首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The three areas of food reserves in quinoa seeds are: a largecentral perisperm, a peripheral embryo and a one to two-celllayered endosperm surrounding the hypocotyl-radicle axis ofthe embryo. Cytochemical and ultrastructural analysis revealedthat starch grains occupy the cells of the perisperm, whilelipid bodies, protein bodies with globoid crystals of phytin,and proplastids with deposits of phytoferritin are the storagecomponents of the cells of the endosperm and embryo tissues.EDX analysis of the endosperm and embryo protein bodies revealedthat globoid crystals contain phosphorus, potassium and magnesium.These results are compared with studies on other perispermousseeds published to date.Copyright 1998 Annals of Botany Company Chenopodium quinoa,EDX analysis, phytoferritin, phytin, protein bodies, quinoa, seed structure, seed reserves, starch grains.  相似文献   

2.
Amaranthus hypochondriacus embryo sac development was investigatedbefore and after fertilization. During the early stages of development,the young embryo sac displays three antipodal cells at the chalazalpole that degenerate very early in the maturation process, beforethe synergids and egg cell are completely differentiated. Themature embryo sac is composed only of the female germ unit.The synergid cells organize a filiform apparatus accompaniedby the presence of mitochondria and dictyosomes with numerousvesicles. The involvement of the synergids in transport andsecretory functions related to pollen tube attraction and guidance,are discussed. The egg cell is located at the micropylar polenear the synergids and displays exposed plasma membranes atthe chalazal pole. The fertilized egg cell does not exhibitmarked changes after fertilization except for the closure ofthe cell wall. The central cell is the largest cell of thisvery long embryo sac. The fused nucleus is close to the eggapparatus before fertilization and displays a remarkable chalazalmigration after gamete delivery. The ultrastructure of the centralcell cytoplasm and the numerous wall ingrowths around this cellsuggest an important role in nutrient transportation. Aftergamete delivery, the embryo sac displays electron dense bodiesthat aggregate within the intercellular space between the synergids,egg cell and central cell. These bodies, that appear in theembryo sac of several plants, are probably involved in gametedelivery for double fertilization. The possibility of biparentalinheritance of mitochondria in this plant is also discussed.Copyright 1999 Annals of Botany Company Amaranthus hypochondriacus, grain amaranth, embryo sac, fertilization.  相似文献   

3.

Background and Aims

Obligate root parasitic plants of the Orobanchaceae do not germinate unless they chemically detect a host plant nearby. Members of this family, like Orobanche, Phelipanche and Striga, are noxious weeds that cause heavy damage to agriculture. In spite of their economic impact, only a few light microscopical studies of their minute seeds have been published, and there is no knowledge of their ultrastructure and of the role each tissue plays during the steps preceding germination. This paper describes the ultrastructure of Phelipanche seeds and contributes to our understanding of seed tissue function.

Methods

Seeds of P. aegyptiaca were examined under light, scanning electron, transmission electron and fluorescence microscopy following various fixations and staining protocols. The results were interpreted with physiological data regarding mode of water absorption and germination stimulation.

Key Results and Conclusions

The endothelium, which is the inner layer of the testa, rapidly absorbs water. Its interconnected cells are filled with mucilage and contain labyrinthine walls, facilitating water accumulation for germination that starts after receiving germination stimuli. Swelling of the endothelium leads to opening of the micropyle. The perisperm cells underneath this opening mediate between the rhizosphere and the embryo and are likely to be the location for the receptors of germination stimuli. The other perisperm cells are loaded with lipids and protein bodies, as are the endosperm and parts of the embryo. In the endosperm, the oil bodies fuse with each other while they are intact in the embryo and perisperm. Plasmodesmata connect the perisperm cells to each other, and the cells near the micropyle tightly surround the emerging seedling. These perisperm cells, and also the proximal embryo cells, have dense cytoplasmic contents, and they seem to represent the two seed components that are actively involved in transfer of reserve nutrients to the developing seedling during germination.  相似文献   

4.
Metabolite deposition during seed development was examined histochemicallyin Trifolium repens by light- and fluorescence microscopy. Allendosperm haustorium at the chalazal pole of the embryo sacand wall protrusions in cell walls of the suspensor and theembryo sac suggest that transfer of metabolites from maternalto offspring tissue takes place primarily at these sites. Thisis further supported by prominent cutinization of the interpolarregion of the embryo sac wall, accumulation of starch in integumentaltissue at the embryo sac poles, and breakdown of interpolarendothelial cells. Decomposition of osteosclereid starch isfollowed by accumulation in the cellular endosperm and subsequentlyin the embryo parallel to endosperm degradation. The starchaccumulates gradually inward from the subepidermal cells ofthe embryo to the stele. Protein bodies are formed in the vacuolesalong the tonoplast, later to be cut off in vesicles releasedinto the cytoplasm. At maturity the embryo is packed with proteinand starch, but without lipid reserves. Phytin is observed inthe protein bodies. The mature embryo is surrounded by a proteinand starch containing aleurone layer which originates from theendosperm.Copyright 1994, 1999 Academic Press White clover, protein, starch, cuticle, embryo sac wall  相似文献   

5.
We previously reported that an apparent water potential disequilibrium is maintained late in muskmelon (Cucumis melo L.) seed development between the embryo and the surrounding fruit tissue (mesocarp). To further investigate the basis of this phenomenon, the permeability characteristics of the tissues surrounding muskmelon embryos (the mucilaginous endocarp, the testa, a 2- to 4-cell-layered perisperm and a single cell layer of endosperm) were examined from 20 to 65 days after anthesis (DAA). Water passes readily through the perisperm envelope (endosperm + perisperm), testa, and endocarp at all stages of development. Electrolyte leakage (conductivity of imbibition solutions) of individual intact seeds, decoated seeds (testa removed), and embryos (testa and perisperm envelope removed) was measured during imbibition of freshly harvested seeds. The testa accounted for up to 80% of the total electrolyte leakage. Leakage from decoated seeds fell by 8- to 10-fold between 25 and 45 DAA. Presence of the perisperm envelope prior to 40 DAA had little effect on leakage, while in more mature seeds, it reduced leakage by 2- to 3-fold. In mature seeds, freezing, soaking in methanol, autoclaving, accelerated aging, and other treatments which killed the embryos had little effect on leakage of intact or decoated seeds, but caused osmotic swelling of the perisperm envelope due to the leakage of solutes from the embryo into the space between the embryo and perisperm. The semipermeability of the perisperm envelope of mature seeds did not depend upon cellular viability or lipid membrane integrity. After maximum seed dry weight is attained (35-40 DAA), the perisperm envelope prevents the diffusion of solutes, but not of water, between the embryo and the surrounding testa, endocarp, and mesocarp tissue.  相似文献   

6.
Successful development of seeds under spaceflight conditionshas been an elusive goal of numerous long-duration experimentswith plants on orbital spacecraft. Because carbohydrate metabolismundergoes changes when plants are grown in microgravity, developingseed storage reserves might be detrimentally affected duringspaceflight. Seed development in Arabidopsis thaliana plantsthat flowered during 11 d in space on shuttle mission STS-68has been investigated in this study. Plants were grown to therosette stage (13 d) on a nutrient agar medium on the groundand loaded into the Plant Growth Unit flight hardware 18 h priorto lift-off. Plants were retrieved 3 h after landing and siliqueswere immediately removed from plants. Young seeds were fixedand processed for microscopic observation. Seeds in both theground control and flight plants are similar in their morphologyand size. The oldest seeds from these plants contain completelydeveloped embryos and seed coats. These embryos developed radicle,hypocotyl, meristematic apical tissue, and differentiated cotyledons.Protoderm, procambium, and primary ground tissue had differentiated.Reserves such as starch and protein were deposited in the embryosduring tissue differentiation. The aleurone layer contains alarge quantity of storage protein and starch grains. A seedcoat developed from integuments of the ovule with gradual changein cell composition and cell material deposition. Carbohydrateswere deposited in outer integument cells especially in the outsidecell walls. Starch grains decreased in number per cell in theintegument during seed coat development. All these characteristicsduring seed development represent normal features in the groundcontrol plants and show that the spaceflight environment doesnot prevent normal development of seeds in Arabidopsis. Arabidopsis ; spaceflight; embryo; endosperm; seed coat; storage reserves  相似文献   

7.
The importance of seed reserves for growth of Pinus resinosaAit. during and shortly after seed germination was studied undercontrolled conditions. Tissues in the resting embryo were notcompletely differentiated. Many small, presumably reserve particleswere present in the embryo in addition to reserves in the megagametophyte.During seed germination, procambia in the embryo first differentiatedprotophloem 2 days after seeds were sown. The radicle beganto emerge from the seed coat at 5 days, at which time initialxylem formation was observed. Also, at approximately the sametime, primordia of primary needles were forming in the peripheralzone of the apex. Elements of the photosynthetic apparatus,including stomata and mesophyll with chloroplasts, were differentiatedfirst in the hypocotyl and then in cotyledons between 5 and8 days after seeds were sown. Photosynthetic rates of youngseedlings were correlated with rates of cotyledon expansion.During early developmental stages, reserve particles in megagametophytecells and embryo cells gradually disappeared. Surgical removalof megagametophytes at various stages of seed germination resultedin subsequent growth inhibition of the hypocotyl-radicle axis,with early removal of cotyledons suppressing most growth. Growthof primary needles appeared to be influenced indirectly by megagametophytereserves, probably by changes in amount of photosynthetic tissue.The embryo alone possessed capacity to differentiate such tissuesas primary needle primordia, stomata, and primary and secondaryvascular systems. Megagametophyte reserves appeared to contributeto growth of embryonic tissues only after the embryo itselfinitiated growth. Both current photosynthesis of seedlings andseed reserves contributed importantly to seedling development.  相似文献   

8.
Background and Aims: The embryo sac, nucellus and integuments of the early-divergentangiosperms Hydatellaceae and other Nymphaeales are comparedwith those of other seed plants, in order to evaluate the evolutionaryorigin of these characters in the angiosperms. Methods: Using light microscopy, ovule and embryo sac development aredescribed in five (of 12) species of Trithuria, the sole genusof Hydatellaceae, and compared with those of Cabombaceae andNymphaeaceae. Key Results: The ovule of Trithuria is bitegmic and tenuinucellate, ratherthan bitegmic and crassinucellate as in most other Nymphaeales.The seed is operculate and possesses a perisperm that developsprecociously, which are both key features of Nymphaeales. However,in the Indian species T. konkanensis, perisperm is relativelypoorly developed by the time of fertilization. Perisperm cellsin Trithuria become multinucleate during development, a featureobserved also in other Nymphaeales. The outer integument issemi-annular (‘hood-shaped’), as in Cabombaceaeand some Nymphaeaceae, in contrast to the annular (‘cap-shaped’)outer integument of some other Nymphaeaceae (e.g. Barclaya)and Amborella. The megagametophyte in Trithuria is monosporicand four-nucleate; at the two-nucleate stage both nuclei occurin the micropylar domain. Double megagametophytes were frequentlyobserved, probably developed from different megaspores of thesame tetrad. Indirect, but strong evidence is presented forapomictic embryo development in T. filamentosa. Conclusions: Most features of the ovule and embryo sac of Trithuria are consistentwith a close relationship with other Nymphaeales, especiallyCabombaceae. The frequent occurrence of double megagametophytesin the same ovule indicates a high degree of developmental flexibility,and could provide a clue to the evolutionary origin of the Polygonum-typeof angiosperm embryo sac.  相似文献   

9.
Muskmelon (Cucumis melo L.) embryos are enclosed in an envelopeof tissue consisting of a layer of endosperm and a multi-cell-layeredperisperm that the radicle must penetrate for germination tooccur. The force and energy required to penetrate the perispermenvelope tissue were measured using an Instron universal testingmachine at a crosshead speed of 5 mm min–1 after 0, 10,15, 22, 23, and 25 h of imbibition at 25C. The cellular structureof perisperm envelope tissue surrounding the radicle was observedafter 10, 15, 20, 25, and 48 h of imbibition using scanningelectron microscopy. The force required to puncture 5-mm-long,micropylar seed pieces declined steadily from 1.65 N in driedseeds to 0.65 N after 21 h of imbibition. The penetration energydeclined from 3.0 N mm in dry seeds to 1.1 N mm at 21 h afterthe start of imbibition when the first seeds germinated. Theforce and energy required to penetrate germinated seed pieceswere 0.55 N and 0.9 N mm, respectively, so the net punctureforce and energy needed to rupture the micropylar region ofthe perisperm envelope was roughly 0.10 N and 0.2 N mm at radicleemergence, respectively. Instron measurements of penetrationforce and energy decreased dramatically at crosshead speedsless than the 5 mm min–1. Crosshead speeds greater than5 mm min–1 may overestimate the pressure needed to ruptureperisperm and endosperm tissues. Intracellular cracks were firstobserved in SEM images 15 h after the start of imbibition, andafter 20 h cracking was apparent throughout the micropylar regionof the perisperm envelope. The perisperm envelope ruptured inone of two ways, coincident with radicle emergence. In approximately85% of muskmelon seeds, a large crack formed in the perispermenvelope adjacent to the radicle, while in roughly 15 % a circulararea of the perisperm envelope detached during radicle emergence.In dead seeds, the penetration force remained constant from10–24 h after the start of imbibition, and there wereno visible signs of tissue degradation. Cellular degradationand weakening of the perisperm envelope tissue precedes radicleemergence in muskmelon seeds. Key words: Seed, Instron, turgor, cell wall, electron microscopy, Cucumis melo  相似文献   

10.
The hitherto unresolved ontogenetic origin of the aleurone layerin mustard (Sinapis alba L.) seeds was investigated with lightand electron microscopy. Contrary to previous views, this layerof storage cells is neither derived from the endosperm nor fromthe nucellus, but from a particular cell layer within the innerintegument of the seed coat. These cells differentiate and becomefilled with storage protein and fat concurrently with the maturationof the embryo. They survive seed desiccation and become depletedof storage materials during seed germination. Temporally correlatedwith the germinating embryo, the aleurone cells produce microbodyenzymes, which are controlled by light in a similar fashionin both tissues. Sinapis alba L., mustard, aleurone layer, seed coat, seed formation, germination  相似文献   

11.
? Premise of the study: Despite their highly reduced morphology, Hydatellaceae bear the unmistakable embryological signature of Nymphaeales, including a starch-rich maternal perisperm and a minute biparental endosperm and embryo. The co-occurrence of perisperm and endosperm in Nymphaeales and other lineages of flowering plants, and their respective functions during the course of seed development and embryo germination, remain enigmatic. ? Methods: Development of the embryo, endosperm, and perisperm was examined histologically from fertilization through germination in flowers and fruits of Trithuria submersa. ? Key results: The embryo of T. submersa initiates two cotyledons prior to seed maturity/dormancy, and their tips remain in contact with the endosperm throughout germination. The endosperm persists as a single layer of cells and serves as the interface between the embryo and the perisperm. The perisperm contains carbohydrates and proteins, and functions as the main storage tissue. The endosperm accumulates proteins and aleurone grains and functions as a transfer cell layer. ? Conclusions: In Nymphaeales, the multiple roles of a more typical endosperm have been separated into two different tissues and genetic entities: a maternal perisperm (nutrient acquisition, storage, mobilization) and a minute biparental endosperm (nutrient transfer to the embryo). The presence of perisperms among several other ancient lineages of angiosperms suggests a modest degree of developmental and functional lability for the nutrient storage tissue (perisperm or endosperm) within seeds during the early evolution of flowering plants. Finally, we examine the evolutionary developmental hypothesis that, contrary to longstanding assumptions, an embryo-nourishing perisperm along with a minute endosperm may represent the plesiomorphic condition for flowering plants.  相似文献   

12.
Measurements were made using GC/MS SIM1 of the effects of temperatureon cis,trans-ABA levels in developing ovules and embryos oftwo pea genotypes contrasted in seed size. These effects werethen related to differences in the growth of the pods, seeds,embryos, and testae. In both genotypes high temperatures hastenedthe onset and rate of logarithmic and then linear growth, greatlyshortening the duration of pod and seed development but withoutgreatly altering seed size. Cis,trans-ABA was most concentratedxin the ovules immediately after fertilization. It also accumulatedin the embryo, more rapidly in the larger-seeded line, duringseed maturation. The stage when accumulation in the embryo beganwas the same irrespective of temperature. Accumulation ceasedwhen the pods started to desiccate. The effects of differentconstant temperatures on the maximum levels of embryo cis,trans-ABAwere relatively small and confounded in one genotype by variationin ovule abortion and in the other by differences in the stagewhen cis,trans-ABA accumulation ceased. However, when plantswere transferred from 13 °C to 29 °C at two differentstages during seed maturation, further seed growth was greatlyinhibited coincident with a substantial increase in embryo cis-trans-ABA.The results suggested a role for cis,trans-ABA in the controlof cotyledon enlargement during the linear phase of seed growth.  相似文献   

13.
The seed coat vascular system of the developing seed of Viciafaba consists of a chalazal and two lateral veins. The veinsare embedded in parenchymatous tissue which lies beneath thehypodermis and is divided into chlorenchyma, ground parenchymaand thin-walled parenchyma. The thin-walled parenchyma cellsand, in old seed coats, the vascular parenchyma of the veinsundergo additional secondary wall development to form transfercells. Thus, transfer cells line the entire inner surface ofthe seed coat. Initial distribution of 14C-photosynthates andsodium fluorescein within the seed coat was in the vascularsystem. Subsequent transfer towards the embryo was either radiallythrough vascular parenchyma and thin-walled parenchyma to thin-walledparenchyma/transfer cells, or by lateral spread within the groundand thin-walled parenchyma/transfer cells of the non-vascularregion of the seed coat prior to radial transfer. One-thirdof the 14C-photosynthate delivered to the enclosed embryo wasestimated to be transferred via the non-vascular region of theseed coat. The cotyledons consist of a single-layered epidermisenclosing storage parenchyma in which a differentiating reticulatevascular system is embedded. Epidermal cells juxtaposed to theseed coat develop wall ingrowths characteristic of transfercells. Initial distribution of 14C-photosynthate within thecotyledons reflected the unequal delivery to the seed apoplastfrom the vascular and non-vascular regions of the seed coat.Subsequent even distribution of photosynthate within the cotyledonspossibly occurred by transfer within their vascular system. Key words: Cellular pathway, photosynthate transfer, seed anatomy, transfer cell  相似文献   

14.
Seed Structure in Cannaceae: Taxonomic and Ecological Implications   总被引:1,自引:0,他引:1  
The ovules and seeds of Canna show some striking differencesto those in other zingiberalean families. The pachychalazaldevelopment of the ovule results in a seed of which only a smallpart of the testa is of tegumentary origin. A silicified endotesta,characteristic of the order, is lacking. The mechanical layerof the seed is formed by a continuous exotesta of Malpighiancells. The intact seed coat is impermeable. The seed is ableto absorb water after the raising of a preformed imbibitionlid on the raphe. During imbibition the extotesta loses itshardness, allowing the embryo to emerge. The special structuralfeatures of the seed are discussed in relation to records onthe extreme longevity of Canna seeds. Canna tuerckheimii, C. jaegeriana, C. glauca, pachychalaza, Malpighian cells, imbibition lid, seed longevity  相似文献   

15.
Relationships between nitrate (NO-3) supply, uptake and assimilation,water uptake and the rate of mobilization of seed reserves wereexamined for the five main temperate cereals prior to emergencefrom the substrate. For all species, 21 d after sowing (DAS),residual seed dry weight (d.wt) decreased while shoot plus rootd.wt increased (15–30%) with increased applied NO-3concentrationfrom 0 to 5–20 mM . Nitrogen (N) uptake and assimilationwere as great with addition of 5 mM ammonium (NH+4) or 5 mMNO-3but NH+4did not affect the rate of mobilization of seedreserves. Chloride (Cl-) was similar to NO-3in its effect onmobilization of seed reserves of barley (Hordeum vulgare L.).Increased rate of mobilization of seed reserves with additionalNO-3or Cl-was associated with increases in shoot, root and residualseed anion content, total seedling water and residual seed watercontent (% water) 21 DAS. Addition of NH+4did not affect totalseedling water or residual seed water content. For barley suppliedwith different concentrations of NO-3or mannitol, the rate ofmobilization of seed reserves was positively correlated (r >0.95)with total seedling water and residual seed water content. Therate of mobilization of seed reserves of barley was greaterfor high N content seed than for low N content seed. Seed watercontent was greater for high N seed than for low N seed, 2 DAS.Additional NO-3did not affect total seedling water or residualseed water content until 10–14 DAS. The effects of seedN and NO-3on mobilization of seed reserves were detected 10and 14 DAS, respectively. It is proposed that the increasedrate of mobilization of seed reserves of temperate cereals withadditional NO-3is due to increased water uptake by the seedlingwhile the seed N effect is due to increased water uptake bythe seed directly. Avena sativa L.; oat; Hordeum vulgare L.; barley; Secale cereale L.; rye; xTriticosecale Wittm.; triticale; Triticum aestivum L.; wheat; nitrate; seed; germination; seed reserve mobilization  相似文献   

16.
Dead seeds that expand to nearly twice their normal volume whenfully hydrated are called osmotically distended (OD). Theseseeds swell osmotically in response to a water potential ()gradient created by solutes trapped in the free space betweenthe embryo and the surrounding endosperm or perisperm tissues.The formation of OD seeds in planta is poorly understood, althoughthey often occur in newly harvested muskmelon (Cucumis meloL. Reticulatus group) seed lots. Muskmelon fruit senescenceand seed germinability were contrasted with Armenian cucumber(Cucumis melo L. Flexuosus group) from 50 d after anthesis (DAA)to when seeds were released from the fruit. Fifty DAA muskmelonseeds were incubated in the laboratory for 30 d at 15, 25, and35 °C in factorial combinations of ethanol, acetic acid,and to simulate conditions in decaying fruits. Seed releasefrom Armenian cucumber occurred 20 d earlier than muskmelon.In both years of the study, less than 25% of the muskmelon seedsreleased from the fruit were viable, and 52% and 24% of thedead seeds were OD in year one and two, respectively. All Armeniancucumber seeds were viable or had germinated precociously atseed release. From 50 to 60 DAA, soluble solids in muskmelonfruit pericarp tissue declined from 11·4 to 7·8° Brix, pH declined from 6·2 to 5·1, increasedfrom –1·76 to –1·36 MPa, acetic acidincreased to 61 mol m–3;, and ethanol content rose from0·1% to 0·3%. O2 and CO2 partial pressures inthe seed cavities of 40 to 55 DAA fruits were generally 12 and8 kPa, respectively, at midday. All 50 DAA muskmelon seeds incubatedin acetic acid and ethanol germinated, because these chemicalscould not penetrate the perisperm tissue. Incubating 50 DAAmuskmelon seeds in the laboratory for 30 d at 15 or 25 °Chad little effect on germinability, regardless of . Germinationpercentages of muskmelon seeds incubated at 35 °C and 's<–1·28MPa were less than 50%. Muskmelon seeds died and became OD insidedecaying fruits in the field because of the combined effectsof low , high temperature, and low O2 partial pressures. Fruitsof muskmelon cultivars bred to resist decomposition and to havehigh sugar content showed decreased reproductive capacity comparedto Armenian cucumber which decomposed more rapidly. Key words: Muskmelon, seed, fruit, germination, senescence, water potential, temperature, oxygen, carbon dioxide  相似文献   

17.
Photosynthate movement within the coat of the developing seedof Vicia faba occurs radially inward from the restricted vascularsystem and laterally through the non-vascularized region ofthe seed coat prior to exchange to the seed apoplast. Thin-walledparenchyma/transfer cells line the entire inner surface of theseed coat and thus are located at the terminus of the photosynthatetransfer pathway. The principal cellular route of transfer withinthe seed coat and the role of the thin-walled parenchyma/transfercells in membrane exchange to the seed apoplast has been investigated.Sucrose fluxes, computed from estimates of the plasma membranesurface areas of the cell types of the pathway, the plasmodesmatalcross-sectional areas interconnecting contiguous cells and theobserved rate of sucrose delivery to the embryo indicate thatsieve element unloading and subsequent transfer to the thin-walledparenchyma/transfer cells is through the symplast. For the cellsof the ground tissue, plasmodesmatal density is consistentlyhigher on their anticlinal walls. This observation supportsthe reported pattern of lateral transfer through these tissuesin the non-vascular regions of the seed coat. Wall ingrowthsare initiated sequentially in the thin-walled parenchyma cellsto maintain 1–3 rows of thin-walled parenchyma/transfercells. The development of these wall ingrowths results in a58% increase in the plasma membrane surface area of these cellsand provides them with the capacity to act as the principalcellular site for membrane exchange of sucrose to the seed apoplast.This cellular route of symplastic transfer from the sieve elementsto the ground tissues where membrane exchange to the seed apoplastoccurs is consistent with that reported for Phaseolus vulgaris Key words: Cellular pathway, photosynthate transfer, transfer cell, Vicia seed coat  相似文献   

18.
BUNCE  JAMES A. 《Annals of botany》1990,65(6):637-642
Dark carbon dioxide efflux rates of recently fully expandedleaves and whole plants of Amaranthus hypochondriacus L., Glycinemax (L.) Merr., and Lycopersicon esculentum Mill. grown in controlledenvironments at 35 and 70 Pa carbon dioxide pressure were measuredat 35 and 70 Pa carbon dioxide pressure. Harvest data and whole-plant24-h carbon dioxide exchange were used to determine relativegrowth rates, net assimilation rates, leaf area ratios, andthe ratio of respiration to photosynthesis under the growthconditions. Biomass at a given time after planting was greaterat the higher carbon dioxide pressure in G. max and L. esculentum,but not the C4 species, A. hypochondriacus. Relative growthrates for the same range of masses were not different betweencarbon dioxide treatments in the two C3 species, because highernet assimilation rates at the higher carbon dioxide pressurewere offset by lower leaf area ratios. Whole plant carbon dioxideefflux rates per unit of mass were lower in plants grown andmeasured at the higher carbon dioxide pressure in both G. maxand L. esculentum, and were also smaller in relation to daytimenet carbon dioxide influx. Short-term responses of respirationrate to carbon dioxide pressure were found in all species, withcarbon dioxide efflux rates of leaves and whole plants lowerwhen measured at higher carbon dioxide pressure in almost allcases. Amaranthus hypochondriacus L., Glycine max L. Merr., Lycopersicon esculentum Mill., soybean, tomato, carbon dioxide, respiration, growth  相似文献   

19.
The principal storage reserve of sugar beet seeds is starch, which is localised in the perisperm. Additional storage reserves include the seed proteins, albumins, globulins and glutclins, which are exclusively located in the embryo. Soluble sugars are also detectable in all the organs of the mature seed. The time-course of reserve mobilisation in the different organs of the sugar beet ( Beta vulgaris L. cv. Regina) seed during germination and early seedling growth is documented, with particular reference to changes in (a) activities of hydrolases: a-amylase, β-amylase, and α-glucosidases; (b) levels of carbohydrates and (c) proteins. Amylase activities increase substantially in both cotyledons, as well as the perisperm, whereas the increase in α-glucosidase activities is largely confined to the perisperm.  相似文献   

20.
The r-locus is one of the few genetic loci known to affect thestorage product composition and the morphology of pea (Pisumsativum) seeds. Lines which are near-isogenic except for ther-locus have been developed to study the effects of this locuson seed development. The plant phenotypes of these lines werevery similar except for those characteristics previously attributedto the r-locus. The seed development of the two lines followedsimilar patterns until the endosperm was absorbed by the embryo.The fresh weight of the rr line then increased more rapidlydue to the overall effect of a higher rate of water uptake anda lower rate of dry weight increase of the rr embryos comparedwith embryos homozygous for the R-allele. The effect of the r-locus on the relationship between embryofresh weight and dry weight suggests that the alleles may beaffecting the osmotic regulation of the developing embryo. Pisum sativum, pea, seed development, r-locus, genetic variation, growth analysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号