首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. E. Bron    C. Sommerville    G. H. Rae 《Journal of Zoology》1993,230(2):207-220
The functional morphology of the alimentary canal of copepodite and chalimus stages of Lepeophtheirus salmonis (Krøyer, 1837) is described and compared with that found in other copepods studied to date.
The buccal cavity passes into a gut comprising three major regions: foregut (oesophagus), midgut and hindgut. The foregut and hindgut both posscss a cuticular lining whereas the midgut is lined with specialized epithelial cells. The midgut is divided into three recognizable zones, namely anterior midgut caecum, anterior midgut and posterior midgut. Three main types of epithelial cell are recognizable in the midgut: vesicular cells, microvillous cells and basal cells which correspond to the cell types normally described in other parasitic and free-living copepod species.
Digestion is thought to occur in the midgut and be mediated by the epithelial cells that line it. Although several glands appear to discharge into the area of the buccal cavity, none was seen to interface to any other area of the gut. There was no evidence for the involvement of commensal gut bacteria in food digestion.  相似文献   

2.
Using radiolabelled triglycerides and fatty acids we have shown that these 2 lipids are absorbed into the haemolymph of the imported fire ant, Solenopsis invicta Buren from the post-pharyngeal gland. The post-pharyngeal glands attain their greatest weight and contain the highest hexane extractable lipid in establishing queens which have just reared the first minum brood. The lipid content of the digestive system is greatest in queens initiating a mating flight with the majority of the lipid contained in the crop. During colony establishment by the queen the lipid content of the crop moves forward, some is fed to the developing larvae and some moves into the post-pharyngeal gland. The hexane extractable lipid from the postpharyngeal gland of newly mated queens consists of hydrocarbons, sterols. tri-, di-, and monoglycerides and free fatty acids with a trace of wax esters.Excision of the post-pharyngeal glands from mated established queens causes no noticeable change in their behaviour or the behaviour they elicit from the remainder of the colony. However, post-pharyngeal glandectomized females lost weight and died in ca. 2 months although their crop and midgut contained food. The post-pharyngeal glands therefore appear to function in much the same way as a gastric caecum.  相似文献   

3.
The foregut, stomach, caecum, midgut, and rectum of the digestive tract of Nautilus pompilius L.were investigated with ultrastructural and enzyme-cytological methods. Three different cell types were identified within the lamina epithelialis mucosae: main cells, goblet cells, and cells with secretory granules. The main cell type is the epithelial cell with microvilli, a basal nucleus surrounded by dictyosomes, rough endoplasmic reticulum, mitochondria, and electron-dense granules identified as lysosomes in the apical part of the cell. In the caecum this cell type contains endosymbiotic bacteria. The presence of endocytotic vesicles and the storage of lipids in the caecum indicate that this organ is involved in the process of absorption. In the caecum and the longitudinal groove of the rectum the main cells are, in addition, ciliated, facilitating the transport of food particles and faeces. Two types of goblet cells are found in all organs except in the stomach, forming a gliding path for food particles and protecting the epithelium. In the foregut and rectum, cells with electron-dense granules were recognized as the third type. The conspicuous secretory cells of the rectum represent a delimited rectal gland; its possible biological function is discussed. The tunica muscularis in all organs of the digestive tract consists of obliquely striated muscle cells innervated by axons containing transparent, osmiophilic and dense-cored vesicles. Positive reactions for acid and alkaline phosphatase, monoamine oxidase, β-glucuronidase, and trypsin- and chymotrypsin-like enzymes are localized in the lamina epithelialis mucosae.  相似文献   

4.
为探讨农药马拉硫磷对东亚飞蝗Locusta migratioria manilensis(Meyen)消化系统的影响,文中以喂食形式给药,不同喂食时间点蝗虫处死后固定、石蜡包埋、连续切片、HE染色并观察蝗虫消化系统不同部位形态学的病理变化。结果表明马拉硫磷对东亚飞蝗嗉囊、前胃、胃盲囊、中肠、回肠、结肠、直肠等各消化道部位均能造成明显的形态学改变,包括内膜完整性被破坏、上皮细胞死亡、纵肌、环肌、结缔组织等病变和坏死等,且呈时间依赖性。故马拉硫磷的作用可以影响到东亚飞蝗对食物贮存、研磨、消化、养分吸收的每一个环节,最终导致蝗虫的死亡。本文研究结果对蝗虫防治研究具有重要意义。  相似文献   

5.
中华稻蝗消化道内分泌细胞的鉴别与定位   总被引:1,自引:0,他引:1  
采用整块组织Grimelius银染法和过氧化物酶标记的链霉亲和素免疫组织化学技术,结合生物统计学分析,对中华稻蝗Oxya chinensis消化道内分泌细胞进行鉴别与定位。结果表明:嗜银细胞分布于中华稻蝗的胃盲囊、中肠和后肠各段,以中肠和直肠中最多(P<0.05), 前肠中未见分布。免疫组织化学法检测出了五羟色胺(5-hydroxytryptamine, 5-HT)、 胃泌素(gastrin, Gas)、 胰高血糖素(glucagon, Glu)和胰多肽(pancreatic polypeptide, PP)细胞, 未检出生长抑素(somatostatin, SS)细胞。免疫阳性细胞分布于中肠和后肠中, 前肠中未见分布。5-HT细胞和Gas细胞均主要分布于胃盲囊、中肠及直肠中,且均以直肠中最多(P<0.05)。Glu细胞在胃盲囊及整个中、后肠均有分布, 在中肠和直肠中最多(P<0.05)。PP细胞主要分布于中肠、回肠和直肠中,中肠中分布密度最大(P<0.05)。本研究显示中华稻蝗消化道中存在多种内分泌细胞,它们的分布情况与其他节肢动物相比存在一定的共性,也有其一定的特异性,可能与中华稻蝗特定的消化道结构和消化生理功能有关。  相似文献   

6.
The midgut of C. (G.) truncata accounts for half of the postgastric intestinal tract. The paired anterior midgut caeca arise just behind the pyloric stomach, on either side of the midgut. The unpaired posterior midgut caecum arises dorsally at the rear end of the midgut, where this joins the hindgut. The midgut and its caeca help in the digestive absorption of food. The hindgut is of ectodermal origin and is lined with chitin of a collagenous nature. The connective tissue of the anterior part of the hindgut is packed with tegumental glands whose secretion contains both sulphated and weakly acidic mucosubstances, which facilitate the passage of faecal matter and help to bind food particles. The digestive gland - the hepatopancreas - opens into the anterior part of the midgut, below the anterior midgut caeca. Histologically, its tubules contain three different types of cells - "F", "R" and "B" cells.  相似文献   

7.
Summary The iron storage protein, ferritin, is the major yolk protein in freshwater snails. In this report we show by in vitro labelling experiments that yolk ferritin of the snails Lymnaea stagnalis L. and Planorbarius corneus L. is an exogenous protein synthesized in the midgut gland and secreted into the hemolymph. Gonad and mantle tissue are inactive in the synthesis of yolk ferritin, but, together with the midgut gland, they synthesize another ferritin type (soma ferritin) which is not released into the hemolymph and which may be a housekeeping ferritin. Soma ferritin and yolk ferritin are not in a precursor/product relationship since subunits of both ferritins are synthesized as primary translation products in rabbit reticulocyte lysate programmed with poly (A)+ RNA from midgut gland and gonad. Results suggest that both ferritins are synthesized on different mRNAs (and possibly on different genes) so they may be regulated in a different way.  相似文献   

8.
Within 12 min after the prosobranch snail, Nassarius, begins feeding on ferritin-labeled food, ferritin reaches the lumen of the digestive gland and is absorbed by the digestive cells lining the gland. Within the digestive cells, the ferritin is present in coated pinocytotic vesicles, in microvesicles and in macrovesicles. It is probable that ferritin (and components of the food as well) progresses rapidly in order from the gland lumen to the pinocytotic vesicles to the microvesicles to the macrovesicles. The macro vesicles are presumably an important site of intracellular digestion.  相似文献   

9.
This paper presents information on the organization of the midgut and its epithelium ultrastructure in juvenile and adult specimens of Piscicola geometra (Annelida, Hirudinea), a species which is a widespread ectoparasite found on the body and gills and in the mouth of many types of fish. The analysis of juvenile nonfeeding specimens helped in the explanation of all alterations in the midgut epithelium which are connected with digestion. The endodermal portion (midgut) of the digestive system is composed of four regions: the esophagus, the crop, the posterior crop caecum, and the intestine. Their epithelia are formed by flat, cuboidal, or columnar digestive cells; however, single small cells which do not contact the midgut lumen were also observed. The ultrastructure of all of the regions of the midgut are described and discussed with a special emphasis on their functions in the digestion of blood. In P. geometra, the part of the midgut that is devoid of microvilli is responsible for the accumulation of blood, while the epithelium of the remaining part of the midgut, which has a distinct regionalization in the distribution of organelles, plays a role in its absorption and secretion. Glycogen granules in the intestinal epithelium indicate its role in the accumulation of sugar. The comparison of the ultrastructure of midgut epithelium in juvenile and adult specimens suggests that electron-dense granules observed in the apical cytoplasm of digestive cells take part in enzyme accumulation. Numerous microorganisms were observed in the mycetome, which is composed of two large oval diverticles that connect with the esophagus via thin ducts. Similar microorganisms also occurred in the cytoplasm of the epithelium in the esophagus, the crop, the intestine, and in their lumen. Microorganisms were observed both in fed adult and unfed juvenile specimens of P. geometra, which strongly suggests that vertical transmission occurs from parent to offspring.  相似文献   

10.
Reconstructions from serial sections reveal that the digestive system consists of a pharynx esophagus, crop, midgut, and rectum. Two main stems from the branched enteral diverticula are connected to the lateral regions of the crop by right rind left arms. Glandular tissue surrounds the enteral diverticula proximally. A strong sphincter separates the crop and midgut, whereas the midgut and rectum are separated by a weak sphincter. Cuboidal epithelium lines the pharynx, esophagus, crop, and rectum, whereas cuboidal and club-shaped epithelia line the midgut. The cuboidal cells possess elongated nuclei and numerous vacuoles, suggesting that absorption takes place in the midgut.  相似文献   

11.
 This study presents histological and scanning electron microscopical findings on the structural differentiation, and the nervous and vascular supply of the digestive tracts of Nautilus pompilius and N. macromphalus, including the foregut, stomach, vestibulum, caecum, midgut and rectum. The stereoscopic reconstruction of the vestibulocaecal complex gives an idea how the digestive cycle between the stomach, vestibulum, caecum and proximal midgut could possibly proceed. All parts of the digestive tract are covered luminally by a columnar epithelium which contains numerous goblet cells. The epithelium is ciliated in the vestibulum, caecum, proximal midgut and the longitudinal groove of the rectum. On this lamina epithelialis mucosae borders the lamina propria mucosae, which consists of connective tissue and some muscle cells. In the stomach it is differentiated, forming a special bolster-like layer. The lamina propria mucosae is followed by the tunica muscularis, which consists of a stratum circulare and a stratum longitudinale in the foregut, vestibulum, caecum, midgut and rectum. In the stomach, midgut and rectum, the tunica adventitia, which consists of a thin layer of connective tissue, is located between the tunica muscularis and the cuboidal tunica serosa. Accepted: 4 August 1997  相似文献   

12.
Summary The fine structure of the midgut gland and the changes in composition associated with the digestive activity were examined in Phalangium opilio. In the epithelium four different types of cells are present: ferment cells, resorption cells, and digestion cells which probably turn into excretion cells, as can be seen by many intermediate stages. Ferment cells are found only in the midgut gland and in no other epithelia; therefore they should be regarded as a cell type. The relationship between digestion and resorption cells is not yet clear. No regeneration zone or single regeneration cells could be identified.The ultrastructural changes in these different cells during digestion are described, and their functional aspects are discussed. A hypothetical digestive cycle is constructed from these data. The results are compared with those on other chelicerate midgut glands.  相似文献   

13.
《Insect Biochemistry》1990,20(3):267-274
Carbohydrases predominate in the crop and their pH optima agree with pH prevailing in crop contents. Major amounts are also found in caecal contents. Aminopeptidase and trypsin are active mainly in the caeca, where they predominate in cells and contents, respectively. Aminopeptidase is partly membrane-bound. Except for trehalase, salivary glands display negligible amounts of digestive enzymes. The specific activity of digestive enzymes is high in all midgut cells and the enzyme molecules do not differ among gut compartments, as judged by polyacrylamide gel electrophoresis. Thus, it is probable that digestive enzymes are synthesized and secreted by all midgut cells (mainly in caeca) and then passed forward into the crop. Digestive enzymes are found in hindgut in concentrations similar to those in ventricular contents and, since they are stable in gut contents, they are likely excreted at a rate similar to undigested food. The data support the hypothesis that carbohydrate and protein are digested mainly in crop and caecal lumina, respectively, with part of the final digestion of proteins occurring at the surface of caecal cells. The peculiar features of the digestion of A. flavolineata grasshoppers, including the lack of midgut countercurrent fluxes, are thought to be derived from putative Polyneoptera ancestors.  相似文献   

14.
15.
The digestive organs possibly involved in food absorption in Loligo vulgaris and L. forbesi are the caecum, the intestine, the digestive gland, and the digestive duct appendages. The histology and the fine structure showed that the ciliated organ, the caecal sac, and the intestine are lined with a ciliated epithelium. The ciliary rootlets are particularly well developed in the ciliated organ, apparently in relation to its function of particle collection. Mucous cells are present in the ciliated organ and the intestine. Histologically, the digestive gland appears rather different from that of other cephalopods. However, the fine structure of individual types of squid digestive cell is actually similar to that of comparable organs in other species, and the squid cells undergo the same stages of activity. Digestive cells have a brush border of microvilli, and numerous vacuoles, which sometimes contain “brown bodies.” However, no “boules” (conspicuous protein inclusions of digestive cells in other species) could be identified in their cytoplasm; instead only secretory granules are present. In the digestive duct appendages, numerous membrane infoldings associated with mitochondria are characteristic features of the epithelial cells in all cephalopods. Two unusual features were observed in Loligo: first, the large size of the lipid inclusions in the digestive gland, in the caecal sac, and in the digestive duct appendages; and second, the large number of conspicuous mitochondria with well-developed tubular cristae. When injected into the caecal sac, ferritin molecules can reach the digestive gland and the digestive duct appendages via the digestive ducts, and they are taken up by endocytosis in the digestive cells. Thus, it appears that the digestive gland of Loligo can act as an absorptive organ as it does in other cephalopods.  相似文献   

16.
The structure of the midgut gland and its changes in different seasons have been examined in the harvestmen Gyas annulatus and Gyas titanus (Arachnida: Opiliones: Phalangiidae). In both species, in the epithelium of the midgut gland two different types of cells are present: secretory and digestive ones. The secretory cells are characterized by plentiful rER and secretory granula. The digestive cells are characterized by an apical system of tubules. Both cells are connected by prominent specialized junctions. If a secretory cell is in contact with a digestive cell, rER cisterna are in close vicinity and parallel to these junctions. As found light- and electron microscopically and also histochemically, glycogen and lipids are stored in both cells. In both species, glycogen was seen to be used as energy compound during overwintering. At the end of their life, the digestive cells develop into excretory ones, containing metabolic wastes.  相似文献   

17.
Stomach cancer is the second most frequent cause of cancer-related death worldwide. Thus, it is important to elucidate the properties of gastric stem cells, including their regulation and transformation. To date, such stem cells have not been identified in Drosophila. Here, using clonal analysis and molecular marker labeling, we identify a multipotent stem-cell pool at the foregut/midgut junction in the cardia (proventriculus). We found that daughter cells migrate upward either to anterior midgut or downward to esophagus and crop. The cardia functions as a gastric valve and the anterior midgut and crop together function as a stomach in Drosophila; therefore, we named the foregut/midgut stem cells as gastric stem cells (GaSC). We further found that JAK-STAT signaling regulates GaSCs’ proliferation, Wingless signaling regulates GaSCs’ self-renewal, and hedgehog signaling regulates GaSCs’ differentiation. The differentiation pattern and genetic control of the Drosophila GaSCs suggest the possible similarity to mouse gastric stem cells. The identification of the multipotent stem cell pool in the gastric gland in Drosophila will facilitate studies of gastric stem cell regulation and transformation in mammal.  相似文献   

18.
本研究采用改良甲苯胺蓝染色法探讨了奥尼罗非鱼(Oreochromis niloticus ♀×O. aureus♂)胃肠道肥大细胞的分布及其形态特点。结果发现,经甲苯胺蓝染色的肥大细胞其核着深蓝色,颗粒被染成紫红色,着色深浅不一。肥大细胞大小不一,形态各异,呈圆形、椭圆形或梭形、菱形,散在或集中分布在黏膜层固有膜和黏膜下层,尤其常见分布于小血管周围。经统计,肥大细胞在奥尼罗非鱼的胃、幽门盲囊、后肠、前肠、中肠的数量依次减少。胃和幽门盲囊内肥大细胞数量显著高于前肠和中肠(P0.05),与后肠无显著差异;前肠、中肠和后肠内肥大细胞数量并无明显差别。  相似文献   

19.
Bacillus sphaericus toxin labeled with fluorescein isothiocyanate was readily ingested by Culex pipiens, Aedes aegypti, Anopheles stephensi, Anopheles gambiae, Anopheles quadrimaculatus, and Anopheles albimanus larvae. Fluorescent toxin bound to the luminal cell surface in discrete regions of the posterior midgut and gastric caecum in C. pipiens. In Anopheles spp., toxin bound in a variable pattern to these structures and central and anterior midgut as well. The toxin did not bind to midgut cells of A. aegypti. The toxin was internalized in bright fluorescent vesicles in C. pipiens, but was not internalized in Anopheles spp. and appeared to be weakly bound in these larvae, leaking rapidly from the gut surface. The lectin, wheat germ agglutinin, which interferes with binding of the B. sphaericus toxin, bound to the posterior midgut and gastric caecum of all species, but was not internalized. These results suggest that the sugar moiety of the receptor is not solely responsible for specificity of this toxin, and that binding to Culex spp. midgut cells may be highly specific and of high affinity, whereas binding to Anopheles spp. cells may be nonspecific and/or of low affinity.  相似文献   

20.
显微观察发现臭腹腺蝗Zonocerus variegatus(直翅目:锥头蝗科)嗉囊、中肠和后肠的肠壁结构有所不同。嗉囊为空时纵向折叠。中肠上皮层的厚度随龄期有明显变化,1龄和2龄时明显大于3龄、4龄和5龄。后肠具有帮助消化和吸收的功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号