首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.  相似文献   

2.
3.
Cloned large conductance Ca(2+)-activated K+ channels (BK or maxi-K+ channels) from Drosophila (dSlo) were expressed in Xenopus oocytes and studied in excised membrane patches with the patch-clamp technique. Both a natural variant and a mutant that eliminated a putative cyclic AMP-dependent protein kinase phosphorylation site exhibited large, slow fluctuations in open probability with time. These fluctuations, termed "wanderlust kinetics," occurred with a time course of tens of seconds to minutes and had kinetic properties inconsistent with simple gating models. Wanderlust kinetics was still observed in the presence of 5 mM caffeine or 50 nM thapsigargin, or when the Ca2+ buffering capacity of the solution was increased by the addition of 5 mM HEDTA, suggesting that the wanderlust kinetics did not arise from Ca2+ release from caffeine and thapsigargin sensitive internal stores in the excised patch. The slow changes in kinetics associated with wanderlust kinetics could be generated with a discrete-state Markov model with transitions among three or more kinetic modes with different levels of open probability. To average out the wanderlust kinetics, large amounts of data were analyzed and demonstrated up to a threefold difference in the [Ca2+]i required for an open probability of 0.5 among channels expressed from the same injected mRNA. These findings indicate that cloned dSlo channels in excised patches from Xenopus oocytes can exhibit large variability in gating properties, both within a single channel and among channels.  相似文献   

4.
Cells of the human promyelocytic cell line HL-60 can be controllably induced to terminally differentiate into either granulocytes or monocyte/macrophages. HL-60 promyelocytes and terminally differentiated macrophages express a K(+)-selective ion channel which is activated by intracellular free Ca2+ concentrations above 10(-7) M. Because of its voltage independence, this channel can be distinguished from the voltage- and Ca(2+)-activated family of outward-rectifying channels. The channel is selective for K+ against Na+ and is blocked by Ba2+, thus it may be similar to the Ca(2+)-activated K+ channel previously described in human macrophages. In its sensitivity to block by charybdotoxin, this channel also resembles a Ca(2+)-activated K+ channel of lymphocytes, which plays a role in activation-dependent hyperpolarization. In contrast to promyelocytes and macrophages, functional expression of the Ca(2+)-activated K+ channel is suppressed to nearly undetectable levels in granulocytes derived from HL-60 cells by retinoic acid-induced differentiation. These data suggest that signals which produce elevation of intracellular Ca2+ will hyperpolarize promyelocytes and differentiated macrophages by activating this conductance; however, signals which elevate free Ca2+ in granulocytes must act on other effectors, which may produce a different final influence on membrane potential.  相似文献   

5.
We studied the effects of permeant ions on the gating of the large conductance Ca(2+)-activated K+ channel from rat skeletal muscle. Rb+ blockade of inward K+ current caused an increase in the open probability as though Rb+ occupancy of the pore interferes with channel closing. In support of this hypothesis, we directly measured the occupancy of the pore by the impermeant ion Cs+ and found that it strongly correlates with its effect on gating. This is consistent with the "foot-in-the-door" model of gating, which states that channels cannot close with an ion in the pore. However, because Rb+ and Cs+ not only slow the closing rate (as predicted by the model), but also speed the opening rate, our results are more consistent with a modified version of the model in which the channel can indeed close while occupied, but the occupancy destabilizes the closed state. Increasing the occupancy of the pore by the addition of other permeant (K+ and Tl+) and impermeant (tetraethylammonium) ions did not affect the open probability. To account for this disparity, we used a two-site permeation model in which only one of the sites influenced gating. Occupancy of this "gating site" interferes with channel closing and hastens opening. Ions that directly or indirectly increase the occupancy of this site will increase the open probability.  相似文献   

6.
Iberiotoxin, a toxin purified from the scorpion Buthus tamulus is a 37 amino acid peptide having 68% homology with charybdotoxin. Charybdotoxin blocks large conductance Ca(2+)-activated K+ channels at nanomolar concentrations from the external side only (Miller, C., E. Moczydlowski, R. Latorre, and M. Phillips. 1985. Nature (Lond.). 313:316-318). Like charybdotoxin, iberiotoxin is only able to block the skeletal muscle membrane Ca(2+)-activated K+ channel incorporated into neutral-planar bilayers when applied to the external side. In the presence of iberiotoxin, channel activity is interrupted by quiescent periods that can last for several minutes. From single-channel records it was possible to determine that iberiotoxin binds to Ca(2+)-activate K+ channel in a bimolecular reaction. When the solution bathing the membrane are 300 mM K+ internal and 300 mM Na+ external the toxin second order association rate constant is 3.3 x 10(6) s-1 M-1 and the first order dissociation rate constant is 3.8 x 10(-3) s-1, yielding an apparent equilibrium dissociation constant of 1.16 nM. This constant is 10-fold lower than that of charybdotoxin, and the values for the rate constants showed above indicate that this is mainly due to the very low dissociation rate constant; mean blocked time approximately 5 min. The fact that tetraethylammonium competitively inhibits the iberiotoxin binding to the channel is a strong suggestion that this toxin binds to the channel external vestibule. Increasing the external K+ concentration makes the association rate constant to decrease with no effect on the dissociation reaction indicating that the surface charges located in the external channel vestibule play an important role in modulating toxin binding.  相似文献   

7.
We studied the effect of H(2)O(2) on the gating behavior of large-conductance Ca(2+)-sensitive voltage-dependent K(+) (K(V,Ca)) channels. We recorded potassium currents from single skeletal muscle channels incorporated into bilayers or using macropatches of Xenopus laevis oocytes membranes expressing the human Slowpoke (hSlo) alpha-subunit. Exposure of the intracellular side of K(V,Ca) channels to H(2)O(2) (4-23 mM) leads to a time-dependent decrease of the open probability (P(o)) without affecting the unitary conductance. H(2)O(2) did not affect channel activity when added to the extracellular side. These results provide evidence for an intracellular site(s) of H(2)O(2) action. Desferrioxamine (60 microM) and cysteine (1 mM) completely inhibited the effect of H(2)O(2), indicating that the decrease in P(o) was mediated by hydroxyl radicals. The reducing agent dithiothreitol (DTT) could not fully reverse the effect of H(2)O(2). However, DTT did completely reverse the decrease in P(o) induced by the oxidizing agent 5,5'-dithio-bis-(2-nitrobenzoic acid). The incomplete recovery of K(V,Ca) channel activity promoted by DTT suggests that H(2)O(2) treatment must be modifying other amino acid residues, e.g., as methionine or tryptophan, besides cysteine. Noise analysis of macroscopic currents in Xenopus oocytes expressing hSlo channels showed that H(2)O(2) induced a decrease in current mediated by a decrease both in the number of active channels and P(o).  相似文献   

8.
Based on electrophysiological studies, Ca(2+)-activated K(+) channels and voltage-gated Ca(2+) channels appear to be located in close proximity in neurons. Such colocalization would ensure selective and rapid activation of K(+) channels by local increases in the cytosolic calcium concentration. The nature of the apparent coupling is not known. In the present study we report a direct coassembly of big conductance Ca(2+)-activated K(+) channels (BK) and L-type voltage-gated Ca(2+) channels in rat brain. Saturation immunoprecipitation studies were performed on membranes labeled for BK channels and precipitated with antibodies against alpha(1C) and alpha(1D) L-type Ca(2+) channels. To confirm the specificity of the interaction, precipitation experiments were carried out also in reverse order. Also, additive precipitation was performed because alpha(1C) and alpha(1D) L-type Ca(2+) channels always refer to separate ion channel complexes. Finally, immunochemical studies showed a distinct but overlapping expression pattern of the two types of ion channels investigated. BK and L-type Ca(2+) channels were colocalized in various compartments throughout the rat brain. Taken together, these results demonstrate a direct coassembly of BK channels and L-type Ca(2+) channels in certain areas of the brain.  相似文献   

9.
Small conductance Ca(2+)-activated K+ channels (SK channels) couple the membrane potential to fluctuations in intracellular Ca2+ concentration in many types of cells. SK channels are gated by Ca2+ ions via calmodulin that is constitutively bound to the intracellular C terminus of the channels and serves as the Ca2+ sensor. Here we show that, in addition, the cytoplasmic N and C termini of the channel protein form a polyprotein complex with the catalytic and regulatory subunits of protein kinase CK2 and protein phosphatase 2A. Within this complex, CK2 phosphorylates calmodulin at threonine 80, reducing by 5-fold the apparent Ca2+ sensitivity and accelerating channel deactivation. The results show that native SK channels are polyprotein complexes and demonstrate that the balance between kinase and phosphatase activities within the protein complex shapes the hyperpolarizing response mediated by SK channels.  相似文献   

10.
11.
We have investigated the effects of intracellular K+ and Rb+ on single-channel currents recorded from the large-conductance Ca(2+)-activated K+ (BK) channel of the embryonic rat telencephalon using the inside-out patch-clamp technique. Our novel observation concerns the effects of these ions on rapid flickering of channel openings. Specifically, flicker gating was voltage dependent, i.e., it was reduced by depolarization in the -60 to -10 mV range with equimolar concentrations of K+ ions (150 Ko+/150 Ki+). Removal of Ki+ resulted in significant flickering at all potentials in this voltage range. In other words, the voltage dependence of flicker gating was effectively eliminated by the removal of Ki+. This suggests that a K+ ion entering the channel from the intracellular medium binds, in a voltage-dependent manner, at a site that locks the flicker gate in its open position. No effects of changes in Ki+ were observed on the primary, voltage-dependent gate of the channel. The change in flickering did not cause a change in the mean burst duration, which indicates that the primary gate is stochastically independent of the flicker gate. Intracellular Rb+ can substitute for--and is even more effective than--Ki+ with regard to suppression of flickering. Substitution of Rbi+ for Ki+ also increased the mean burst duration for V > or = -30 mV. Both effects of Rbi+ were removed by membrane hyperpolarization.  相似文献   

12.
The effect of pH on the activation of a Ca-activated K+ [K(Ca)] channel from rat skeletal muscle incorporated into planar lipid bilayers was studied. Experiments were done at different intracellular Ca2+ and proton concentrations. Changes in pH modified channel kinetics only from the Ca-sensitive face of the channel. At constant Ca2+ concentration, intracellular acidification induced a decrease in the open probability (Po) and a shift of the channel activation curves toward the right along the voltage axis. The displacement was 23.5 mV per pH unit. This displacement was due to a change in the half saturation voltage (Vo) and not to a change in channel voltage dependence. The shifts in Vo induced by protons appeared to be independent of Ca2+ concentration. The slope of the Hill plot of the open-closed equilibrium vs. pH was close to one, suggesting that a minimum of one proton is involved in the proton-driven channel closing reaction. The change in Po with variations in pH was due to both a decrease in the mean open time (To) and an increase in the mean closed time (Tc). At constant voltage, the mean open time of the channel was a linear function of [Ca2+] and the mean closed time was a linear function of 1/[Ca2+]2. Changes in the internal pH modified the slope, but not the intercept of the linear relations To vs. [Ca2+] and Tc vs. 1/[Ca2+]2. On the basis of these results an economical kinetic model of the effect of pH on this channel is proposed. It is concluded that protons do not affect the open-closed reaction, but rather weaken Ca2+ binding to all the conformational states of the channel. Moreover, competitive models in which Ca2+ and H+ cannot bind to the same open or closed state are inconsistent with the data.  相似文献   

13.
Coexpression of the beta(1) subunit with the alpha subunit (mSlo) of BK channels increases the apparent Ca(2+) sensitivity of the channel. This study investigates whether the mechanism underlying the increased Ca(2+) sensitivity requires Ca(2+), by comparing the gating in 0 Ca(2+)(i) of BK channels composed of alpha subunits to those composed of alpha+beta(1) subunits. The beta(1) subunit increased burst duration approximately 20-fold and the duration of gaps between bursts approximately 3-fold, giving an approximately 10-fold increase in open probability (P(o)) in 0 Ca(2+)(i). The effect of the beta(1) subunit on increasing burst duration was little changed over a wide range of P(o) achieved by varying either Ca(2+)(i) or depolarization. The effect of the beta(1) subunit on increasing the durations of the gaps between bursts in 0 Ca(2+)(i) was preserved over a range of voltage, but was switched off as Ca(2+)(i) was increased into the activation range. The Ca(2+)-independent, beta(1) subunit-induced increase in burst duration accounted for 80% of the leftward shift in the P(o) vs. Ca(2+)(i) curve that reflects the increased Ca(2+) sensitivity induced by the beta(1) subunit. The Ca(2+)-dependent effect of the beta(1) subunit on the gaps between bursts accounted for the remaining 20% of the leftward shift. Our observation that the major effects of the beta(1) subunit are independent of Ca(2+)(i) suggests that the beta(1) subunit mainly alters the energy barriers of Ca(2+)-independent transitions. The changes in gating induced by the beta(1) subunit differ from those induced by depolarization, as increasing P(o) by depolarization or by the beta(1) subunit gave different gating kinetics. The complex gating kinetics for both alpha and alpha+beta(1) channels in 0 Ca(2+)(i) arise from transitions among two to three open and three to five closed states and are inconsistent with Monod-Wyman-Changeux type models, which predict gating among only one open and one closed state in 0 Ca(2+)(i).  相似文献   

14.
P Sah  E M McLachlan 《Neuron》1991,7(2):257-264
We examined the possibility that Ca2+ released from intracellular stores could activate K+ currents underlying the afterhyperpolarization (AHP) in neurons. In neurons of the dorsal motor nucleus of the vagus, the current underlying the AHP had two components: a rapidly decaying component that was maximal following the action potential (GkCa,1) and a slower component that had a distinct rising phase (GkCa,2). Both components required influx of extracellular Ca2+ for their activation, and neither was blocked by extracellular TEA (10 mM). GkCa,1 was selectively blocked by apamin, whereas GkCa,2 was selectively reduced by noradrenaline. The time course of GkCa,2 was markedly temperature sensitive. GkCa,2 was selectively blocked by application of ryanodine or sodium dantrolene, or by loading cells with ruthenium red. These results suggest that influx of Ca2+ directly gates one class of K+ channels and leads to release of Ca2+ from intracellular stores, which activates a different class of K+ channel.  相似文献   

15.
Three broad classes of Ca(2+)-activated potassium channels are defined by their respective single channel conductances, i.e. the small, intermediate, and large conductance channels, often termed the SK, IK, and BK channels, respectively. SK channels are likely encoded by three genes, Kcnn1-3, whereas IK and most BK channels are most likely products of the Kcnn4 and Slo (Kcnma1) genes, respectively. IK channels are prominently expressed in cells of the hematopoietic system and in organs involved in salt and fluid transport, including the colon, lung, and salivary glands. IK channels likely underlie the K(+) permeability in red blood cells that is associated with water loss, which is a contributing factor in the pathophysiology of sickle cell disease. IK channels are also involved in the activation of T lymphocytes. The fluid-secreting acinar cells of the parotid gland express both IK and BK channels, raising questions about their particular respective roles. To test the physiological roles of channels encoded by the Kcnn4 gene, we constructed a mouse deficient in its expression. Kcnn4 null mice were of normal appearance and fertility, their parotid acinar cells expressed no IK channels, and their red blood cells lost K(+) permeability. The volume regulation of T lymphocytes and erythrocytes was severely impaired in Kcnn4 null mice but was normal in parotid acinar cells. Despite the loss of IK channels, activated fluid secretion from parotid glands was normal. These results confirm that IK channels in red blood cells, T lymphocytes, and parotid acinar cells are indeed encoded by the Kcnn4 gene. The role of these channels in water movement and the subsequent volume changes in red blood cells and T lymphocytes is also confirmed. Surprisingly, Kcnn4 channels appear to play no required role in fluid secretion and regulatory volume decrease in the parotid gland.  相似文献   

16.
Nitrendipine, a classical blocker of L-type Ca2+ channels, is shown to be a potent inhibitor of the Ca(2+)-activated K+ channel of human erythrocytes. In erythrocytes suspended in a solution with physiological Na+ and K+ concentrations and in which the channel was activated using the Ca2+ ionophore ionomycin, nitrendipine inhibited K+(86Rb+) influx with an I50 of around 130 nM. Similar results were obtained for K+(86Rb+) efflux, and for K+(86Rb+) influx into cells suspended in a high-K+ medium.  相似文献   

17.
Mechanical deformation of normal ATP-replete human erythrocytes increased their permeability to Ca2+ sufficiently to turn on the Ca(2+)-activated K+ channel (the Gardos channel). When Ca2+ is absent, mechanical deformation of normal erythrocytes induces an equivalent increase the permeability of both Na+ and K+, In the presence of 0.1 to 1 mM Ca2+, a further increase in the K+ efflux rate was seen. There was no increase in Na+ flux above that induced by deformation itself. The involvement of the Ca(2+)-activated H channel was verified by showing the specific inhibitors of the channel, quinine and charybdotoxin, prevent the Ca(2+)-induced increase in K+ efflux. These results are consistent with a model of sickle cell dehydration proposed by Bookchin et al. ((1987) Prog. Clin. Biol. Res. 240, 193-200). The estimated rate of Ca2+ entry under these conditions (37 degrees C, 1000 dyne/cm2, and laminar shear) was about 1 mmol/loc per h.  相似文献   

18.
Cloned large conductance Ca2+-activated K+ channels (BK or maxi-K+ channels) from Drosophila (dSlo) were expressed in Xenopus oocytes and studied in excised membrane patches with the patch-clamp technique. Both a natural variant and a mutant that eliminated a putative cyclic AMP-dependent protein kinase phosphorylation site exhibited large, slow fluctuations in open probability with time. These fluctuations, termed "wanderlust kinetics," occurred with a time course of tens of seconds to minutes and had kinetic properties inconsistent with simple gating models. Wanderlust kinetics was still observed in the presence of 5mM caffeine or 50 nM thapsigargin, or when the Ca2+ buffering capacity of the solution was increased by the addition of 5 mM HEDTA, suggesting that the wanderlust kinetics did not arise from Ca2+ release from caffeine and thapsigargin sensitive internal stores in the excised patch. The slow changes in kinetics associated with wanderlust kinetics could be generated with a discrete-state Markov model with transitions among three or more kinetic modes with different levels of open probability. To average out the wanderlust kinetics, large amounts of data were analyzed and demonstrated up to a threefold difference in the [Ca2+]i required for an open probability of 0.5 among channels expressed from the same injected mRNA. These findings indicate that cloned dSlo channels in excised patches from Xenopus oocytes can exhibit large variability in gating properties, both within a single channel and among channels.  相似文献   

19.
Ca(2+)-activated Cl(-) channels play important roles in a variety of physiological processes, including epithelial secretion, maintenance of smooth muscle tone, and repolarization of the cardiac action potential. It remains unclear, however, exactly how these channels are controlled by Ca(2+) and voltage. Excised inside-out patches containing many Ca(2+)-activated Cl(-) channels from Xenopus oocytes were used to study channel regulation. The currents were mediated by a single type of Cl(-) channel that exhibited an anionic selectivity of I(-) > Br(-) > Cl(-) (3.6:1.9:1.0), irrespective of the direction of the current flow or [Ca(2+)]. However, depending on the amplitude of the Ca(2+) signal, this channel exhibited qualitatively different behaviors. At [Ca(2+)] < 1 microM, the currents activated slowly upon depolarization and deactivated upon hyperpolarization and the steady state current-voltage relationship was strongly outwardly rectifying. At higher [Ca(2+)], the currents did not rectify and were time independent. This difference in behavior at different [Ca(2+)] was explained by an apparent voltage-dependent Ca(2+) sensitivity of the channel. At +120 mV, the EC(50) for channel activation by Ca(2+) was approximately fourfold less than at -120 mV (0.9 vs. 4 microM). Thus, at [Ca(2+)] < 1 microM, inward current was smaller than outward current and the currents were time dependent as a consequence of voltage-dependent changes in Ca(2+) binding. The voltage-dependent Ca(2+) sensitivity was explained by a kinetic gating scheme in which channel activation was Ca(2+) dependent and channel closing was voltage sensitive. This scheme was supported by the observation that deactivation time constants of currents produced by rapid Ca(2+) concentration jumps were voltage sensitive, but that the activation time constants were Ca(2+) sensitive. The deactivation time constants increased linearly with the log of membrane potential. The qualitatively different behaviors of this channel in response to different Ca(2+) concentrations adds a new dimension to Ca(2+) signaling: the same channel can mediate either excitatory or inhibitory responses, depending on the amplitude of the cellular Ca(2+) signal.  相似文献   

20.
We report here the expression and properties of the intermediate-conductance Ca(2+)-activated K(+) (IK(Ca)) channel in the GL-15 human glioblastoma cell line. Macroscopic IK(Ca) currents on GL-15 cells displayed a mean amplitude of 7.2+/-0.8 pA/pF at 0 mV, at day 1 after plating. The current was inhibited by clotrimazole (CTL, IC(50)=257 nM), TRAM-34 (IC(50)=55 nM), and charybdotoxin (CTX, IC(50)=10.3 nM). RT-PCR analysis demonstrated the expression of mRNA encoding the IK(Ca) channel in GL-15 cells. Unitary currents recorded using the inside-out configuration had a conductance of 25 pS, a K(D) for Ca(2+) of 188 nM at -100 mV, and no voltage dependence. We tested whether the IKCa channel expression in GL-15 cells could be the result of an increased ERK activity. Inhibition of the ERK pathway with the MEK antagonist PD98059 (25 muM, for 5 days) virtually suppressed the IK(Ca) current in GL-15 cells. PD98059 treatment also increased the length of cellular processes and up-regulated the astrocytic differentiative marker GFAP. A significant reduction of the IKCa current amplitude was also observed with time in culture, with mean currents of 7.17+/-0.75 pA/pF at 1-2 days, and 3.11+/-1.35 pA/pF at 5-6 days after plating. This time-dependent downregulation of the IK(Ca) current was not accompanied by changes in the ERK activity, as assessed by immunoblot analysis. Semiquantitative RT-PCR analysis demonstrated a ~35% reduction of the IK(Ca) channel mRNA resulting from ERK inhibition and a approximately 50% reduction with time in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号