+/calmodulin is described. This is the first report of a protein kinase with these characteristics in D. discoideum . The enzyme was partially purified by Q-Sepharose chromatography. The protein kinase is very labile, and rapidly loses Ca2+/calmodulin-dependence upon standing at 4°C, even in the presence of protease inhibitors, making further purification and characterisation difficult. In the active fractions, a 55 kDa polypeptide is labelled with [γ-32 P]ATP in vitro under conditions in which intramolecular rather than intermolecular reactions are favoured. The phosphorylation of this peptide is stimulated in the presence of Ca2+ and calmodulin but not Ca2+ alone. Ca2+/calmodulin-dependent stimulation is inhibited in the presence of the calmodulin antagonist, trifluoperazine (TFP). It is proposed that the 55 kDa polypeptide may represent the autophosphorylated form of the enzyme.  相似文献   

18.
The cytoplasm around a wound made in the multinucleate unicellular green alga Ventricaria ventricosa (  J. Agardh) Olsen et West formed an aggregation-ring surrounding the wound immediately after injury. A contraction of the ring then brought about wound healing in culture medium containing Ca2 + . Involvement of a calcium-dependent protein kinase (CDPK) as a regulator of wound healing was examined using an anti- Dunaliella tertiolecta CDPK antibody. A 52-kDa protein cross-reacting with the antibody was detected by Western blotting. Protein kinases of 60 kDa and 52 kDa, which were markedly activated by Ca2 + , and a 40-kDa Ca2 + -independent protein kinase were detected by an in-gel protein kinase assay using myelin basic protein as the substrate. A 52-kDa band with Ca2 + -dependent protein kinase activity was immunoprecipitated from the cytoplasmic extract, indicating that these 52-kDa proteins are identical and possess CDPK activity. Microscopic observation showed that the contraction of the aggregation ring was suppressed by application of the anti-CDPK to the culture medium. A protein kinase inhibitor, K-252a, and the calmodulin inhibitors, calmidazolium and compound 48   /   80, which inhibit CDPK activity, also suppressed the contraction of the aggregation-ring. Immunofluorescence microscopy showed a similar distribution of 52-kDa CDPK to the distribution of f-actin, which was randomly distributed in an intact cell and formed a bundle during wound healing. Further, f-actin was not recruited after injury in the presence of the antibody to CDPK. These results suggest that the 52-kDa CDPK functions as a Ca2 + receptor in wound healing and simultaneously participates in the organization and contraction of f-actin to heal the wound.  相似文献   

19.
Plasma membrane vesicles were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots in an aqueous polymer two-phase system. The plasma membranes possessed high specific ATPase activity [ca 4 μmol P1 (mg protein)−1 min−1 at 37°C]. Addition of lysophosphatidylcholine (lyso-PC) produced a 2–3 fold activation of the plasma membrane ATPase, an effect due both to exposure of latent ATP binding sites and to a true activation of the enzyme. Lipid activation increased the affinity for ATP and caused a shift of the pH optimum of the H+ -ATPase activity to 6.75 as compared to pH 6.45 for the negative H+-ATPase. Activation was dependent on the chain length of the acyl group of the lyso-PC, with maximal activition obtained by palmitoyl lyso-PC. Free fatty acids also activated the membrane-bound H+-ATPase. This activation was also dependent on chain length and to the degree of unsaturation, with linolenic and arachidonic acid as the most efficient fatty acids. Exogenously added PC was hydrolyzed to lyso-PC and free fatty acids by an enzyme in the plasma membrane preparation, presumably of the phospholipase A type. Both lyso-PC and free fatty acids are products of phospholipase A2 (EC 3.1.1.4) action, and addition of phospholipase A2 from animal sources increased the H+-ATPase activity within seconds. Interaction with lipids and fatty acids could thus be part of the regulatory system for H+-ATPase activity in vivo, and the endogenous phospholipase may be involved in the regulation of the H+-ATPase activity in the plasma membranne.  相似文献   

20.
为了解液泡膜蛋白在植物细胞信号途径中的功能,用新型的非放射性同位素方法从玉米根细胞的高纯度液泡膜上鉴定出一种膜内在的蛋白激酶.这种蛋白激酶具有Ca2+依赖、CaM和磷脂酰丝氨酸不依赖等特性,与已在多种植物中报道的含有类似钙调素结构域的蛋白激酶CDPK相似.离体实验表明其活性的最适pH值为6.5,最适Ca2+浓度为10 μmol/L.从最适pH值和去污剂的影响可以推测出其活性位点朝向胞质一侧.Zn2+对其活性没有明显的抑制作用,说明该激酶缺少某些哺乳动物的蛋白激酶常含有的锌指结构.当液泡膜蛋白在Ca2+和ATP存在的条件下被预磷酸化后,液泡膜H+-ATPase的ATP水解和质子转运过程均被激活.激活的活性可以被碱性磷酸酶逆转.以上结果说明玉米根尖细胞的液泡膜中存在一种可能是CDPK的蛋白激酶.由它造成的Ca2+依赖的磷酸化作用激活了液泡膜H+-ATPase的活性.这些结果将有助于深入研究CDPK在植物细胞信号转导中的功能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号