共查询到20条相似文献,搜索用时 15 毫秒
1.
K. Kirschfeld 《European biophysics journal : EBJ》1979,5(2-3):117-128
The photoreceptors in the fly's ommatidia contain a bistable visual pigment, which can be shifted back and forth by means of light of appropriate wavelengths. The situation is complicated, however, by the presence of photostable pigments. One of them (located in rhabdomeres no. 1–6) absorbs in the UV, another one (in rhabdomeres no. 7y) in the blue spectral range. Such pigments act as (dichroic) colour filters that modify the spectral and polarisation sensitivity of the photoreceptors by means of absorption. It could be shown furthermore that such pigments can also act as sensitizing pigments that modify spectral sensitivities due to sensitization.Based on material presented at the European Neurosciences Meeting, Florence, September 1978 相似文献
2.
Scanning electron microscopy and microspectrophotometry of the photoreceptors of ictalurid catfishes
A. J. Sillman S. J. Ronan E. R. Loew 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,173(6):801-807
The retinal photoreceptors from larval channel catfish (Ictalurus punctatus) were studied using single cell, in situ microspectrophotometry. Rods appear at 5 days after hatch; cones are present from day one. The rods contain a visual pigment which absorbs light maximally at 540 nm. The cones contain either a green sensitive visual pigment with peak absorbance at 535 nm or a red sensitive visual pigment with peak absorbance at 608 nm. All pigments are based on vitamin A2. Visual pigment complement does not change with age, as photoreceptors from adultI. punctatus, I. catus andI. melas contain visual pigments virtually identical to those of the larvalI. punctatus. Regardless of age, no visual pigment with peak absorbance in the short wavelength region of the spectrum was ever observed. Scanning electron microscopy of adultI. punctatus retinas showed large rods with long, cylindrical outer segments and smaller cones with short, tapered outer segments. The myoids of both rods and cones are extensable. The rods, embedded in a granular tapetal material, comprise from 50 to 60% of the photoreceptors. Only single cones are present. The data are consistent with the idea that the ictalurid catfishes spend their entire lives in an environment deficient in blue light. 相似文献
3.
S. Hochstein 《European biophysics journal : EBJ》1979,5(2-3):129-136
The characteristics of different responses of invertebrate photoreceptors are reviewed. Invertebrate photopigment bistability has made possible the functional operational dissection of the pigment transition scheme. Outlasting the usual stimulus-coincident late receptor potential (LRP), additional antagonistic responses have been found: the prolonged depolarizing after-potential (PDA) arising from a net rhodopsin to metarhodopsin pigment shift, and a PDA-depression and an anti-PDA effect which arise from a reverse shift and cancel the PDA when induced during or closely before it. The characteristics of these aftereffects and of the LRP are reviewed, analyzed and compared. Both potentials require rhodopsin activation and they share the characteristics of a common ionic conductance-change mechanism. However, for the LRP response to weak stimuli, no antagonistic metarhodopsin-dependent effect has been found analogous to PDA-depression and the anti-PDA. However, this is just the response level where interactive effects would be weakest. For more intense stimuli, pigment-state effects on the shape of the LRP have been found, and net pigment shifts affect the strength of a facilitatory effect.Based on material presented at the European Neurosciences Meeting, Florence, September 1978 相似文献
4.
The fluorescence anisotropy of Photosystem I (PS I) particles, isolated from spinach chloroplasts and containing approximately
200 chlorophyll molecules per reaction center, is investigated at low temperatures. The particles are oriented by squeezing
in polyacrylamid gels with different macroscopic deformation parameters. Fluorescence anisotropy is measured upon steady state
excitation with a laser line at 632.8 nm. A formula for the fluorescence anisotropy in oriented Photosystem I particles is
applied for a different polarization of the linearly polarized exciting light. Our calculations are based on the consideration
of the Photosystem I complex as a triple-chromophore complex: the absorbing chlorophyll molecules (chl), belonging to the
light-harvesting complex of PS I (LHC), and two fluorophores, emitting at 720 nm (F720) and at 735 nm (F735), respectively.
Using polarized fluorescence spectroscopy with a different polarization of the linearly polarized exciting light, the experimental
dependence of the fluorescence anisotropy on this polarization is obtained. Based on this dependence and applying the derived
formula, as a first approximation, both the orientation of the photosynthetic pigments with respect to the membrane and their
mutual orientation are determined in PS I particles. As the most probable average orientational angles in PS I particles,
we obtained the values 35°÷ 50°, 50°÷ 60°, and 65°÷ 67° for the absorbing dipoles of chl and for the emission dipoles of F720
and F735, respectively, with the normal of the plane of the membrane. For their mutual orientation, the following limits are
determined: 10°÷ 20°, 40 ± 2°, 20°÷ 30° for the angles between chl and F720, chl and F735; and F720 and F735, correspondingly.
Of course, the values of the angles estimated as a result of our study are an average value of all angles of the excited transitions
and must be considered as their first approximation valid for the idealized case when all PS I particles are oriented in gel.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
5.
The organization, morphological characteristics, and synaptic structure of photoreceptors in the adult zebrafish retina were studied using light and electron microscopy. Adult photoreceptors show a typical ordered tier arrangement with rods easily distinguished from cones based on outer segment (OS) morphology. Both rods and cones contain mitochondria within the inner segments (IS), including the large, electron-dense megamitochondria previously described (Kim et al.) Four major ultrastructural differences were observed between zebrafish rods and cones: (1) the membranes of cone lamellar disks showed a wider variety of relationships to the plasma membrane than those of rods, (2) cone pedicles typically had multiple synaptic ribbons, while rod spherules had 1-2 ribbons, (3) synaptic ribbons in rod spherules were ∼2 times longer than ribbons in cone pedicles, and (4) rod spherules had a more electron-dense cytoplasm than cone pedicles. Examination of photoreceptor terminals identified four synaptic relationships at cone pedicles: (1) invaginating contacts postsynaptic to cone ribbons forming dyad, triad, and quadrad synapses, (2) presumed gap junctions connecting adjacent postsynaptic processes invaginating into cone terminals, (3) basal junctions away from synaptic ribbons, and (4) gap junctions between adjacent photoreceptor terminals. More vitread and slightly farther removed from photoreceptor terminals, extracellular microtubule-like structures were identified in association with presumed horizontal cell processes in the OPL. These findings, the first to document the ultrastructure of the distal retina in adult zebrafish, indicate that zebrafish photoreceptors have many characteristics similar to other species, further supporting the use of zebrafish as a model for the vertebrate visual system. 相似文献
6.
Kim J. M. Mulders Packo P. Lamers Dirk E. Martens René H. Wijffels 《Journal of phycology》2014,50(2):229-242
There is increasing interest in naturally produced colorants, and microalgae represent a bio‐technologically interesting source due to their wide range of colored pigments, including chlorophylls (green), carotenoids (red, orange and yellow), and phycobiliproteins (red and blue). However, the concentration of these pigments, under optimal growth conditions, is often too low to make microalgal‐based pigment production economically feasible. In some Chlorophyta (green algae), specific process conditions such as oversaturating light intensities or a high salt concentration induce the overproduction of secondary carotenoids (β‐carotene in Dunaliella salina (Dunal) Teodoresco and astaxanthin in Haematococcus pluvialis (Flotow)). Overproduction of all other pigments (including lutein, fucoxanthin, and phycocyanin) requires modification in gene expression or enzyme activity, most likely combined with the creation of storage space outside of the photosystems. The success of such modification strategies depends on an adequate understanding of the metabolic pathways and the functional roles of all the pigments involved. In this review, the distribution of commercially interesting pigments across the most common microalgal groups, the roles of these pigments in vivo and their biosynthesis routes are reviewed, and constraints and opportunities for overproduction of both primary and secondary pigments are presented. 相似文献
7.
J. Shand 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,173(1):115-121
The goatfish Upeneus tragula undergoes an abrupt metamorphosis at settlement when the pelagic larvae begin a reef-associated benthic mode of life. A microspectrophotometric investigation of the retinal visual pigments was carried out on fish prior to, during, and following settlement. It was found that the visual pigment in the long wavelength-absorbing member of the double cones in the dorsal retina changed rapidly from a rhodopsin with a wavelength of maximum absorption (max) of 580 nm to that of 530 nm. The second member of the double cones always had a rhodopsin with the max absorbing at shorter wavelengths. Prior to settlement the average for this class of cones was 487 nm whereas during and immediately following the settlement period the max recorded from individual outer segments was found to vary between 480 nm and 520 nm, with two possible classes of cone absorbance emerging within this range. These two classes of absorbance had average max values of 487 and 515 nm. The average max of the paired cone classes in one larger wild-settled fish were found to be at 506 nm and 530 nm. No change was detected in the max of the single cones or the rods which were always found to have a max of about 400 nm and 498 nm respectively. The loss of the redabsorbing pigment occurred over the same time scale as the metamorphosis of morphological features associated with the settlement process. It is thought that the loss of this visual pigment is associated with the change in light environment of the fishes as they leave the surface waters to begin a benthic mode of life in deeper water.Abbreviations AIMS Australian Institute of Marine Science - ANOVA Analysis of variance - IR infra-red - max wavelength of maximum absorption - MSP microspectrophotometer - NA numerical aperture - SL standard length 相似文献
8.
Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC 总被引:2,自引:0,他引:2
A reversed-phase High Performance Liquid Cromatography (HPLC) method has been developed to accurately separate bacteriochlorophyllsc, d ande homologues in a reasonably short run time of 60 minutes. By using this method, two well-defined groups of bacteriochlorophyll homologue peaks can be discriminated. The first one consists of 4 peaks (min 24 to 30), which corresponds to the four main farnesyl homologues. The second peak subset is formed by a cluster of up to 10 minor peaks (min 33 to 40). These peaks can be related with series of several alcohol esters of the different chlorosome chlorophylls. The number of homologues was, however, quite variable depending on both, the bacteriochlorophyll and the bacterial species. The method hereby described, also provides a good separation of other photosynthetic pigments, either bacterial (Bacteriochlorophylla, chlorobactene, isorenieratene and okenone) or algal ones (Chlorophylla, Pheophytina and -carotene). A preliminary screening of the homologue composition of several green photosynthetic bacterial species and isolates, has revealed different relative quantitative patterns. These differences seem to be related to physiological aspects rather than to taxonomic ones. The application of the method to the study of natural populations avoids the typical drawbacks on the pigment identification of overlapping eukaryotic and prokaryotic phototrophic microorganisms, giving further information about their physiological status. 相似文献
9.
The prolonged depolarizing afterpotential and its contribution to the understanding of photoreceptor function 总被引:4,自引:0,他引:4
Comparison of flies bred on vitamine A-poor and vitamine A-rich diets show the latter to exhibit, after blue illumination, 1) slight deviation from the linear relationship between stimulus intensity and receptor sensitivity and, 2) after intense blue illumination the phenomenon of the PDA. Both these effects could result from reduced pigment distances in such membranes. Maximum PDA was produced after about 20 s of illumination with blue light, and following this the resistance of the membrane was seen to stay low, returning to the resting value at the same rate as the PDA decline. The response to test flashes, repressed during illumination, gradually returned during the decline of the PDA, similar to the way the photoreceptor would respond to the sum of two stimuli: the test flash and a decreasing background illumination. Red light immediately following blue abolished the PDA and white light produced a small PDA. All these experiments corroborate a new model (without resorting to the concept of inhibitors) which links the photopigments with receptor excitation, the assumptions for which are the following: 1) PDA is produced after abnormally high primary quantum absorption by rhodopsin molecules, 2) PDA is a retarded membrane excitation by a substance in stored form, 3) the store is built up when production of this substance is larger than its consumption, and 4) time and energy are necessary for the regeneration of excitatory rhodopsin molecules.This work was supported by the DFG (Ha 258/10) and by the SFB 114Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976 相似文献
10.
B. D. Gupta 《European biophysics journal : EBJ》1981,8(1-2):35-43
The time variation of the absorption rate (i.e., the number of photons absorbed per sec) in a photoreceptor when light is incident perpendicular to its axis has been studied for various species and different conditions. Due to the cylindrical geometry of the photoreceptor the expressions for the absorption rates become very complicated. Hence, simple approximate expressions for the absorption rates in the case of some of the species have been suggested. The present analysis will be useful in analysing the mechanism of the photoreceptor when light is incident perpendicular to the axis.Work partially supported by Council of Scientific and Industrial Research (India) 相似文献
11.
Rhodopsin activation is measured by the early receptor current (ERC), a conformation-associated charge motion, in human embryonic kidney cells (HEK293S) expressing opsins. After rhodopsin bleaching in cells loaded with 11-cis-retinal, ERC signals recover in minutes and recurrently over a period of hours by simple dark adaptation, with no added chromophore. The purpose of this study is to investigate the source of ERC signal recovery in these cells. Giant HEK293S cells expressing normal wild-type (WT)-human rod opsin (HEK293S) were regenerated by solubilized 11-cis-retinal, all-trans-retinal, or Vitamin A in darkness. ERCs were elicited by flash photolysis and measured by whole-cell recording. Visible flashes initially elicit bimodal (R(1), R(2)) ERC signals in WT-HEK293S cells loaded with 11-cis-retinal for 40 min or overnight. In contrast, cells regenerated for 40 min with all-trans-retinal or Vitamin A had negative ERCs (R(1)-like) or none at all. After these were placed in the dark overnight, ERCs with outward R(2) signals were recorded the following day. This indicates conversion of loaded Vitamin A or all-trans-retinal into cis-retinaldehyde that regenerated ground-state pigment. 4-butylaniline, an inhibitor of the mammalian retinoid cycle, reversibly suppressed recovery of the outward R(2) component from Vitamin A and 11-cis-retinal-loaded cells. These physiological findings are evidence for the presence of intrinsic retinoid processing machinery in WT-HEK293S cells similar to what occurs in the mammalian eye. 相似文献
12.
Sumathy Babitha Julio C. Carvahlo Carlos R. Soccol Ashok Pandey 《World journal of microbiology & biotechnology》2008,24(11):2671-2675
The capacity to sense and respond to light is widespread in animals, plants, fungi and bacteria. The effect of light quality on growth and pigment yield of Monascus purpureus was investigated. Incubation in total darkness increased red pigment production from 14. 5 OD/g dry substrate to 22 OD/g dry substrate. In contrast, growth of the fungus in direct illumination resulted in total suppression of pigment production. It was found that both red and blue light influenced pigment yield as well as culture morphology. The authors propose the existence of a light-perception system in Monascus purpureus. 相似文献
13.
The effect of waveguiding property (i.e., the intensity distribution) of the photoreceptor on the number of photons absorbed in a photoreceptor has been studied. It has been found that the effect is significant only for large values of the exposure and the maximum effect is less than 11% in the case of human rod photoreceptor. In the analysis, the funnelling effect, which follows from the coupling between the interior and exterior fields, has not been considered.Work partially supported by the Department of Science and Technology (India)B. D. Gupta is associated with the School of Bioscience Studies 相似文献
14.
Martin Zatz 《Journal of neurochemistry》1994,62(5):2001-2011
Abstract: Light has at least two distinguishable effects on the circadian rhythm of melatonin output displayed by dispersed chick pineal cells in static culture: acute suppression of melatonin output and entrainment (phase shifts) of the underlying pacemaker. Previous results indicated that these two effects of light are mediated by different mechanistic pathways. The pathways for the acute and phase-shifting effects of light either branch from the same, single photopigment or differ from the outset, starting from separate photopigments. If a single rhodopsin-like photopigment mediates both effects of light, then vitamin A depletion and retinoid addition should affect both responses in parallel, although not proportionately. We therefore compared the effects of vitamin A depletion and retinoid addition on the acute and phase-shifting effects of light under several experimental conditions. When chick pineal cells were depleted of vitamin A, acute responses to light were markedly reduced. Addition of 11-cis-retinaldehyde specifically restored (and enhanced) the acute response. When allowed to free run in constant red light, depleted cells displayed a rhythm of melatonin output with the same period as that of control cells. In contrast to the acute effects, phase shifts in response to 2- or 4-h light pulses did not differ between depleted and control cells. Addition of retinaldehyde to depleted cells did not, by itself, reduce melatonin output or induce phase shifts. Retinaldehyde did increase the acute response to 4-h light pulses but not the ensuing phase shifts. Responses increased with duration of the light pulse: Both the acute effect and the phase shifts induced by 4-h light pulses were considerably larger than those induced by 2-h (or 1-h) light pulses. Addition of retinaldehyde to depleted cells increased the acute effect of 2-h (or 1-h) light pulses to at least that seen with 4-h light pulses but did not Increase the size of the ensuing phase shifts. These results strongly confirm previous dissociations of the mechanistic pathways mediating the acute and phase-shifting effects of light on chick pineal cells. They also support a role for rhodopsin-like photopigment in the acute, but not phase-shifting, response. They favor, but do not prove, the conclusion that separate photopigments mediate the acute and entraining effects of light. 相似文献
15.
《Nucleosides, nucleotides & nucleic acids》2013,32(5-7):757-760
The aim of this work is to compare the physicochemical properties of three oligonucleotidic sequences, d(TGGGT), d(TGGGGT) and d(TGGGGGT), which assemble to form quadruplex structures with the same molecularity, but containing three, four, and five G-quartets, respectively. The addition of one or two G-tetrads greatly increases both the enthalpy and Tm values of the quadruplex dissociation. 相似文献
16.
Light availability varies strongly among moss habitats and within the moss canopy, and vertical variation in light within the canopy further interacts with the age gradient. The interacting controls by habitat and canopy light gradient and senescence have not been studied extensively. We measured light profiles, chlorophyll (Chl), carotenoid (Car) and nitrogen (N) concentrations, and photosynthetic electron transport capacity (Jmax) along habitat and canopy light gradients in the widespread, temperate moss Pleurozium schreberi to separate sources of variation in moss chemical and physiological traits. We hypothesised that this species, like typical feather mosses with both apical and lateral growth, exhibits greater plasticity in the canopy than between habitats due to deeper within‐canopy light gradients. For the among‐habitat light gradient, Chl, Chl/N and Chl/Car ratio increased with decreasing light availability, indicating enhanced light harvesting in lower light and higher capacity for photoprotection in higher light. N and Jmax were independent of habitat light availability. Within the upper canopy, until 50–60% above‐canopy light, changes in moss chemistry and photosynthetic characteristics were analogous to patterns observed for the between‐habitat light gradient. In contrast, deeper canopy layers reflected senescence of moss shoots, with pigment and nitrogen concentrations and photosynthetic capacity decreasing with light availability. Thus, variation in chemical and physiological traits within the moss canopy is a balance between acclimation and senescence. This study demonstrates extensive light‐dependent variation in moss photosynthetic traits, but also that between‐habitat and within‐canopy light gradient affects moss physiology and chemistry differently. 相似文献
17.
The retinal analogue beta-ionone was used to investigate possible physiological effects of the noncovalent interaction between rod opsin and its chromophore 11-cis retinal. Isolated salamander rod photoreceptors were exposed to bright light that bleached a significant fraction of their pigment, were allowed to recover to a steady state, and then were exposed to beta-ionone. Our experiments show that in bleach-adapted rods beta-ionone causes a decrease in light sensitivity and dark current and an acceleration of the dim flash photoresponse and the rate constants of guanylyl cyclase and cGMP phosphodiesterase. Together, these observations indicate that in bleach-adapted rods beta-ionone activates phototransduction in the dark. Control experiments showed no effect of beta-ionone in either fully dark-adapted or background light-adapted cells, indicating direct interaction of beta-ionone with the free opsin produced by bleaching. We speculate that beta-ionone binds specifically in the chromophore pocket of opsin to produce a complex that is more catalytically potent than free opsin alone. We hypothesize that a similar reaction may occur in the intact retina during pigment regeneration. We propose a model of rod pigment regeneration in which binding of 11-cis retinal to opsin leads to activation of the complex accompanied by a decrease in light sensitivity. The subsequent covalent attachment of retinal to opsin completely inactivates opsin and leads to the recovery of sensitivity. Our findings resolve the conflict between biochemical and physiological data concerning the effect of the occupancy of the chromophore binding site on the catalytic potency of opsin. We show that binding of beta-ionone to rod opsin produces effects opposite to its previously described effects on cone opsin. We propose that this distinction is due to a fundamental difference in the interaction of rod and cone opsins with retinal, which may have implications for the different physiology of the two types of photoreceptors. 相似文献
18.
Whole cells and isolated chlorosomes (antenna complex) of the green photosynthetic bacterium Chloroflexus aurantiacus have been studied by absorption spectroscopy (77 K and room temperature), fluorescence spectroscopy, circular dichroism, linear dichroism and electron spin resonance spectroscopy. The chlorosome absorption spectrum has maxima at 450 (contributed by carotenoids and bacteriochlorophyll (BChl) a Soret), 742 (BChl c) and 792 nm (BChl a) with intensity ratios of 20:25. The fluorescence emission spectrum has peaks at 748 and 802 nm when excitation is into either the 742 or 450 nm absorption bands, respectively. Whole cells have fluorescence peaks identical to those in chlorosomes with the addition of a major peak observed at 867 nm. The CD spectrum of isolated chlorosomes has an asymmetric-derivative-shaped CD centered at 739 nm suggestive of exciton interaction at least on the level of dimers. Linear dichroism of oriented chlorosomes shows preferential absorption at 742 nm of light polarized parallel to the long axis of the chlorosome. This implies that the transition dipoles are also oriented more or less parallel to the long axis of the chlorosome. Treatment with ferricyanide results in the appearance of a 2.3 G wide ESR spectrum at g 2.002. Whole cells grown under different light conditions exhibit different fluorescence behavior when absorption is normalized at 742 nm. Cells grown under low light conditions have higher fluorescence intensity at 748 nm and lower intensity at 802 nm than cells grown under high light conditions. These results indicate that the BChl c in chlorosomes is highly organized, and transfers energy from BChl c (742 nm) to a connector of baseplate BChl B792 (BChl a) presumably located in the chlorosome baseplate adjacent to the cytoplasmic membrane. 相似文献
19.
Jean Auguste Barra 《Cell and tissue research》1971,117(3):322-353
Résumé L'étude ultrastructurale de l'appareil dioptrique des photorécepteurs des Collemboles adultes a permis de reconsidérer la structure des formations oculaires à ommatidies aggrégées. Quatre types de cornéules ont été reconnus, dont les plus remarquables sont ceux à mamelons cornéens. Les cellules cristalliniennes au nombre de quatre assurent alternativement une double fonction au cours de chaque cycle de la mue. Sur les faces distales, les cellules élaborent le matériel cuticulaire de la cornéule; vers l'intérieur elles sécrètent le cristallin. Les cellules de Semper réalisent ainsi une fonction cornéagène et une fonction cristallogène. La répartition spatiale des organites intracellulaires en couches concentriques est une caractéristique des Collemboles. Chaque cellule cristallinienne envoie vers la membrane basale un processus tubulaire contenant des granules denses de nombreux microtubules et du glycogène en faible quantité. Les cônes cristallins présentent une grande diversité de forme de structure et de composition chimique. Suivant les groupes le cristallin peut être une formation intracellulaire ou extracellulaire, simple ou quadripartite. La présence de petits cristallins satellites associés à un cristallin unique reste inexpliquée mais caractérise une espèce troglobie Tomocerus problematicus. Deux cellules dites cornéagènes à cytoplasme toujours pauvre en organites intracytoplasmiques, avec ou sans pigment, complètent l'appareil dioptrique des ommas des Collemboles.
Photoreceptors of Collembola, an ultrastructural studyI. The Dioptric Apparatus
Summary Ultrastructural features of the dioptric apparatus of photoreceptors of adult Collembola described by the author has enabled the author to compare the structure of ocular formations with aggregated ommatidia. Four different types of corneulae have been determined, the most remarkable of which are those showing corneal nipples. The four crystalline cells have alternately different functions during each molting cycle. On their distal surfaces, the cells elaborate cuticular material of the corneula; proximally, they secrete a crystalline cone. The Semper cells thus have both corneogenous and crystallogenous functions. The typically concentric spatial distribution of intracellular organelles in these cells is a characteristic feature for Collembola. Each crystalline cell sends towards the basal membrane a tubular process containing granules, numerous microtubules, and a small amount of glycogen. The shape, the structure, and the chemical composition of the crystalline cones are highly variable. In Collembola, the crystalline formation can either be intracellular or extracellular, and it can be simple or quadripartite. No explanation has yet been advanced for the existence of small crystalline satellites which appear to be associated with the single large crystalline cones; this association is characteristic for the troglobian species Tomocerus problematicus. The dioptric apparatus of Collembolan ommatidia is completed by the presence of two corneogenous cells, the cytoplasm of which contains few organelles and in some cases pigments.相似文献
20.
Summary The conditions that lead to the formation of myelin figures in rhabdomere microvilli were studied in the larval ocelli of the mosquito Aedes aegypti. These artifacts can result from the addition of divalent ions, such as Ca2+, to primary-aldehyde fixatives, but they form subsequently during postfixation with OsO4. In light-adapted ocelli, myelin figures are concentrated at the proximal ends of the microvilli along the cytoplasmic margin of the rhabdomere. The severity of the artifact is proportional to the ion concentration: scattered myelin whorls are induced by Ca2+ concentrations as low as 5 mM; they become abundant at 15 mM to 25 mM, and displace much of the rhabdomere margin at 50 mM. In contrast, even at high concentrations of Ca2+ few membrane whorls form in dark-adapted rhabdomeres, and these are mostly located at the distal ends of the microvilli. The differential response of the rhabdomere microvilli in light and darkness does not result from a direct action of light during fixation; it reflects an underlying difference between light- and dark-adapted photoreceptor membranes. We suggest that this differential sensitivity to divalent ions is associated with the shedding of membranes from the rhabdomere, a process that is enhanced by light and reduced in darkness.This work was supported by a grant (BNS 76-18623) from the National Science Foundation 相似文献