共查询到20条相似文献,搜索用时 15 毫秒
1.
Jeanette M. Criglar Liya Hu Sue E. Crawford Joseph M. Hyser James R. Broughman B. V. Venkataram Prasad Mary K. Estes 《Journal of virology》2014,88(2):786-798
Rotavirus (RV) replication occurs in cytoplasmic inclusions called viroplasms whose formation requires the interactions of RV proteins NSP2 and NSP5; however, the specific role(s) of NSP2 in viroplasm assembly remains largely unknown. To study viroplasm formation in the context of infection, we characterized two new monoclonal antibodies (MAbs) specific for NSP2. These MAbs show high-affinity binding to NSP2 and differentially recognize distinct pools of NSP2 in RV-infected cells; a previously unrecognized cytoplasmically dispersed NSP2 (dNSP2) is detected by an N-terminal binding MAb, and previously known viroplasmic NSP2 (vNSP2) is detected by a C-terminal binding MAb. Kinetic experiments in RV-infected cells demonstrate that dNSP2 is associated with NSP5 in nascent viroplasms that lack vNSP2. As viroplasms mature, dNSP2 remains in viroplasms, and the amount of diffuse cytoplasmic dNSP2 increases. vNSP2 is detected in increasing amounts later in infection in the maturing viroplasm, suggesting a conversion of dNSP2 into vNSP2. Immunoprecipitation experiments and reciprocal Western blot analysis confirm that there are two different forms of NSP2 that assemble in complexes with NSP5, VP1, VP2, and tubulin. dNSP2 associates with hypophosphorylated NSP5 and acetylated tubulin, which is correlated with stabilized microtubules, while vNSP2 associates with hyperphosphorylated NSP5. Mass spectroscopy analysis of NSP2 complexes immunoprecipitated from RV-infected cell lysates show both forms of NSP2 are phosphorylated, with a greater proportion of vNSP2 being phosphorylated compared to dNSP2. Together, these data suggest that dNSP2 interacts with viral proteins, including hypophosphorylated NSP5, to initiate viroplasm formation, while viroplasm maturation includes phosphorylation of NSP5 and vNSP2. 相似文献
2.
Rotavirus replication and virus assembly take place in electrodense spherical structures known as viroplasms whose main components are the viral proteins NSP2 and NSP5. The viroplasms are produced since early times after infection and seem to grow by stepwise addition of viral proteins and by fusion, however, the mechanism of viropIasms formation is unknown. In this study we found that the viroplasms surface colocalized with microtubules, and seem to be caged by a microtubule network. Moreover inhibition of microtubule assembly with nocodazole interfered with viroplasms growth in rotavirus infected cells. We searched for a physical link between viroplasms and microtubules by co-immunoprecipitation assays, and we found that the proteins NSP2 and NSP5 were co-immunoprecipitated with anti-tubulin in rotavirus infected cells and also when they were transiently co-expressed or individually expressed. These results indicate that a functional microtubule network is needed for viroplasm growth presumably due to the association of viroplasms with microtubules via NSP2 and NSP5. 相似文献
3.
Cryoelectron microscopy of frozen-hydrated alpha-ketoacid dehydrogenase complexes from Escherichia coli 总被引:1,自引:0,他引:1
The native architectures of the pyruvate and 2-oxoglutarate dehydrogenase complexes have been investigated by cryoelectron microscopy of unstained, frozen-hydrated specimens. In pyruvate dehydrogenase complex and 2-oxoglutarate dehydrogenase complex the transacylase (E2) components exist as 24-subunit, cube-shaped assemblies that form the structural cores of the complexes. Multiple copies (12-24) of the alpha-ketoacid dehydrogenase (E1) and dihydrolipoyl dehydrogenase (E3) components bind to the surface of the cores. Images of the frozen-hydrated enzyme complexes do not appear consistent with a symmetric arrangement of the E1 and E3 subunits about the octahedrally symmetric E2 core. Often the E1 or E3 subunits appear separated from the surface of the E2 core by 3-5 nm, and sometimes thin bridges of density appear in the gap between the E2 core and the bound subunits; studies of subcomplexes consisting of the E2 core from 2-oxoglutarate dehydrogenase complex and E1 or E3 show that both E1 and E3 are bound in this manner. Images of the E2 cores isolated from pyruvate dehydrogenase complex appear surrounded by a faint fuzz that extends approximately 10 nm from the surface of the core and likely corresponds to the lipoyl domains of the E2. 相似文献
4.
Samaniego-Hernández M De León-Rodriguez A Aparicio-Fabre R Arias-Ortiz C Barba de la Rosa AP 《Cell biochemistry and biophysics》2006,44(3):336-341
Rotaviruses are one of the worldwide leading causes of gastroenteritis in children under 5 yr old. The rotavirus nonstructural
NSP5 is a phosphoprotein implicated in viroplasms formation, whereas NSP6 could have a possible regulatory role of NSP5. It
has been reported that N- and C-termini of NSP5 are important for amount of protein is required for structural analysis, efficient
expression systems are required. His-tag fusion at the C-terminus and glutathione-S-transferase (GST)-fusion at the N-terminus were used as expression systems, and conditions for recombinant proteins expression
were obtained. His-tag fusion was not efficient to produce NSP5 (2% of total protein), but NSP6 was expressed in higher amounts
(11% of total protein). In contrast, GST-NSP5 and GST-NSP6 proteins correspond to 34 and 31% of the total proteins, respectively.
GST-fusions seem to have a protective effect against nonstructural rotavirus protein toxicity in Escherichia coli; however, in both systems, NSP5 and NSP6 recombinant proteins were expressed as inclusion bodies. Conditions for solubilization
and purification of recombinant proteins were achieved. This is the first report of expression and purification of NSP5 and
NSP6 recombinant proteins in suitable amounts for further structural analysis. 相似文献
5.
Interaction of rotavirus polymerase VP1 with nonstructural protein NSP5 is stronger than that with NSP2 总被引:1,自引:0,他引:1
下载免费PDF全文

Rotavirus morphogenesis starts in intracellular inclusion bodies called viroplasms. RNA replication and packaging are mediated by several viral proteins, of which VP1, the RNA-dependent RNA polymerase, and VP2, the core scaffolding protein, were shown to be sufficient to provide replicase activity in vitro. In vivo, however, viral replication complexes also contain the nonstructural proteins NSP2 and NSP5, which were shown to be essential for replication, to interact with each other, and to form viroplasm-like structures (VLS) when coexpressed in uninfected cells. In order to gain a better understanding of the intermediates formed during viral replication, this work focused on the interactions of NSP5 with VP1, VP2, and NSP2. We demonstrated a strong interaction of VP1 with NSP5 but only a weak one with NSP2 in cotransfected cells in the absence of other viral proteins or viral RNA. By contrast, we failed to coimmunoprecipitate VP2 with anti-NSP5 antibodies or NSP5 with anti-VP2 antibodies. We constructed a tagged form of VP1, which was found to colocalize in viroplasms and in VLS formed by NSP5 and NSP2. The tagged VP1 was able to replace VP1 structurally by being incorporated into progeny viral particles. When applying anti-tag-VP1 or anti-NSP5 antibodies, coimmunoprecipitation of tagged VP1 with NSP5 was found. Using deletion mutants of NSP5 or different fragments of NSP5 fused to enhanced green fluorescent protein, we identified the 48 C-terminal amino acids as the region essential for interaction with VP1. 相似文献
6.
RNA-binding activity of the rotavirus phosphoprotein NSP5 includes affinity for double-stranded RNA
下载免费PDF全文

Phosphoprotein NSP5 is a component of replication intermediates that catalyze the synthesis of the segmented double-stranded RNA (dsRNA) rotavirus genome. To study the role of the protein in viral replication, His-tagged NSP5 was expressed in bacteria and purified by affinity chromatography. In vitro phosphorylation assays showed that NSP5 alone contains minimal autokinase activity but undergoes hyperphosphorylation when combined with the NTPase and helix-destabilizing protein NSP2. Hence, NSP2 mediates the hyperphosphorylation of NSP5 in the absence of other viral or cellular proteins. RNA-binding assays demonstrated that NSP5 has unique nonspecific RNA-binding activity, recognizing single-stranded RNA and dsRNA with similar affinities. The possible functions of the RNA-binding activities of NSP5 are to cooperate with NSP2 in the destabilization of RNA secondary structures and in the packaging of RNA and/or to prevent the interferon-induced dsRNA-dependent activation of the protein kinase PKR. 相似文献
7.
Porcine rotavirus bearing an aberrant gene stemming from an intergenic recombination of the NSP2 and NSP5 genes is defective and interfering
下载免费PDF全文

Serial undiluted passage of a porcine rotavirus in MA104 cells yielded three distinct virus populations, each of which bore different rearranged genes. Sequencing revealed that each of two populations bore a distinct intragenic recombinant NSP3 gene consisting of a partial duplication in a head-to-tail orientation without altering the NSP3 open reading frame and the third population carried both an intragenic recombinant NSP3 gene and an intergenic recombinant gene (1,647 nucleotides in length) which contained a truncated NSP2 gene inserted into the NSP5 gene at residue 332. The former two populations were viable, whereas the latter population was defective and interfering. 相似文献
8.
Interconversion of replication and recombination structures: implications for terminal repeats and concatemers 总被引:4,自引:0,他引:4
Replication and recombination structures can be interconverted by branch-migration. Using this simple concept a novel mechanism is proposed for generating concatemers through an initial single-strand DNA invasion into a duplex. Only DNAs with terminal repeats can form concatemers, and Herpes Simplex Virus DNA replication is considered in detail. The model is more parsimonious than other models such as Watson's for concatemer formation. 相似文献
9.
The formation of viroplasm-like structures by the rotavirus NSP5 protein is calcium regulated and directed by a C-terminal helical domain 总被引:1,自引:0,他引:1
下载免费PDF全文

The rotavirus NSP5 protein directs the formation of viroplasm-like structures (VLS) and is required for viroplasm formation within infected cells. In this report, we have defined signals within the C-terminal 21 amino acids of NSP5 that are required for VLS formation and that direct the insolubility and hyperphosphorylation of NSP5. Deleting C-terminal residues of NSP5 dramatically increased the solubility of N-terminally tagged NSP5 and prevented NSP5 hyperphosphorylation. Computer modeling and analysis of the NSP5 C terminus revealed the presence of an amphipathic alpha-helix spanning 21 C-terminal residues that is conserved among rotaviruses. Proline-scanning mutagenesis of the predicted helix revealed that single-amino-acid substitutions abolish NSP5 insolubility and hyperphosphorylation. Helix-disrupting NSP5 mutations also abolished localization of green fluorescent protein (GFP)-NSP5 fusions into VLS and directly correlate VLS formation with NSP5 insolubility. All mutations introduced into the hydrophobic face of the predicted NSP5 alpha-helix disrupted VLS formation, NSP5 insolubility, and the accumulation of hyperphosphorylated NSP5 isoforms. Some NSP5 mutants were highly soluble but still were hyperphosphorylated, indicating that NSP5 insolubility was not required for hyperphosphorylation. Expression of GFP containing the last 68 residues of NSP5 at its C terminus resulted in the formation of punctate VLS within cells. Interestingly, GFP-NSP5-C68 was diffusely dispersed in the cytoplasm when calcium was depleted from the medium, and after calcium resupplementation GFP-NSP5-C68 rapidly accumulated into punctate VLS. A potential calcium switch, formed by two tandem pseudo-EF-hand motifs (DxDxD), is present just upstream of the predicted alpha-helix. Mutagenesis of either DxDxD motif abolished the regulatory effect of calcium on VLS formation and resulted in the constitutive assembly of GFP-NSP5-C68 into punctate VLS. These results reveal specific residues within the NSP5 C-terminal domain that direct NSP5 hyperphosphorylation, insolubility, and VLS formation in addition to defining residues that constitute a calcium-dependent trigger of VLS formation. These studies identify functional determinants within the C terminus of NSP5 that regulate VLS formation and provide a target for inhibiting NSP5-directed VLS functions during rotavirus replication. 相似文献
10.
Hyperphosphorylation of the rotavirus NSP5 protein is independent of serine 67, [corrected] NSP2, or [corrected] the intrinsic insolubility of NSP5 is regulated by cellular phosphatases
下载免费PDF全文

The NSP5 protein is required for viroplasm formation during rotavirus infection and is hyperphosphorylated into 32- to 35-kDa isoforms. Earlier studies reported that NSP5 is not hyperphosphorylated without NSP2 coexpression or deleting the NSP5 N terminus and that serine 67 is essential for NSP5 hyperphosphorylation. In this report, we show that full-length NSP5 is hyperphosphorylated in the absence of NSP2 or serine 67 and demonstrate that hyperphosphorylated NSP5 is predominantly present in previously unrecognized cellular fractions that are insoluble in 0.2% sodium dodecyl sulfate. The last 68 residues of NSP5 are sufficient to direct green fluorescent protein into insoluble fractions and cause green fluorescent protein localization into viroplasm-like structures; however, NSP5 insolubility was intrinsic and did not require NSP5 hyperphosphorylation. When we mutated serine 67 to alanine we found that the NSP5 mutant was both hyperphosphorylated and insoluble, identical to unmodified NSP5, and as a result serine 67 is not required for NSP5 phosphorylation. Interestingly, treating cells with the phosphatase inhibitor calyculin A permitted the accumulation of soluble hyperphosphorylated NSP5 isoforms. This suggests that soluble NSP5 is constitutively dephosphorylated by cellular phosphatases and demonstrates that hyperphosphorylation does not direct NSP5 insolubility. Collectively these findings indicate that NSP5 hyperphosphorylation and insolubility are completely independent parameters and that analyzing insoluble NSP5 is essential for studies assessing NSP5 phosphorylation. Our results also demonstrate the involvement of cellular phosphatases in regulating NSP5 phosphorylation and indicate that in the absence of other rotavirus proteins, domains on soluble and insoluble NSP5 recruit cellular kinases and phosphatases that coordinate NSP5 hyperphosphorylation. 相似文献
11.
Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2 总被引:2,自引:0,他引:2
下载免费PDF全文

The rotavirus nonstructural protein NSP2 self-assembles into homomultimers, binds single-stranded RNA nonspecifically, possesses a Mg2+-dependent nucleoside triphosphatase (NTPase) activity, and is a component of replication intermediates. Because these properties are characteristics of known viral helicases, we examined the possibility that this was also an activity of NSP2 by using a strand displacement assay and purified bacterially expressed protein. The results revealed that, under saturating concentrations, NSP2 disrupted both DNA-RNA and RNA-RNA duplexes; hence, the protein possesses helix-destabilizing activity. However, unlike typical helicases, NSP2 required neither a divalent cation nor a nucleotide energy source for helix destabilization. Further characterization showed that NSP2 displayed no polarity in destabilizing a partial duplex. In addition, helix destabilization by NSP2 was found to proceed cooperatively and rapidly. The presence of Mg2+ and other divalent cations inhibited by approximately one-half the activity of NSP2, probably due to the increased stability of the duplex substrate brought on by the cations. In contrast, under conditions where NSP2 functions as an NTPase, its helix-destabilizing activity was less sensitive to the presence of Mg2+, suggesting that in the cellular environment the two activities associated with the protein, helix destabilization and NTPase, may function together. Although distinct from typical helicases, the helix-destabilizing activity of NSP2 is quite similar to that of the sigmaNS protein of reovirus and to the single-stranded DNA-binding proteins (SSBs) involved in double-stranded DNA replication. The presence of SSB-like nonstructural proteins in two members of the family Reoviridae suggests a common mechanism of unwinding viral mRNA prior to packaging and subsequent minus-strand RNA synthesis. 相似文献
12.
Effect of intragenic rearrangement and changes in the 3' consensus sequence on NSP1 expression and rotavirus replication
下载免费PDF全文

Patton JT Taraporewala Z Chen D Chizhikov V Jones M Elhelu A Collins M Kearney K Wagner M Hoshino Y Gouvea V 《Journal of virology》2001,75(5):2076-2086
The nonpolyadenylated mRNAs of rotavirus are templates for the synthesis of protein and the segmented double-stranded RNA (dsRNA) genome. During serial passage of simian SA11 rotaviruses in cell culture, two variants emerged with gene 5 dsRNAs containing large (1.1 and 0.5 kb) sequence duplications within the open reading frame (ORF) for NSP1. Due to the sequence rearrangements, both variants encoded only C-truncated forms of NSP1. Comparison of these and other variants encoding defective NSP1 with their corresponding wild-type viruses indicated that the inability to encode authentic NSP1 results in a small-plaque phenotype. Thus, although nonessential, NSP1 probably plays an active role in rotavirus replication in cell culture. In determining the sequences of the gene 5 dsRNAs of the SA11 variants and wild-type viruses, it was unexpectedly found that their 3' termini ended with 5'-UGAACC-3' instead of the 3' consensus sequence 5'-UGACC-3', which is present on the mRNAs of nearly all other group A rotaviruses. Cell-free assays indicated that the A insertion into the 3' consensus sequence interfered with its ability to promote dsRNA synthesis and to function as a translation enhancer. The results provide evidence that the 3' consensus sequence of the gene 5 dsRNAs of SA11 rotaviruses has undergone a mutation causing it to operate suboptimally in RNA replication and in the expression of NSP1 during the virus life cycle. Indeed, just as rotavirus variants which encode defective NSP1 appear to have a selective advantage over those encoding wild-type NSP1 in cell culture, it may be that the atypical 3' end of SA11 gene 5 has been selected for because it promotes the expression of lower levels of NSP1 than the 3' consensus sequence. 相似文献
13.
Rotavirus replication and virulence are strongly influenced by virus strain and host species. The rotavirus proteins VP3, VP4, VP7, NSP1, and NSP4 have all been implicated in strain and species restriction of replication; however, the mechanisms have not been fully determined. Simian (RRV) and bovine (UK) rotaviruses have distinctive replication capacities in mouse extraintestinal organs such as the biliary tract. Using reassortants between UK and RRV, we previously demonstrated that the differential replication of these viruses in mouse embryonic fibroblasts is determined by the respective NSP1 proteins, which differ substantially in their abilities to degrade interferon (IFN) regulatory factor 3 (IRF3) and suppress the type I IFN response. In this study, we used an in vivo model of rotavirus infection of mouse gallbladder with UK × RRV reassortants to study the genetic and mechanistic basis of systemic rotavirus replication. We found that the low-replication phenotype of UK in biliary tissues was conferred by UK VP4 and that the high-replication phenotype of RRV was conferred by RRV VP4 and NSP1. Viruses with RRV VP4 entered cultured mouse cholangiocytes more efficiently than did those with UK VP4. Reassortants with RRV VP4 and UK NSP1 genes induced high levels of expression of IRF3-dependent p54 in biliary tissues, and their replication was increased 3-fold in IFN-α/β and -γ receptor or STAT1 knockout (KO) mice compared to wild-type mice. Our data indicate that systemic rotavirus strain-specific replication in the murine biliary tract is determined by both viral entry mediated by VP4 and viral antagonism of the host innate immune response mediated by NSP1. 相似文献
14.
Structure-function analysis of rotavirus NSP2 octamer by using a novel complementation system
下载免费PDF全文

Taraporewala ZF Jiang X Vasquez-Del Carpio R Jayaram H Prasad BV Patton JT 《Journal of virology》2006,80(16):7984-7994
Viral inclusion bodies, or viroplasms, that form in rotavirus-infected cells direct replication and packaging of the segmented double-stranded RNA (dsRNA) genome. NSP2, one of two rotavirus proteins needed for viroplasm assembly, possesses NTPase, RNA-binding, and helix-unwinding activities. NSP2 of the rotavirus group causing endemic infantile diarrhea (group A) was shown to self-assemble into large doughnut-shaped octamers with circumferential grooves and deep clefts containing nucleotide-binding histidine triad (HIT)-like motifs. Here, we demonstrate that NSP2 of group C rotavirus, a group that fails to reassort with group A viruses, retains the unique architecture of the group A octamer but differs in surface charge distribution. By using an NSP2-dependent complementation system, we show that the HIT-dependent NTPase activity of NSP2 is necessary for dsRNA synthesis, but not for viroplasm formation. The complementation system also showed that despite the retention of the octamer structure and the HIT-like fold, group C NSP2 failed to rescue replication and viroplasm formation in NSP2-deficient cells infected with group A rotavirus. The distinct differences in the surface charges on the Bristol and SA11 NSP2 octamers suggest that charge complementarity of the viroplasm-forming proteins guides the specificity of viroplasm formation and, possibly, reassortment restriction between rotavirus groups. 相似文献
15.
Oke M Kerou M Liu H Peng X Garrett RA Prangishvili D Naismith JH White MF 《Journal of virology》2011,85(2):925-931
The Rudiviridae are a family of rod-shaped archaeal viruses with covalently closed, linear double-stranded DNA (dsDNA) genomes. Their replication mechanisms remain obscure, although parallels have been drawn to the Poxviridae and other large cytoplasmic eukaryotic viruses. Here we report that a protein encoded in the 34-kbp genome of the rudivirus SIRV1 is a member of the replication initiator (Rep) superfamily of proteins, which initiate rolling-circle replication (RCR) of diverse viruses and plasmids. We show that SIRV Rep nicks the viral hairpin terminus, forming a covalent adduct between an active-site tyrosine and the 5' end of the DNA, releasing a 3' DNA end as a primer for DNA synthesis. The enzyme can also catalyze the joining reaction that is necessary to reseal the DNA hairpin and terminate replication. The dimeric structure points to a simple mechanism through which two closely positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral replication are discussed. 相似文献
16.
Nucleotide sequence of the brome mosaic virus genome and its implications for viral replication 总被引:31,自引:0,他引:31
The nucleotide sequences of brome mosaic virus (BMV) RNAs 1 (3234 bases) and 2 (2865 bases) have been determined, completing the primary structure of the 8200 base tripartite BMV genome. cDNA clones covering 99% of BMV RNA1 and a full-length cDNA clone of BMV RNA2 were isolated in the course of this work. Extensive sequence homology and known interaction with several proteins suggest that the 3' ends of the BMV RNAs are the major regulatory regions of the genome. Smaller regions at the 5' ends of RNAs 1 and 2 show strong homology to each other and lesser homology to RNA3. These and other features of the sequences are discussed in relation to replication, regulation and evolution of the BMV genome. 相似文献
17.
Vasquez-Del Carpio R Gonzalez-Nilo FD Riadi G Taraporewala ZF Patton JT 《Journal of molecular biology》2006,362(3):539-554
Rotavirus NSP2 is an abundant non-structural RNA-binding protein essential for forming the viral factories that support replication of the double-stranded RNA genome. NSP2 exists as stable doughnut-shaped octamers within the infected cell, representing the tail-to-tail interaction of two tetramers. Extending diagonally across the surface of each octamer are four highly basic grooves that function as binding sites for single-stranded RNA. Between the N and C-terminal domains of each monomer is a deep electropositive cleft containing a catalytic site that hydrolyzes the gamma-beta phosphoanhydride bond of any NTP. The catalytic site has similarity to those of the histidine triad (HIT) family of nucleotide-binding proteins. Due to the close proximity of the grooves and clefts, we investigated the possibility that the RNA-binding activity of the groove promoted the insertion of the 5'-triphosphate moiety of the RNA into the cleft, and the subsequent hydrolysis of its gamma-beta phosphoanhydride bond. Our results show that NSP2 hydrolyzes the gammaP from RNAs and NTPs through Mg(2+)-dependent activities that proceed with similar reaction velocities, that require the catalytic His225 residue, and that produce a phosphorylated intermediate. Competition assays indicate that although both substrates enter the active site, RNA is the preferred substrate due to its higher affinity for the octamer. The RNA triphosphatase (RTPase) activity of NSP2 may account for the absence of the 5'-terminal gammaP on the (-) strands of the double-stranded RNA genome segments. This is the first report of a HIT-like protein with a multifunctional catalytic site, capable of accommodating both NTPs and RNAs during gammaP hydrolysis. 相似文献
18.
In vivo and in vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms. 总被引:3,自引:7,他引:3
下载免费PDF全文

NSP5 (NS26), the product of rotavirus gene 11, is a phosphoprotein whose role in the virus replication cycle is unknown. To gain further insight into its function, we obtained monoclonal antibodies against the baculovirus-expressed protein. By immunoprecipitation and immunoblotting experiments, we showed that (i) NSP5 appears in many different phosphorylated forms in rotavirus-infected cells; (ii) immunoprecipitated NSP5 from rotavirus-infected cells can be phosphorylated in vitro by incubation with ATP; (iii) NSP5, produced either by transient transfection of rotavirus gene 11 or by infection by gene 11 recombinant vaccinia virus or baculovirus, can be phosphorylated in vivo and in vitro; (iv) NSP5 expressed in Escherichia coli is phosphorylated in vitro, and thus NSP5 is a potential protein kinase; and (v) NSP5 forms dimers and interacts with NSP2. The intracellular localization of NSP5 in the course of rotavirus infection and after transient expression in COS7 cells has also been investigated. In rotavirus-infected cells, NSP5 is localized in viroplasms, but it is widespread throughout the cytoplasm of transfected COS7 cells. NSP5 produced by transfected COS7 cells did not acquire the multiphosphorylated forms observed in rotavirus-infected COS7 cells. Thus, there is a tight correlation between the localization of NSP5 in the viroplasms and its protein kinase activity in vivo or in vitro. Our results suggest that cellular or viral cofactors are indispensable to fully phosphorylate NSP5 and to reach its intracellular localization. 相似文献
19.
Halophage HF2 is a lytic, broad-host-range bacteriophage of the extremely halophilic domain Archaea. It has a 79.7-kb double-stranded DNA genome which is linear, contains no modified nucleotides, and is not susceptible to cleavage by many type II restriction endonucleases. This insensitivity is attributed to selection against palindromic restriction sites, a commonly observed feature of broad-host-range phages. Interestingly, enzymes that did cut the genome recognized AT-rich sites, and five such enzymes, DraI, AseI, HpaI, HindIII, and SspI, were used to construct a physical map of the genome. Southern hybridization experiments used to order fragments on the map indicated homologies between the phage termini, and subsequent sequence analysis showed that HF2 possessed 306-bp direct terminal repeats. The presence of such repeats suggested replication through concatameric intermediates, and this was confirmed by analysis of the state of the phage genome in infected cells. This is a replication strategy adopted by many well-studied bacterial phages, for example T3 and T7. Other similarities between the terminal repeats of T3 or T7 and HF2 include a putative nick site at the repeat border and a series of short imperfect repeats. These observations suggest a long evolutionary history for concatamer-based strategies of phage replication, possibly predating the divergence of Archaea/Eucarya and Bacteria, or alternatively, indicate possible lateral transfer of phage genes or modules between the domains Archaea and Bacteria. 相似文献
20.
Expression of nonstructural rotavirus protein NSP4 mimics Ca2+ homeostasis changes induced by rotavirus infection in cultured cells
下载免费PDF全文

Díaz Y Chemello ME Peña F Aristimuño OC Zambrano JL Rojas H Bartoli F Salazar L Chwetzoff S Sapin C Trugnan G Michelangeli F Ruiz MC 《Journal of virology》2008,82(22):11331-11343
Rotavirus infection modifies Ca2+ homeostasis, provoking an increase in Ca2+ permeation, the cytoplasmic Ca2+ concentration ([Ca2+]cyto), and total Ca2+ pools and a decrease in Ca2+ response to agonists. A glycosylated viral protein(s), NSP4 and/or VP7, may be responsible for these effects. HT29 or Cos-7 cells were infected by the SA11 clone 28 strain, in which VP7 is not glycosylated, or transiently transfected with plasmids coding for NSP4-enhanced green fluorescent protein (EGFP) or NSP4. The permeability of the plasma membrane to Ca2+ and the amount of Ca2+ sequestered in the endoplasmic reticulum released by carbachol or ATP were measured in fura-2-loaded cells at the single-cell level under a fluorescence microscope or in cell suspensions in a fluorimeter. Total cell Ca2+ pools were evaluated as 45Ca2+ uptake. Infection with SA11 clone 28 induced an increase in Ca2+ permeability and 45Ca2+ uptake similar to that found with the normally glycosylated SA11 strain. These effects were inhibited by tunicamycin, indicating that inhibition of glycosylation of a viral protein other than VP7 affects the changes of Ca2+ homeostasis induced by infection. Expression of NSP4-EGFP or NSP4 in transfected cells induced the same changes observed with rotavirus infection, whereas the expression of EGFP or EGFP-VP4 showed the behavior of uninfected and untransfected cells. Increased 45Ca2+ uptake was also observed in cells expressing NSP4-EGFP or NSP4, as evidenced in rotavirus infection. These results indicate that glycosylated NSP4 is primarily responsible for altering the Ca2+ homeostasis of infected cells through an initial increase of cell membrane permeability to Ca2+. 相似文献