首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
L-selectin mediates lymphocyte homing by facilitating lymphocyte adhesion to addressins expressed in the high endothelial venules (HEV) of secondary lymphoid organs. Peripheral node addressin recognized by the MECA-79 antibody is apparently part of the L-selectin ligand, but its chemical nature has been undefined. We now identify a sulfated extended core1 mucin-type O-glycan, Gal beta 1-->4(sulfo-->6)GlcNAc beta 1-->3Gal beta 1-->3GalNAc, as the MECA-79 epitope. Molecular cloning of a HEV-expressed core1-beta 1,3-N-acetylglucosaminyltransferase (Core1-beta 3GlcNAcT) enabled the construction of the 6-sulfo sialyl Lewis x on extended core1 O-glycans, recapitulating the potent L-selectin-mediated, shear-dependent adhesion observed with novel L-selectin ligands derived from core2 beta1,6-N-acetylglucosaminyltransferase-I null mice. These results identify Core1-beta 3GlcNAcT and its cognate extended core1 O-glycans as essential participants in the expression of the MECA-79-positive, HEV-specific L-selectin ligands required for lymphocyte homing.  相似文献   

2.
3.
Cell surface carbohydrates expressed on epithelial cells are thought to play an important role in tumor progression. Previously, we have shown that expression of core 2-branched O-glycans is closely correlated with vessel invasion and depth of invasion in colon and lung carcinomas. In this study, we found that expression of core 2 beta1,6-N-acetylglucosaminyltransferase-1, Core2GnT, is positively correlated with the progression of prostate cancer in human patients. Statistical analysis demonstrated that Core2GnT is an independent predictor for progressed pathological stage (pT3) and for prostate-specific antigen (PSA) relapse. To determine directly the roles of Core2GnT in prostate cancer progression, we set up an experimental tumor model using the LNCaP prostate cancer cell line. Because this line does not express Core2GnT, we established an LNCaP line stably expressing Core2GnT, LNCap-Core2GnT, by transfecting cDNA encoding Core2GnT. When mock-transfected LNCaP cells and LNCaP-Core2GnT were inoculated in the prostate of nude mice, LNCaP-Core2GnT cells produced three times heavier prostate tumors than mock-transfected LNCaP cells. Furthermore, we found that LNCaP-Core2GnT cells adhered more strongly to prostate stromal cells, type IV collagen and laminin than did LNCaP-mock cells, but LNCaP and LNCaP-Core2GnT cells grew almost at the same rate on plates coated with type IV collagen or laminin. These results indicate that Core2GnT is an extremely useful prognostic marker for prostate cancer progression. The results also suggest that acquiring Core2GnT in prostate carcinoma cells facilitates adhesion to type IV collagen and laminin, and this increased adhesion may be a cause for aggressive tumor formation by prostate cancer cells expressing Core2GnT.  相似文献   

4.
Incubation of UDP-GlcNAc and radiolabeled GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (1) with human serum resulted in the formation of the branched hexasaccharide GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (2) in yields of up to 22.2%. The novel reaction represents midchain branching of the linear acceptor; the previously known branching reactions of oligo-(N-acetyllactosaminoglycans) involve the nonreducing end of the growing saccharide chains. The structure of 2 was established by use of appropriate isotopic isomers of it for degradative experiments. The hexasaccharide 2 was cleaved by an exhaustive treatment with jack bean beta-N-acetylhexosaminidase, liberating two GlcNAc units and the tetrasaccharide Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (3). Endo-beta-galactosidase from Bacteroides fragilis cleaved 2 at one site only, yielding the disaccharide GlcNAc beta 1-3Gal (4) and the branched tetrasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (5). The structure of 5 was established by partial acid hydrolysis and subsequent identification of the disaccharide GlcNAc beta 1-6Gal (6), together with the trisaccharides GlcNAc beta 1-6Gal beta 1-4GlcNAc (7) and GlcNAc beta 1-3(GlcNAc beta 1-6)Gal (8) among the cleavage products. Galactosylation of 2 with bovine milk beta 1,4-galactosyltransferase and UDP-[6-3H]Gal gave the octasaccharide [6-3H]Gal beta 1-4GlcNAc beta 1-3 Gal beta 1-4GlcNAc beta 1-3([6-3H]-Gal beta 1-4GlcNAc beta 1-6)[U-14C] Gal beta 1-4GlcNAc (17), which could be cleaved with endo-beta-galactosidase into the trisaccharide [6-3H]Gal beta 1-4GlcNAc beta 1-3Gal (18) and the branched pentasaccharide GlcNAc beta 1-3-([6-3H]Gal beta 1-4GlcNAc beta 1-6) [U-14C]Gal beta 1-4GlcNAc (19). Partial hydrolysis of 2 with jack-bean beta-N-acetylhexosaminidase gave the linear pentasaccharide 1 and the branched pentasaccharide Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (20). The serum beta 1,6-GlcNAc transferase catalyzed also the formation of GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc (11) from UDP-GlcNAc and GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc (10). The pentasaccharide Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (16), too, served as an acceptor for the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Lymphocytes from the blood home to secondary lymphoid tissues through a process of tethering, rolling, firm adhesion and transmigration. Tethering and rolling of lymphocytes is mediated by the interaction of L-selectin on lymphocytes with sulphated ligands expressed by the specialized endothelial cells of high endothelial venules (HEVs). The sulphate-dependent monoclonal antibody MECA79 stains HEVs in peripheral lymph nodes and recognizes the complex of HEV ligands for L-selectin termed peripheral node addressin. High endothelial cell GlcNAc-6-sulphotransferase/L-selectin ligand sulphotransferase is a HEV-expressed sulphotransferase that contributes to the formation of the MECA79 epitope and L-selectin ligands on lymph node HEVs. MECA79-reactive vessels are also common at sites of chronic inflammation, suggesting mechanistic parallels between lymphocyte homing and inflammatory trafficking.  相似文献   

6.
Upon activation, lymphocytes display profound alterations in their in vivo migration behavior. In an attempt to understand some of the cellular mechanisms responsible for this altered behavior, in vitro stimulated lymphocytes have been analyzed for their expression of a putative homing receptor (HOR) (defined by mAb MEL-14) and for their ability to bind to specialized lymphoid organ high endothelial venules (HEV) in vitro. The results indicate that signals related to lymphocyte activation induce complex alterations in HOR expression and organ-specificity of HEV-binding: 1) submitogenic stimuli induce an increase in MEL-14 antigen expression. This applies to almost all lymphocytes in autologous cultures, for the fraction of cells in periodate, LPS- or Con A-treated cultures not fully activated and for cultures stimulated with suboptimal doses of Con A. 2) Full blast transformation is associated with a decrease or complete loss of MEL-14 antigen expression on the majority of blasts in all activating systems used, but a subset of up to 30 to 40% of fully activated cells may nonetheless express very high levels of the MEL-14 antigen. 3) Functional assays reveal that Con A and periodate stimulation lead to a selective, nearly complete suppression of the lymphocytes binding to HEV of Peyer's patches, even under conditions where overall binding to peripheral node HEV is increased. This indicates a differential regulation of the two respective receptors, with the mucosa system-specific HOR being more prone to down-regulation during in vitro activation by these mitogens.  相似文献   

7.
Core 2 beta1,6-N-acetylglucosaminyltransferase (C2GlcNAcT) synthesizes essential core 2 O-glycans on selectin ligands, which mediate cell-cell adhesion required for lymphocyte trafficking. Although gene-deletion studies have implicated C2GlcNAcT-I in controlling selectin ligand-mediated cell trafficking, little is known about the role of the two other core 2 isoenzymes, C2GlcNAcT-II and C2GlcNAcT-III. We show that C2GlcNAcT-I-independent P-selectin ligand formation occurs in activated C2GlcNAcT-I(null) CD8 T cells. These CD8 T cells were capable of rolling under shear flow on immobilized P-selectin in a P-selectin glycoprotein ligand 1-dependent manner. RT-PCR analysis identified significant levels of C2GlcNAcT-III RNA, identifying this enzyme as a possible source of core 2 enzyme activity. Up-regulation of P-selectin ligand correlated with altered cell surface binding of the core 2-sensitive mAb 1B11, indicating that CD43 and CD45 are also physiological targets for this alternate C2GlcNAcT enzyme. Furthermore, C2GlcNAcT-I-independent P-selectin ligand induction was observed in an in vivo model. HY(tg) CD8 T cells from C2GlcNAcT-I(null) donors transferred into male recipients expressed P-selectin ligand in response to male Ag, although at reduced levels compared with wild-type HY(tg) CD8 T cells. Our data demonstrate that multiple C2GlcNAcT enzymes can contribute to P-selectin ligand formation and may cooperate with C2GlcNAcT-I in the control of CD8 T cell trafficking.  相似文献   

8.
The immunomodulatory drug FTY720 interferes with sphingosine-1-phosphate (S1P) receptor signaling leading to lymphocyte retention in secondary lymphoid organs and consequently to profound lymphopenia in the peripheral blood. The molecular mechanisms transduced by S1P receptors upon being triggered by its native ligand, S1P, or by FTY720, are largely unknown. In this study we analyze the role of beta2 and beta7 integrin and their ligands ICAM-1, VCAM-1, and MadCAM-1 on lymphocyte homing in the presence of FTY720. We demonstrate that this drug facilitates homing of lymphocytes single-deficient of either beta2 or beta7 integrin but not of beta2-deficient lymphocytes, which in addition were blocked by anti-beta7 integrin Abs. Enhanced lymphocyte homing is preceded by increased adherence of integrin-deficient as well as wild-type lymphocytes to high endothelial venules (HEV) in FTY720-treated animals. Elevated adherence to HEV requires intact lymphocyte Galphai signaling that cannot be stably imprinted on lymphocytes even after prolonged exposure to FTY720. Thus, FTY720 influences lymphocyte homeostasis not only by suppressing lymphocyte egress from lymph nodes but also by facilitating lymphocyte homing across HEV in an integrin-dependent fashion.  相似文献   

9.
Leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT-L) is a key enzyme in the biosynthesis of branched O-glycans. It is an inverting, metal ion-independent family 14 glycosyltransferase that catalyzes the formation of the core 2 O-glycan (Galbeta1-3[GlcNAcbeta1-6]GalNAc-O-Ser/Thr) from its donor and acceptor substrates, UDP-GlcNAc and the core 1 O-glycan (Galbeta1-3GalNAc-O-Ser/Thr), respectively. Reported here are the x-ray crystal structures of murine C2GnT-L in the absence and presence of the acceptor substrate Galbeta1-3GalNAc at 2.0 and 2.7A resolution, respectively. C2GnT-L was found to possess the GT-A fold; however, it lacks the characteristic metal ion binding DXD motif. The Galbeta1-3GalNAc complex defines the determinants of acceptor substrate binding and shows that Glu-320 corresponds to the structurally conserved catalytic base found in other inverting GT-A fold glycosyltransferases. Comparison of the C2GnT-L structure with that of other GT-A fold glycosyltransferases further suggests that Arg-378 and Lys-401 serve to electrostatically stabilize the nucleoside diphosphate leaving group, a role normally played by metal ion in GT-A structures. The use of basic amino acid side chains in this way is strikingly similar to that seen in a number of metal ion-independent GT-B fold glycosyltransferases and suggests a convergence of catalytic mechanism shared by both GT-A and GT-B fold glycosyltransferases.  相似文献   

10.
A novel beta1,6-N-acetylglucosaminyltransferase (beta1, 6GnT) cDNA was identified by a BLAST search using the amino acid sequence of human GnT-V as a query. The full-length sequence was determined by a combination of 5'-rapid amplification of cDNA end analysis and a further data base search. The open reading frame encodes a 792 amino acid protein with a type II membrane protein structure typical of glycosyltransferases. The entire sequence identity to human GnT-V is 42%. When pyridylaminated (PA) agalacto biantennary N-linked oligosaccharide was used as an acceptor substrate, the recombinant enzyme generated a novel product other than the expected GnT-V product, (GlcNAcbeta1,2-Manalpha1,3-)[GlcNAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1,6-]Manbeta1,4-GlcNAcbeta1,4-GlcNAc-PA. This new product was identified as [GlcNAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1,3-][Glc-NAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1,6-]Manbeta1,4-GlcNAcbeta1,4-GlcNAc-PA by mass spectrometry and 1H NMR. Namely, the new GnT (designated as GnT-IX) has beta1,6GnT activity not only to the alpha1,6-linked mannose arm but also to the alpha1,3-linked mannose arm of N-glycan, forming a unique structure that has not been reported to date. Northern blot analysis showed that the GnT-IX gene is exclusively expressed in the brain, whereas the GnT-V gene is expressed ubiquitously. These results suggest that GnT-IX is responsible for the synthesis of a unique oligosaccharide structure in the brain.  相似文献   

11.
Core 2 beta1,6-N-acetylglucosaminyltransferase I (C2GnT-I) plays a pivotal role in the biosynthesis of mucin-type O-glycans that serve as ligands in cell adhesion. To elucidate the three-dimensional structure of the enzyme for use in computer-aided design of therapeutically relevant enzyme inhibitors, we investigated the participation of cysteine residues in disulfide linkages in a purified murine recombinant enzyme. The pattern of free and disulfide-bonded Cys residues was determined by liquid chromatography/electrospray ionization tandem mass spectrometry in the absence and presence of dithiothreitol. Of nine highly conserved Cys residues, under both conditions, one (Cys217) is a free thiol, and eight are engaged in disulfide bonds, with pairs formed between Cys59-Cys413, Cys100-Cys172, Cys151-Cys199, and Cys372-Cys381. The only non-conserved residue within the beta1,6-N-acetylglucosaminyltransferase family, Cys235, is also a free thiol in the presence of dithiothreitol; however, in the absence of reductant, Cys235 forms an intermolecular disulfide linkage. Biochemical studies performed with thiolreactive agents demonstrated that at least one free cysteine affects enzyme activity and is proximal to the UDP-GlcNAc binding site. A Cys217 --> Ser mutant enzyme was insensitive to thiol reactants and displayed kinetic properties virtually identical to those of the wild-type enzyme, thereby showing that Cys217, although not required for activity per se, represents the only thiol that causes enzyme inactivation when modified. Based on the pattern of free and disulfide-linked Cys residues, and a method of fold recognition/threading and homology modeling, we have computed a three-dimensional model for this enzyme that was refined using the T4 bacteriophage beta-glucosyltransferase fold.  相似文献   

12.
13.
Embryoglycan is a class of branched high-molecular-weight poly-N-acetyllactosamines characteristically expressed in early embryonic cells and has been shown to be involved in the intercellular adhesion of early embryonic cells in vitro. Branching of poly-N-acetyllactosamine chains is performed by beta1,6-N-acetylglucosaminylation of the galactosyl residue. We previously knocked out the gene encoding I beta1, 6-N-acetylglucosaminyltransferase (IGnT), and the resultant deficient mice were born without any abnormality, although the mice exhibited various deficits in later life. In the present investigation, we produced embryonic stem (ES) cells from IGnT-deficient embryos. The mutant ES cells exhibited a reduced capability in embryoglycan synthesis. Thus, IGnT is a major enzyme involved in the branching of poly-N-acetyllactosamine chains in embryoglycan. Since ES cells are equivalent to multipotential cells of the embryonic ectoderm in early postimplantation embryos, this result indicates that an abundance of embryoglycan in these cells is not essential for normal embryogenesis. The IGnT-deficient ES cells continued to express SSEA-1, but lacked the expression of 4C9 antigen, although the epitope of 4C9 antigen was confirmed to be Lewis X by a transfection experiment. The result establishes the distinct nature of 4C9 antigenicity, which requires either Lewis X epitope on I-branch or clustering of Lewis X epitope, best accomplished by poly-N-acetyllactosamine branching. Alpha6-integrin was newly identified as a carrier of embryoglycan. The IGnT-deficient ES cells adhered to dishes coated with laminin, which is a ligand for alpha6-integrin, significantly less than wild-type ES cells, raising the possibility that embryoglycan in ES cells enhances alpha6-integrin-dependent adhesion in vitro.  相似文献   

14.
The sphingosine-1-phosphate (S1P) receptor agonist, phosphorylated FTY720 (FTY-P), causes lymphopenia, lymphocyte sequestration in mesenteric lymph nodes (MLNs), and immunosuppression. Using multiple techniques to analyze MLN cells harvested from mice treated with S1P receptor agonists, we saw a redistribution of lymphocytes out of nodal sinuses and an expansion of follicles. Although changes in circulating monocytes were not observed with overnight exposure to FTY720, we saw a significant increase in S1P receptor 1 (S1P1)-expressing CD68+ macrophages in subcapsular sinuses of FTY-P-treated MLNs. This was confirmed by quantitative analysis of F4/80+ cells in MLN suspensions. The sinus volume and number of S1P1-positive cells within sinuses were also increased by FTY-P. High endothelial venules and lymphatic endothelium expressed high levels of S1P1, and treatment with FTY-P resulted in intense staining and colocalization of CD31, beta-catenin, and zona occludens 1 in junctions between sinus cells. Transmission electron microscopy showed that FTY-P greatly reduced lymphocyte microvilli and increased cell-cell contacts in the parenchyma. Immunoelectron microscopy revealed that intranodal lymphocytes lacked surface expression of S1P1, whereas S1P1 was evident on the surface and within the cytoplasm of macrophages, endothelial cells, and stromal cells. This subcellular pattern of intranodal receptor distribution was unchanged by treatment with FTY-P. We conclude that S1P1 agonists have profound effects on macrophages and endothelial cells, in addition to inducing lymphopenia.  相似文献   

15.
The HNK-1 glycan, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->R, is highly expressed in neuronal cells and apparently plays critical roles in neuronal cell migration and axonal extension. The HNK-1 glycan synthesis is initiated by the addition of beta1,3-linked GlcA to N-acetyllactosamine followed by sulfation of the C-3 position of GlcA. The cDNAs encoding beta1,3-glucuronyltransferase (GlcAT-P) and HNK-1 sulfotransferase (HNK-1ST) have been recently cloned. Among various adhesion molecules, the neural cell adhesion molecule (NCAM) was shown to contain HNK-1 glycan on N-glycans. In the present study, we first demonstrated that NCAM also bears HNK-1 glycan attached to O-glycans when NCAM contains the O-glycan attachment scaffold, muscle-specific domain, and is synthesized in the presence of core 2 beta1,6-N-acetylglucosaminyltransferase, GlcAT-P, and HNK-1ST. Structural analysis of the HNK-1 glycan revealed that the HNK-1 glycan is attached on core 2 branched O-glycans, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->6(Galbeta1-->3)GalNAc. Using synthetic oligosaccharides as acceptors, we found that GlcAT-P and HNK-1ST almost equally act on oligosaccharides, mimicking N- and O-glycans. By contrast, HNK-1 glycan was much more efficiently added to N-glycans than O-glycans when NCAM was used as an acceptor. These results are consistent with our results showing that HNK-1 glycan is minimally attached to O-glycans of NCAM in fetal brain, heart, and the myoblast cell line, C2C12. These results combined together indicate that HNK-1 glycan can be synthesized on core 2 branched O-glycans but that the HNK-1 glycan is preferentially added on N-glycans over O-glycans of NCAM, probably because N-glycans are extended further than O-glycans attached to NCAM containing the muscle-specific domain.  相似文献   

16.
Seko A  Yamashita K 《Glycobiology》2005,15(10):943-951
We characterized a novel member of the beta1,3-N-acetylglucosaminyltransferase (beta3Gn-T) gene family, beta3Gn-T8. A recombinant soluble form of beta3Gn-T8 was expressed in Pichia pastoris (P. pastoris), and its substrate specificity was compared with that of beta3Gn-T2. The two enzymes had similar substrate specificities and recognized tetraantennary N-glycans and 2,6-branched triantennary glycans in preference to 2,4-branched triantennary glycans, biantennary glycans, and lacto-N-neotetraose (LNnT), indicating their specificity for 2,6-branched structures such as [Galbeta1-->4GlcNAcbeta1-->2(Galbeta1-->4GlcNAcbeta1-->6)Manalpha1--> 6Man]. Interestingly, when soluble recombinant beta3Gn-T2 and beta3Gn-T8 were mixed, the Vmax/Km value of the mixture was 9.3- and 160-fold higher than those of individual beta3Gn-T2 and -T8, respectively. Sephacryl S-300 gel filtration of the enzymes revealed that apparent molecular weights of each beta3Gn-T2, beta3Gn-T8, and the mixture were 90-160, 45-65, and 110-210 kDa, respectively, suggesting that beta3Gn-T2 and -T8 can form a complex with enhanced enzymatic activity. This is the first report demonstrating that in vitro mixed glycosyltransferases show enhanced enzymatic activity through the formation of a heterocomplex. These results suggested that beta3Gn-T8 and beta3Gn-T2 are cooperatively involved in the elongation of specific branch structures of multiantennary N-glycans.  相似文献   

17.
18.
MAX1 and MAX2 control shoot lateral branching in Arabidopsis   总被引:22,自引:0,他引:22  
Plant shoots elaborate their adult form by selective control over the growth of both their primary shoot apical meristem and their axillary shoot meristems. We describe recessive mutations at two loci in Arabidopsis, MAX1 and MAX2, that affect the selective repression of axillary shoots. All the first order (but not higher order) axillary shoots initiated by mutant plants remain active, resulting in bushier shoots than those of wild type. In vegetative plants where axillary shoots develop in a basal to apical sequence, the mutations do not clearly alter node distance, from the shoot apex, at which axillary shoot meristems initiate but shorten the distance at which the first axillary leaf primordium is produced by the axillary shoot meristem. A small number of mutant axillary shoot meristems is enlarged and, later in development, a low proportion of mutant lateral shoots is fasciated. Together, this suggests that MAX1 and MAX2 do not control the timing of axillary meristem initiation but repress primordia formation by the axillary meristem. In addition to shoot branching, mutations at both loci affect leaf shape. The mutations at MAX2 cause increased hypocotyl and petiole elongation in light-grown seedlings. Positional cloning identifies MAX2 as a member of the F-box leucine-rich repeat family of proteins. MAX2 is identical to ORE9, a proposed regulator of leaf senescence ( Woo, H. R., Chung, K. M., Park, J.-H., Oh, S. A., Ahn, T., Hong, S. H., Jang, S. K. and Nam, H. G. (2001) Plant Cell 13, 1779-1790). Our results suggest that selective repression of axillary shoots involves ubiquitin-mediated degradation of as yet unidentified proteins that activate axillary growth.  相似文献   

19.
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety.  相似文献   

20.
Human beta1,3-N-acetylglucosaminyltransferase 2 (beta3GnT2) is thought to be an enzyme that extends the polylactosamine acceptor chains, but its function and structure analysis are unknown. To obtain insight into the structure of beta3GnT2, the effects of N-glycosylation on its biological function were evaluated using the addition of inhibitors, site-directed mutagenesis of potential N-glycosylation sites, and deletion of its N-terminal region using a fusion protein with GFP(uv) in a baculovirus expression system. Four of five potential N-glycosylation sites were found to be occupied, and their biological function and secretion were inhibited with the treatment of N-glycosylation inhibitor, tunicamycin. The N-glycosylation at Asn219 was necessary for the beta3GnT activity; moreover, N-glycosylation at Asn127 and Asn219 was critical for efficient protein secretion. When Ser221 was replaced with Thr, fusion protein was expressed as a single band, indicating that the double band of the expressed fusion protein was due to the heterogeneity of the glycosylation at Asn219. The truncated protein consisting of amino acids 82-397 (GFP(uv)-beta3GnT2Delta83), which lacked both one N-glycosylation site at Asn79 and the stem region of glycosyltransferase, was expressed as only a small form and showed no beta3GnT activity. These results suggest that the N-glycosylation site at Asn219, which is conserved throughout the beta1,3-glycosyltransferase family, is indispensable not only with regard to its biological function, but also to its secretion. The N-terminal region, which belongs to a stem region of glycosyltransferase, might also be important to the active protein structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号